

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4*S*,5*R*)-4-Benzyloxy-5-[4-(cyclohexanecarbonyl)phenyl]-1-(4-methoxybenzyl)pyrrolidin-2-one

Yan-Jiao Gao, Jie Ma and Xiao Zheng*

The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China

Correspondence e-mail: zxiao@xmu.edu.cn

Received 27 August 2013; accepted 18 February 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.123; data-to-parameter ratio = 11.3.

The title compound, C₃₂H₃₅NO₄, is an unexpected product obtained in the SmI₂-mediated radical cross-coupling of a lactam 2-pyridyl sulfone with an arone. The asymmetric unit contains two molecules. In both molecules, the core pyrrolidinone ring adopts an approximate envelope conformation (with the C atom bearling the benzyloxy substituent as the flap) and the cyclohexyl ring has a chair conformation. The relative orientation of the two substitutent groups at the 4and 5-positions of the pyrrolidinone ring is anti in both molecules, with O(benzyloxy) - C - C - C(benzene) torsion angles of 150.8 (3) and 154.2 (2)°. In the crystal, $C-H \cdots O$ interactions involving carbonyl groups as acceptors lead to the formation of a tape motif propagating parallel to the *a*-axis direction.

Related literature

For backround to the synthesis, see: Shiue et al. (1997); Zheng et al. (2005); Hu et al. (2013).

Experimental

Crystal data C32H35NO4 $M_{\rm r} = 497.61$ Monoclinic, P21 a = 9.4964 (4) Å b = 28.6497 (13) Å c = 9.9511 (4) Å $\beta = 96.727 \ (4)^{\circ}$

Data collection

Oxford Diffraction SuperNova diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) $T_{\min} = 0.927, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.123$ S = 1.037540 reflections 669 parameters

V = 2688.8 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-3}$ T = 100 K $0.2 \times 0.12 \times 0.09 \text{ mm}$

organic compounds

11184 measured reflections 7540 independent reflections 6140 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.037$

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C62-H62···O4 ⁱ	0.93	2.47	3.260 (5)	143
C17-H17···O2 ⁱⁱ	0.93	2.38	3.237 (4)	153
$C49-H49\cdots O6^{ii}$	0.93	2.33	3.190 (4)	154

Symmetry codes: (i) -x - 1, $y - \frac{1}{2}$, -z - 1; (ii) x - 1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge project sponsorship by SRF for ROCS, SEM.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FY2104).

References

- Hu, K.-Z., Ma, J., Qiu, S., Zheng, X. & Huang, P.-Q. (2013). J. Org. Chem. 78, 1790–1801.
 Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon,
- Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Shiue, J.-S., Lin, M.-H. & Fang, J.-M. (1997). J. Org. Chem. 62, 4643–4649. Zheng, X., Feng, C.-G. & Huang, P.-Q. (2005). Org. Lett. 7, 553–556.

supporting information

Acta Cryst. (2014). E70, o419-o420 [doi:10.1107/S1600536814003638]

(4*S*,5*R*)-4-Benzyloxy-5-[4-(cyclohexanecarbonyl)phenyl]-1-(4-methoxybenzyl)-pyrrolidin-2-one

Yan-Jiao Gao, Jie Ma and Xiao Zheng

S1. Comment

In the SmI₂/HMPA-promoted phenyl-carbonyl coupling reaction, a special type of phenyl radicals were generated from benzaldehyde and acetophenones by Shiue *et al.* (1997). In addition, using SmI₂ as the single electron reductant, acyl-aminoalkyl radicals were generated from 2-pyridyl sulfides or 2-pyridyl sulfones (Zheng *et al.*, 2005; Hu *et al.*, 2013). So, the SmI₂-mediated phenyl-pyrrolidyl coupling of (4S)-1-(4-methoxybenzyl)-4-benzyloxy-5-(pyridin-2-ylsulfonyl)-pyrrolidin-2-one with benzoylcyclohexane produced (4S,5R)-4-(benzyloxy)-5-(4-(cyclohexanecarbonyl)phenyl)-1-(4-methoxybenzyl)pyrrolidin-2-one reasonably. Here we report the structure of the title compound.

S2. Experimental

To a solution of (4*S*)-1-(4-methoxybenzyl)-4-benzyloxy-5-(pyridin-2-ylsulfonyl)pyrrolidin-2-one (0.5 mmol) and benzoylcyclohexane (1.5 mmol) in dry THF (10 ml) was added a freshly prepared *t*-BuOH-containing SmI₂ (0.1 *M* in THF, 20 ml, 2.0 mmol) at -60 °C. After being stirred for 2 h, the reaction was quenched with a saturated aqueous solution of NH₄Cl (10 ml), and the resulting mixture was extracted with EtOAc (3×15 ml). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/Hex = 1: 10) to afford the title compound (white crystals, yield 35%). Single crystals of the tiltle compound were obtained by slow evaporation of a mixture of *n*-hexane/dichloromethane solution. The title compound was prepared from an optical pure starting material and no racemization was observed in this reaction.

IR (film): 3066, 3027, 2928, 1716, 1611, 1513, 1248, 1316, 1108 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.3–2.0(m,10*H*), 2.59(dd, *J* = 3.1, 17.5 Hz,1*H*), 2.85(dd, *J* = 6.8, 17.5 Hz,1*H*), 3.24(m, 1H), 3.49 (d, *J* = 14.8 Hz, 1H), 3.78(s, 3H), 3.94 (ddd appare. dt, *J* = 2.4, 3.1, 6.8 Hz, 1H), 4.44 (d, *J* = 12.1 Hz, 1H), 4.47 (d, *J* = 12.1 Hz, 1H), 4.49 (d, *J* = 2.4 Hz, 1H), 5.14 (d, *J* = 14.8 Hz, 1H), 6.80 (d, *J* = 8.7 Hz, 2H), 7.02 (d, *J* = 8.7 Hz, 2H), 7.14–7.20 (m,4*H*), 7.24–7.31 (m,3*H*), 7.91–7.96 (m,2*H*). ¹³C NMR (100 MHz, CDCl₃) δ 25.8 (2 C), 25.9 (2 C), 29.4, 37.2, 43.8, 45.7, 55.3, 67.2, 71.3, 79.2, 114.1, 126.9, 127.6, 128.0, 128.5, 129.2, 129.6, 136.4, 137.2, 142.9, 159.1, 172.9, 203.2. HRESIMS calcd for [C₃₂H₃₅NO₄Na]⁺ (*M* + Na⁺): 520.2464; found: 520.2474.

S3. Refinement

The hydrogen atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for phenyl, methine, methylene and methyl H atoms, respectively, and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to 1.5 $U_{eq}(C)$, while those of other H atoms were set to 1.2 $U_{eq}(C)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned with reference to the starting materials in the synthetic procedure.

Figure 1

The molecular structure of the title compound showing 50% probability displacement ellipsoids.

Figure 2

Crystal data

The packed unit cell.

(4*S*,5*R*)-4-Benzyloxy-5-[4-(cyclohexanecarbonyl)phenyl]-1-(4-methoxybenzyl)pyrrolidin-2-one

$C_{32}H_{35}NO_{4}$	Z = 4
$M_r = 497.61$	F(000) = 1064
Monoclinic, <i>P</i> 2 ₁	$D_{\rm x} = 1.229 {\rm ~Mg} {\rm ~m}^{-3}$
a = 9.4964 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 28.6497 (13) Å	$\mu=0.08~\mathrm{mm^{-1}}$
c = 9.9511 (4) Å	T = 100 K
$\beta = 96.727 \ (4)^{\circ}$	Columnar, colorless
$V = 2688.8 (2) \text{ Å}^3$	$0.2 \times 0.12 \times 0.09 \text{ mm}$
Data collection	
Oxford Diffraction SuperNova	Absorption correction: multi-scan
diffractometer	(CrysAlis PRO; Oxford Diffraction, 2006)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.927, \ T_{\max} = 1.000$
Graphite monochromator	11184 measured reflections
Detector resolution: 10.3415 pixels mm ⁻¹	7540 independent reflections
ω scans	6140 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.037$	$k = -34 \rightarrow 28$
$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 3.5^\circ$	$l = -11 \longrightarrow 11$
$h = -11 \rightarrow 9$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
7540 reflections	$w = 1/[\sigma^2(F_o^2) + (0.059P)^2]$
669 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Z	$U_{\rm iso}*/U_{\rm eq}$	
$\overline{C1}$	0.2734 (5)	0.20483 (14)	0.1362 (4)	0.0441 (10)	
H1A	0.3236	0.2201	0.0703	0.066*	
H1B	0.1749	0.2132	0.1212	0.066*	
H1C	0.2827	0.1716	0.1279	0.066*	
C2	0.3430 (4)	0.26598 (12)	0.2923 (3)	0.0269 (8)	
C3	0.2965 (4)	0.30055 (12)	0.1985 (3)	0.0283 (8)	
H3	0.2514	0.2925	0.1136	0.034*	
C4	0.3183 (3)	0.34722 (12)	0.2335 (3)	0.0252 (8)	
H4	0.2871	0.3701	0.1707	0.030*	
C5	0.3848 (3)	0.36064 (11)	0.3586 (3)	0.0205 (7)	
C6	0.4272 (3)	0.32517 (12)	0.4524 (3)	0.0263 (8)	
H6	0.4710	0.3331	0.5378	0.032*	
C7	0.4050 (4)	0.27891 (12)	0.4197 (3)	0.0294 (9)	
H7	0.4319	0.2560	0.4840	0.035*	
C8	0.4129 (3)	0.41149 (11)	0.3902 (3)	0.0219 (7)	
H8A	0.5000	0.4208	0.3555	0.026*	
H8B	0.3363	0.4300	0.3444	0.026*	
C9	0.5492 (3)	0.43143 (11)	0.6091 (3)	0.0251 (8)	
C10	0.5213 (4)	0.43434 (14)	0.7556 (3)	0.0338 (9)	
H10A	0.5156	0.4666	0.7841	0.041*	
H10B	0.5959	0.4188	0.8141	0.041*	
C11	0.3807 (4)	0.40977 (13)	0.7596 (3)	0.0283 (8)	

H11	0.3262	0.4232	0.8278	0.034*
C12	0.3050 (3)	0.41663 (12)	0.6133 (3)	0.0253 (8)
H12	0.2521	0.3882	0.5851	0.030*
C13	0.2059 (3)	0.45772 (12)	0.5976 (3)	0.0249 (8)
C14	0.2547 (4)	0.50246 (13)	0.5807 (4)	0.0435 (10)
H14	0.3512	0.5075	0.5788	0.052*
C15	0.3512 0.1629 (4)	0.53084(13)	0.5665 (5)	0.032
U15	0.1029(4)	0.55964 (15)	0.5662	0.0482 (11)
HI3	0.1903	0.5097	0.5502	0.038
C16	0.0183 (4)	0.53332(12)	0.5676(3)	0.0309 (8)
C17	-0.0315 (3)	0.48885 (12)	0.5870 (3)	0.0237 (8)
H17	-0.1278	0.4840	0.5906	0.028*
C18	0.0611 (3)	0.45149 (12)	0.6010 (3)	0.0236 (8)
H18	0.0260	0.4217	0.6129	0.028*
C19	-0.0767 (4)	0.57499 (13)	0.5449 (4)	0.0369 (9)
C20	-0.2344 (3)	0.57033 (12)	0.5405 (3)	0.0309 (8)
H20	-0.2538	0.5439	0.5980	0.037*
C21	-0.3046(4)	0.61276 (17)	0.5917 (5)	0.0567 (12)
H21A	-0.2796	0.6399	0.5413	0.068*
H21R	-0.2693	0.6177	0.6861	0.068*
C22	-0.4661(4)	0.60905 (15)	0.0001	0.000
	-0.4001(4)	0.00803 (13)	0.3780 (4)	0.0438 (10)
HZZA	-0.4923	0.3833	0.0574	0.033*
H22B	-0.5076	0.63/0	0.6050	0.053*
C23	-0.5224 (4)	0.59680 (15)	0.4343 (4)	0.0437 (10)
H23A	-0.5036	0.6227	0.3763	0.052*
H23B	-0.6243	0.5925	0.4277	0.052*
C24	-0.4539 (4)	0.55266 (19)	0.3857 (4)	0.0626 (14)
H24A	-0.4904	0.5465	0.2922	0.075*
H24B	-0.4774	0.5262	0.4398	0.075*
C25	-0.2919 (4)	0.55860 (17)	0.3976 (4)	0.0489 (11)
H25A	-0.2488	0.5299	0.3705	0.059*
H25B	-0.2682	0.5833	0.3376	0.059*
C26	0.2923(4)	0.33471(14)	0.8139(4)	0.0401 (10)
H26A	0.2118	0.3409	0.7469	0.048*
H26R	0.2110	0.3433	0.0021	0.048*
C27	0.2004	0.3433	0.9021	0.040
C27	0.3293(4)	0.26340(14)	0.0123(3)	0.0300(9)
C28	0.4039 (4)	0.20810 (15)	0.8651 (4)	0.0429 (10)
H28	0.5326	0.2895	0.8993	0.052*
C29	0.4947 (5)	0.22074 (18)	0.8663 (4)	0.0578 (12)
H29	0.5844	0.2104	0.9010	0.069*
C30	0.3924 (5)	0.18886 (17)	0.8161 (4)	0.0562 (12)
H30	0.4129	0.1571	0.8187	0.067*
C31	0.2612 (5)	0.20401 (17)	0.7627 (4)	0.0524 (12)
H31	0.1929	0.1826	0.7274	0.063*
C32	0.2299 (5)	0.25123 (15)	0.7612 (4)	0.0436 (10)
H32	0.1404	0.2613	0.7249	0.052*
C33	0.7901 (5)	0.20396 (14)	-0.3344(4)	0.0498 (11)
H33A	0.8514	0.2154	-0.3971	0.075*
H33B	0.6954	0.2150	-0.3602	0.075*
11330	0.0707	0.2100	0.5002	0.075

H33C	0.7906	0.1704	-0.3352	0.075*
C34	0.8548 (4)	0.26752 (13)	-0.1822 (3)	0.0293 (8)
C35	0.8183 (4)	0.30053 (13)	-0.2832 (3)	0.0295 (8)
H35	0.7803	0.2912	-0.3694	0.035*
C36	0.8395 (3)	0.34752 (12)	-0.2539 (3)	0.0263 (8)
H36	0.8128	0.3695	-0.3209	0.032*
C37	0.8993 (3)	0.36277 (12)	-0.1273 (3)	0.0234 (8)
C38	0.9335 (3)	0.32901 (13)	-0.0274 (3)	0.0276 (8)
H38	0.9725	0.3383	0.0585	0.033*
C39	0.9106 (4)	0.28211 (13)	-0.0537 (3)	0.0326 (9)
H39	0.9325	0.2603	0.0147	0.039*
C40	0.9301 (3)	0.41405 (12)	-0.1030(3)	0.0239 (8)
H40A	1.0232	0.4211	-0.1287	0.029*
H40B	0.8613	0.4323	-0.1605	0.029*
C41	1.0409 (3)	0.44337 (11)	0.1179 (3)	0.0233 (8)
C42	0.9953 (3)	0.45315 (12)	0.2555 (3)	0.0261 (8)
H42A	0.9807	0.4863	0.2679	0.031*
H42B	1.0655	0.4420	0.3269	0.031*
C43	0.8571 (3)	0.42648 (11)	0.2548 (3)	0.0226 (7)
H43	0.7922	0.4410	0.3122	0.027*
C44	0.7968 (3)	0.42612 (11)	0.1026 (3)	0.0196 (7)
H44	0.7486	0.3964	0.0808	0.023*
C45	0.6947 (3)	0.46591 (11)	0.0641 (3)	0.0201 (7)
C46	0.7387 (3)	0.50796 (12)	0.0107 (3)	0.0265 (8)
H46	0.8334	0.5120	-0.0020	0.032*
C47	0.6428 (3)	0.54333 (12)	-0.0232(3)	0.0280 (8)
H47	0.6738	0.5710	-0.0590	0.034*
C48	0.5013 (3)	0.53856(11)	-0.0051 (3)	0.0227 (7)
C49	0.4561 (3)	0.49667 (11)	0.0482 (3)	0.0216 (7)
H49	0.3614	0.4927	0.0611	0.026*
C50	0.5530(3)	0.46101 (12)	0.0819 (3)	0.0217(7)
H50	0.5220	0.4333	0.1171	0.026*
C51	0.4028 (4)	0.57889 (12)	-0.0432 (3)	0.0281 (8)
C52	0.2476 (3)	0.57508 (12)	-0.0231 (3)	0.0250 (8)
H52	0.2148	0.5434	-0.0467	0.030*
C53	0.1572 (3)	0.60977 (13)	-0.1126 (3)	0.0324 (8)
H53A	0.1913	0.6412	-0.0924	0.039*
H53B	0.1667	0.6034	-0.2069	0.039*
C54	0.0015 (4)	0.60658 (13)	-0.0902(3)	0.0352 (9)
H54A	-0.0528	0.6293	-0.1470	0.042*
H54B	-0.0344	0.5758	-0.1160	0.042*
C55	-0.0171 (4)	0.61560 (13)	0.0564 (4)	0.0340 (8)
H55A	-0.1160	0.6115	0.0694	0.041*
H55B	0.0091	0.6476	0.0793	0.041*
C56	0.0735 (4)	0.58269 (13)	0.1495 (3)	0.0340 (9)
H56A	0.0381	0.5511	0.1353	0.041*
H56B	0.0658	0.5911	0.2428	0.041*
C57	0.2290 (4)	0.58421 (13)	0.1250 (3)	0.0307 (8)
		- ()	(-)	

H57A	0.2815	0.5609	0.1812	0.037*
H57B	0.2680	0.6146	0.1512	0.037*
C58	0.7806 (4)	0.35197 (12)	0.3265 (3)	0.0276 (8)
H58A	0.6996	0.3574	0.2595	0.033*
H58B	0.7540	0.3601	0.4148	0.033*
C59	0.8233 (3)	0.30182 (12)	0.3248 (3)	0.0255 (8)
C60	0.9602 (4)	0.28759 (13)	0.3737 (3)	0.0298 (8)
H60	1.0274	0.3096	0.4067	0.036*
C61	0.9964 (4)	0.24096 (13)	0.3735 (3)	0.0356 (9)
H61	1.0882	0.2319	0.4056	0.043*
C62	0.8979 (4)	0.20761 (14)	0.3260 (3)	0.0384 (10)
H62	0.9228	0.1762	0.3275	0.046*
C63	0.7621 (4)	0.22115 (14)	0.2763 (4)	0.0380 (9)
H63	0.6952	0.1989	0.2441	0.046*
C64	0.7261 (4)	0.26768 (13)	0.2747 (3)	0.0325 (9)
H64	0.6350	0.2766	0.2395	0.039*
01	0.3309 (3)	0.21905 (8)	0.2685 (2)	0.0342 (6)
O2	0.6627 (2)	0.43771 (8)	0.5647 (2)	0.0298 (6)
O3	0.4116 (2)	0.36182 (9)	0.7845 (2)	0.0319 (6)
O4	-0.0242 (3)	0.61327 (10)	0.5212 (3)	0.0619 (9)
O5	0.8393 (3)	0.22030 (9)	-0.2012 (2)	0.0390 (6)
O6	1.1596 (2)	0.44863 (8)	0.0834 (2)	0.0326 (6)
O7	0.8971 (2)	0.38020 (8)	0.2972 (2)	0.0258 (5)
N1	0.4250 (2)	0.42119 (10)	0.5347 (2)	0.0215 (6)
N2	0.9258 (3)	0.42805 (10)	0.0370 (2)	0.0219 (6)
O8	0.4500 (3)	0.61465 (9)	-0.0869 (3)	0.0412 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.064 (3)	0.031 (2)	0.038 (2)	-0.011 (2)	0.007 (2)	-0.0052 (17)
C2	0.0277 (19)	0.023 (2)	0.0313 (19)	-0.0009 (15)	0.0109 (15)	0.0013 (16)
C3	0.0307 (19)	0.032 (2)	0.0224 (17)	-0.0040 (16)	0.0043 (14)	-0.0008 (16)
C4	0.0244 (18)	0.028 (2)	0.0238 (17)	-0.0021 (15)	0.0049 (14)	0.0022 (15)
C5	0.0199 (16)	0.0258 (19)	0.0166 (15)	0.0004 (14)	0.0062 (13)	-0.0025 (14)
C6	0.0282 (19)	0.032 (2)	0.0186 (16)	0.0002 (16)	0.0032 (14)	0.0003 (15)
C7	0.033 (2)	0.031 (2)	0.0252 (18)	0.0024 (17)	0.0063 (15)	0.0082 (16)
C8	0.0213 (17)	0.030 (2)	0.0144 (15)	-0.0006 (14)	0.0032 (13)	-0.0007 (13)
C9	0.0220 (18)	0.025 (2)	0.0278 (17)	-0.0039 (15)	0.0017 (15)	-0.0031 (15)
C10	0.0294 (19)	0.048 (2)	0.0234 (17)	-0.0061 (18)	0.0014 (15)	-0.0053 (17)
C11	0.0260 (18)	0.040 (2)	0.0195 (17)	-0.0036 (16)	0.0062 (14)	-0.0041 (15)
C12	0.0205 (17)	0.032 (2)	0.0245 (17)	-0.0038 (15)	0.0076 (14)	-0.0041 (15)
C13	0.0233 (18)	0.032 (2)	0.0201 (16)	-0.0046 (15)	0.0044 (13)	-0.0098 (15)
C14	0.021 (2)	0.035 (2)	0.077 (3)	-0.0073 (18)	0.0156 (19)	-0.011 (2)
C15	0.033 (2)	0.024 (2)	0.091 (3)	-0.0079 (18)	0.019 (2)	-0.009 (2)
C16	0.030 (2)	0.027 (2)	0.0366 (19)	-0.0041 (16)	0.0077 (16)	-0.0095 (16)
C17	0.0194 (17)	0.032 (2)	0.0195 (16)	-0.0028 (16)	0.0030 (13)	-0.0028 (15)
C18	0.0247 (18)	0.031 (2)	0.0160 (15)	-0.0066 (16)	0.0035 (13)	0.0018 (14)

C10	0.020	0.025(2)	0.040(2)	0.0050(10)	0.00(5.(10))	0.0002 (10)
C19	0.038 (2)	0.025 (2)	0.048 (2)	-0.0058 (18)	0.0065 (18)	-0.0083 (18)
C20	0.0284 (19)	0.025 (2)	0.0386 (19)	0.0005 (15)	0.0017 (16)	-0.0051 (16)
C21	0.045 (2)	0.055 (3)	0.069 (3)	0.002 (2)	0.002 (2)	-0.035(2)
C22	0.043 (2)	0.044 (3)	0.046 (2)	0.004 (2)	0.0114 (18)	-0.014 (2)
C23	0.037 (2)	0.060 (3)	0.034 (2)	0.014 (2)	0.0033 (17)	0.0076 (19)
C24	0.047 (3)	0.100 (4)	0.038 (2)	0.017 (3)	-0.005 (2)	-0.026 (2)
C25	0.044 (2)	0.069 (3)	0.033 (2)	0.019 (2)	0.0019 (18)	-0.009 (2)
C26	0.033 (2)	0.053 (3)	0.037 (2)	-0.0020 (19)	0.0148 (17)	0.0120 (19)
C27	0.038 (2)	0.047 (2)	0.0262 (18)	0.002 (2)	0.0161 (16)	0.0091 (17)
C28	0.033 (2)	0.045 (3)	0.054 (2)	0.0050 (19)	0.0184 (19)	0.008 (2)
C29	0.050 (3)	0.070 (4)	0.059 (3)	0.013 (3)	0.027 (2)	0.007 (3)
C30	0.071 (3)	0.049 (3)	0.054 (3)	0.006 (3)	0.032 (2)	-0.006(2)
C31	0.064 (3)	0.055 (3)	0.041 (2)	-0.015 (2)	0.020(2)	-0.006(2)
C32	0.046 (3)	0.054 (3)	0.033 (2)	0.000 (2)	0.0133 (18)	0.0033 (19)
C33	0.077 (3)	0.036 (2)	0.039 (2)	-0.006 (2)	0.013 (2)	-0.0042 (19)
C34	0.032 (2)	0.027 (2)	0.0318 (19)	0.0035 (16)	0.0149 (16)	-0.0018 (16)
C35	0.033 (2)	0.036 (2)	0.0206 (17)	-0.0036 (17)	0.0075 (15)	-0.0034 (16)
C36	0.0263 (18)	0.036 (2)	0.0178 (16)	0.0048 (16)	0.0067 (14)	0.0059 (16)
C37	0.0210 (17)	0.031 (2)	0.0194 (16)	0.0019 (15)	0.0079 (14)	0.0018 (14)
C38	0.0272 (19)	0.037 (2)	0.0189 (17)	0.0048 (16)	0.0053 (14)	-0.0001 (16)
C39	0.036 (2)	0.037(2)	0.0251 (18)	0.0073 (18)	0.0050 (16)	0.0050 (16)
C40	0.0237 (17)	0.033 (2)	0.0163 (15)	0.0026 (15)	0.0064 (13)	0.0037 (14)
C41	0.0233 (19)	0.0219(18)	0.0241 (17)	-0.0001(15)	-0.0002(15)	0.0101 (14)
C42	0.0272(18)	0.030(2)	0.0213(16)	-0.0034(16)	0.0011(14)	0.0006 (14)
C43	0.0299(18)	0.020(2)	0.0213(10) 0.0173(15)	0.0028 (15)	0.0011(11) 0.0051(13)	0.0012 (14)
C44	0.0299(16)	0.0212(19)	0.0173(15)	-0.0012(14)	0.0031(13) 0.0072(13)	0.0012(11) 0.0018(14)
C45	0.0105(10)	0.0190(10) 0.0259(19)	0.0212(10) 0.0151(14)	-0.0031(14)	0.0072(13)	-0.0015(14)
C46	0.0190(17)	0.0239(19)	0.0131(14) 0.0315(18)	-0.0035(15)	0.0003(14)	0.00000(14)
C40 C47	0.0195(10)	0.023(2)	0.0315(18) 0.0275(17)	-0.0059(15)	0.0003(14) 0.0042(15)	0.0010(15)
C48	0.0230(19)	0.027(2)	0.0275(17)	-0.0007(14)	0.0042(13)	-0.0013(14)
C40	0.0239(10)	0.0200(10)	0.0234(10)	-0.0007(14)	0.0024(13)	-0.0003(14)
C50	0.0207(17)	0.027(2)	0.0175(15)	-0.0005(15)	0.0040(13)	-0.0028(14)
C50	0.0230(18)	0.0272(19)	0.0130(13)	-0.0040(13)	0.0052(15)	-0.0013(14)
C51	0.034(2)	0.024(2)	0.0208(18)	-0.0029(17)	0.0033(13)	-0.0021(13)
C52	0.0243(18)	0.01/8(18)	0.0325(18)	0.0011 (15)	0.0019 (15)	0.0008 (15)
C53	0.0332(19)	0.032(2)	0.0314 (18)	0.0024 (17)	0.0019 (16)	0.0038 (16)
C54	0.032(2)	0.027(2)	0.044 (2)	0.0041 (17)	-0.0043(17)	-0.0009 (18)
055	0.0286 (19)	0.024 (2)	0.051 (2)	-0.0002 (16)	0.0080 (16)	-0.0042 (17)
C56	0.032 (2)	0.037 (2)	0.0346 (19)	0.0016 (17)	0.0099 (16)	-0.0052 (16)
C57	0.0285 (19)	0.036 (2)	0.0274 (18)	0.0003 (16)	0.0006 (15)	0.0007 (15)
C58	0.0299 (19)	0.029 (2)	0.0253 (17)	0.0004 (16)	0.0100 (15)	0.0035 (15)
C59	0.0286 (18)	0.030 (2)	0.0195 (16)	0.0001 (16)	0.0108 (14)	0.0044 (15)
C60	0.035 (2)	0.028 (2)	0.0286 (18)	0.0009 (17)	0.0104 (15)	-0.0003 (16)
C61	0.032 (2)	0.040 (2)	0.036 (2)	0.0064 (18)	0.0103 (16)	0.0043 (17)
C62	0.050 (3)	0.030 (2)	0.037 (2)	0.0064 (19)	0.0125 (19)	-0.0038 (17)
C63	0.041 (2)	0.034 (2)	0.041 (2)	-0.0049 (19)	0.0116 (18)	-0.0035 (18)
C64	0.030 (2)	0.038 (2)	0.0308 (19)	-0.0014 (18)	0.0096 (16)	-0.0017 (17)
01	0.0473 (16)	0.0222 (14)	0.0343 (13)	-0.0019 (11)	0.0095 (11)	-0.0026 (11)
O2	0.0232 (13)	0.0340 (15)	0.0327 (13)	-0.0076 (11)	0.0062 (10)	0.0014 (11)

supporting information

03	0.0292 (13)	0.0431 (17)	0.0244 (12)	0.0000 (12)	0.0070 (10)	0.0093 (11)
O4	0.0408 (17)	0.0285 (17)	0.117 (3)	-0.0060 (14)	0.0120 (16)	-0.0074 (17)
O5	0.0519 (17)	0.0327 (16)	0.0340 (13)	0.0044 (13)	0.0111 (12)	-0.0021 (12)
O6	0.0226 (13)	0.0391 (15)	0.0368 (14)	-0.0047 (11)	0.0069 (11)	0.0110 (11)
O7	0.0250 (12)	0.0279 (14)	0.0254 (12)	-0.0007 (10)	0.0067 (10)	0.0067 (10)
N1	0.0167 (13)	0.0323 (16)	0.0162 (12)	-0.0066 (12)	0.0052 (11)	-0.0039 (12)
N2	0.0184 (14)	0.0318 (17)	0.0163 (12)	-0.0017 (12)	0.0049 (11)	0.0012 (12)
08	0.0370 (15)	0.0243 (15)	0.0645 (17)	0.0000 (12)	0.0147 (12)	0.0103 (13)

Geometric parameters (Å, °)

C1—O1	1.425 (4)	C33—O5	1.432 (4)
C1—H1A	0.9600	С33—Н33А	0.9600
C1—H1B	0.9600	С33—Н33В	0.9600
C1—H1C	0.9600	С33—Н33С	0.9600
C2—O1	1.368 (4)	C34—O5	1.372 (4)
C2—C7	1.385 (5)	C34—C39	1.390 (5)
C2—C3	1.397 (5)	C34—C35	1.394 (5)
C3—C4	1.391 (5)	C35—C36	1.387 (5)
С3—Н3	0.9300	С35—Н35	0.9300
C4—C5	1.383 (4)	C36—C37	1.390 (4)
C4—H4	0.9300	С36—Н36	0.9300
C5—C6	1.406 (5)	C37—C38	1.398 (5)
C5—C8	1.508 (5)	C37—C40	1.512 (5)
C6—C7	1.375 (5)	C38—C39	1.381 (5)
С6—Н6	0.9300	С38—Н38	0.9300
С7—Н7	0.9300	С39—Н39	0.9300
C8—N1	1.456 (4)	C40—N2	1.455 (4)
C8—H8A	0.9700	C40—H40A	0.9700
C8—H8B	0.9700	C40—H40B	0.9700
С9—О2	1.226 (4)	C41—O6	1.224 (4)
C9—N1	1.349 (4)	C41—N2	1.352 (4)
C9—C10	1.514 (4)	C41—C42	1.511 (4)
C10—C11	1.514 (5)	C42—C43	1.518 (4)
C10—H10A	0.9700	C42—H42A	0.9700
C10—H10B	0.9700	C42—H42B	0.9700
C11—O3	1.420 (4)	C43—O7	1.429 (4)
C11—C12	1.559 (4)	C43—C44	1.556 (4)
C11—H11	0.9800	C43—H43	0.9800
C12—N1	1.461 (4)	C44—N2	1.455 (4)
C12—C13	1.504 (5)	C44—C45	1.517 (4)
C12—H12	0.9800	C44—H44	0.9800
C13—C14	1.380 (5)	C45—C50	1.385 (4)
C13—C18	1.390 (5)	C45—C46	1.400 (5)
C14—C15	1.377 (5)	C46—C47	1.378 (5)
C14—H14	0.9300	C46—H46	0.9300
C15—C16	1.388 (5)	C47—C48	1.383 (4)
С15—Н15	0.9300	C47—H47	0.9300

C16—C17	1.380 (5)	C48—C49	1.400 (5)
C16—C19	1.497 (5)	C48—C51	1.507 (5)
C17—C18	1.382 (5)	C49—C50	1.389 (5)
С17—Н17	0.9300	C49—H49	0.9300
C18—H18	0.9300	С50—Н50	0.9300
C19—O4	1.239 (5)	C51—O8	1.219 (4)
C19—C20	1.499 (5)	C51—C52	1.515 (5)
C20—C25	1.500 (5)	C52—C57	1.526 (5)
C20—C21	1.504 (5)	C52—C53	1.529 (4)
C20—H20	0.9800	С52—Н52	0.9800
$C_{21} - C_{22}$	1.529 (5)	C53—C54	1.524 (5)
C21—H21A	0.9700	C53—H53A	0.9700
C_{21} H21R	0.9700	C53—H53B	0.9700
C^{22} C^{23}	1 502 (5)	C54—C55	1 513 (5)
C22 U23	0.9700	C54 H54A	0.9700
C22—1122A	0.9700	C54 H54R	0.9700
C22—H22B	1.526 (6)	C55 C56	0.9700
$C_{23} = C_{24}$	1.520 (0)	C55_U55A	1.317(3)
C23—H23A	0.9700	C55_H55A	0.9700
C23—H23B	0.9700	С55—Н55В	0.9700
C24—C25	1.539 (6)	C56—C57	1.525 (5)
С24—Н24А	0.9700	С56—Н56А	0.9700
С24—Н24В	0.9700	С56—Н56В	0.9700
C25—H25A	0.9700	С57—Н57А	0.9700
C25—H25B	0.9700	С57—Н57В	0.9700
C26—O3	1.432 (4)	C58—O7	1.428 (4)
C26—C27	1.511 (6)	C58—C59	1.494 (5)
C26—H26A	0.9700	C58—H58A	0.9700
C26—H26B	0.9700	C58—H58B	0.9700
C27—C32	1.376 (5)	C59—C60	1.395 (5)
C27—C28	1.392 (5)	C59—C64	1.396 (5)
C28—C29	1.389 (6)	C60—C61	1.379 (5)
C28—H28	0.9300	С60—Н60	0.9300
C29—C30	1.383 (6)	C61—C62	1.381 (5)
С29—Н29	0.9300	C61—H61	0.9300
C30—C31	1.367 (6)	C62—C63	1.382 (5)
С30—Н30	0.9300	С62—Н62	0.9300
C31—C32	1.385 (6)	C63—C64	1.376 (5)
C31—H31	0.9300	С63—Н63	0.9300
С32—Н32	0.9300	C64—H64	0.9300
			0.7200
01—C1—H1A	109 5	H33B—C33—H33C	109 5
01-C1-H1B	109.5	05-C34-C39	116 5 (3)
HIA-CI-HIB	109.5	05	123 8 (3)
	109.5	C_{39} C_{34} C_{35}	123.0(3) 1197(3)
	109.5	$C_{35} = C_{35} = C_{35}$	119.7(3)
	109.5	$C_{30} - C_{33} - C_{34}$	119.5 (3)
$ \begin{array}{ccc} \Pi D - U - \Pi U \\ \Omega 1 & C 2 & C 7 \end{array} $	109.3	$C_{30} - C_{33} - \Pi_{33}$	120.4
01 - 02 - 02	110.1(3)	C34—C35—H35	120.4
01 - 02 - 03	124.6 (3)	U33-U36-U3/	122.0 (3)

C7 - C2 - C3	1193(3)	C35_C36_H36	119.0
$C_1 = C_2 = C_3$	119.3(3)	C37 C36 H36	119.0
$C_{4} = C_{3} = C_{2}$	119.2 (3)	$C_{3}^{2} = C_{3}^{2} = C_{3}^{2}$	117.0
C_{2} C_{2} H_{3}	120.4	$C_{30} = C_{37} = C_{38}$	117.0(3)
$C_2 = C_3 = H_3$	120.4	$C_{30} = C_{37} = C_{40}$	120.1(3)
C_{3}	122.1 (3)	$C_{38} = C_{37} = C_{40}$	122.3 (3)
C5—C4—H4	118.9	$C_{39} = C_{38} = C_{37}$	121.3 (3)
C3—C4—H4	118.9	C39—C38—H38	119.3
C4—C5—C6	117.5 (3)	С37—С38—Н38	119.3
C4—C5—C8	120.5 (3)	C38—C39—C34	120.1 (3)
C6—C5—C8	122.0 (3)	С38—С39—Н39	120.0
C7—C6—C5	121.0 (3)	С34—С39—Н39	120.0
С7—С6—Н6	119.5	N2—C40—C37	113.2 (3)
С5—С6—Н6	119.5	N2-C40-H40A	108.9
C6—C7—C2	120.7 (3)	С37—С40—Н40А	108.9
С6—С7—Н7	119.6	N2-C40-H40B	108.9
С2—С7—Н7	119.6	С37—С40—Н40В	108.9
N1—C8—C5	112.4 (3)	H40A—C40—H40B	107.7
N1—C8—H8A	109.1	O6—C41—N2	125.4 (3)
C5—C8—H8A	109.1	06-C41-C42	127.0(3)
N1—C8—H8B	109.1	$N_2 - C_{41} - C_{42}$	127.6(3)
$C_5 - C_8 - H_{8B}$	109.1	C_{41} C_{42} C_{43}	107.0(3) 104.0(2)
	107.8	$C_{41} = C_{42} = C_{43}$	104.0(2)
$110A - C_0 - 110D$	107.0 125.7(2)	$C_{41} = C_{42} = H_{42A}$	111.0
02 - C9 - N1	125.7(5)	C43 - C42 - H42A	111.0
02-09-010	126.9 (3)	C41 - C42 - H42B	111.0
NI-C9-C10	107.5 (3)	C43—C42—H42B	111.0
C9—C10—C11	104.7 (3)	H42A—C42—H42B	109.0
C9—C10—H10A	110.8	O7—C43—C42	105.4 (2)
C11—C10—H10A	110.8	O7—C43—C44	109.6 (2)
C9—C10—H10B	110.8	C42—C43—C44	103.1 (2)
C11—C10—H10B	110.8	O7—C43—H43	112.7
H10A—C10—H10B	108.9	C42—C43—H43	112.7
O3—C11—C10	106.8 (3)	C44—C43—H43	112.7
O3—C11—C12	110.4 (3)	N2-C44-C45	113.9 (3)
C10—C11—C12	103.2 (3)	N2—C44—C43	101.7 (2)
O3—C11—H11	112.0	C45—C44—C43	113.1 (2)
C10—C11—H11	112.0	N2—C44—H44	109.3
C12—C11—H11	112.0	C45—C44—H44	109.3
N1-C12-C13	113 1 (3)	C43—C44—H44	109.3
N1_C12_C11	102 0 (2)	C_{50} C_{45} C_{46}	118 3 (3)
C_{12} C_{12} C_{11}	102.0(2) 114.2(3)	$C_{50} = C_{45} = C_{40}$	110.5(3)
N1 C12 H12	100.1	$C_{30} - C_{43} - C_{44}$	119.0(3)
N1 - C12 - H12	109.1	C40 - C43 - C44	122.1(3)
C13—C12—H12	109.1	C47 - C40 - C43	120.5 (3)
	109.1	C4/C46H46	119.8
C14—C13—C18	118.0 (3)	C45—C46—H46	119.8
C14—C13—C12	121.7 (3)	C46—C47—C48	121.3 (3)
C18—C13—C12	120.4 (3)	C46—C47—H47	119.3
C15—C14—C13	121.2 (3)	C48—C47—H47	119.3
C15—C14—H14	119.4	C47—C48—C49	118.7 (3)

C13—C14—H14	119.4	C47—C48—C51	118.4 (3)
C14—C15—C16	120.6 (4)	C49—C48—C51	122.9 (3)
C14—C15—H15	119.7	C50—C49—C48	119.8 (3)
C16—C15—H15	119.7	С50—С49—Н49	120.1
C17—C16—C15	118.7 (3)	С48—С49—Н49	120.1
C17—C16—C19	123.2 (3)	C45—C50—C49	121.4 (3)
C15—C16—C19	118.1 (3)	С45—С50—Н50	119.3
C16—C17—C18	120.3 (3)	С49—С50—Н50	119.3
С16—С17—Н17	119.9	08—C51—C48	119.4 (3)
С18—С17—Н17	119.9	08—C51—C52	120.8 (3)
C17—C18—C13	121.2 (3)	C48—C51—C52	119.8 (3)
C17—C18—H18	119.4	C51—C52—C57	109.9 (2)
C13—C18—H18	119.4	C51—C52—C53	111.4 (3)
04-C19-C16	119.1 (3)	C57—C52—C53	109.3 (3)
04-C19-C20	119.7 (3)	C51—C52—H52	108.8
$C_{16} - C_{19} - C_{20}$	121.0 (3)	C57—C52—H52	108.8
C19 - C20 - C25	1074(3)	C_{53} C_{52} H_{52}	108.8
C19 - C20 - C21	113.5 (3)	C54 - C53 - C52	111.3 (3)
C_{25} C_{20} C_{21}	112.1 (3)	C54—C53—H53A	109.4
C19—C20—H20	107.9	C52—C53—H53A	109.4
C_{25} C_{20} H_{20}	107.9	C54—C53—H53B	109.4
C21—C20—H20	107.9	C52—C53—H53B	109.4
C_{20} C_{21} C_{22}	112.2 (3)	H53A—C53—H53B	108.0
C_{20} C_{21} H_{21A}	109.2	C55-C54-C53	110.9(3)
C22—C21—H21A	109.2	C55—C54—H54A	109.5
C20—C21—H21B	109.2	С53—С54—Н54А	109.5
C22—C21—H21B	109.2	C55—C54—H54B	109.5
$H_{21}A - C_{21} - H_{21}B$	107.9	C53—C54—H54B	109.5
C23—C22—C21	110.2 (3)	H54A—C54—H54B	108.1
C23—C22—H22A	109.6	C54—C55—C56	111.1 (3)
C21—C22—H22A	109.6	С54—С55—Н55А	109.4
С23—С22—Н22В	109.6	С56—С55—Н55А	109.4
C21—C22—H22B	109.6	С54—С55—Н55В	109.4
H22A—C22—H22B	108.1	С56—С55—Н55В	109.4
C22—C23—C24	111.2 (3)	H55A—C55—H55B	108.0
С22—С23—Н23А	109.4	C55—C56—C57	112.0 (3)
С24—С23—Н23А	109.4	С55—С56—Н56А	109.2
С22—С23—Н23В	109.4	С57—С56—Н56А	109.2
С24—С23—Н23В	109.4	С55—С56—Н56В	109.2
H23A—C23—H23B	108.0	С57—С56—Н56В	109.2
C23—C24—C25	110.1 (4)	H56A—C56—H56B	107.9
C23—C24—H24A	109.6	C56—C57—C52	111.9 (3)
C25—C24—H24A	109.6	С56—С57—Н57А	109.2
C23—C24—H24B	109.6	С52—С57—Н57А	109.2
C25—C24—H24B	109.6	С56—С57—Н57В	109.2
H24A—C24—H24B	108.2	С52—С57—Н57В	109.2
C20—C25—C24	110.3 (3)	H57A—C57—H57B	107.9
C20—C25—H25A	109.6	O7—C58—C59	108.9 (3)
			(.)

С24—С25—Н25А	109.6	O7—C58—H58A	109.9
С20—С25—Н25В	109.6	С59—С58—Н58А	109.9
С24—С25—Н25В	109.6	O7—C58—H58B	109.9
H25A—C25—H25B	108.1	С59—С58—Н58В	109.9
O3—C26—C27	109.5 (3)	H58A—C58—H58B	108.3
O3—C26—H26A	109.8	C60—C59—C64	118.0 (3)
С27—С26—Н26А	109.8	C60—C59—C58	121.4 (3)
O3—C26—H26B	109.8	C64—C59—C58	120.6 (3)
С27—С26—Н26В	109.8	C61—C60—C59	120.3 (3)
H26A—C26—H26B	108.2	С61—С60—Н60	119.8
C32—C27—C28	119.2 (4)	С59—С60—Н60	119.8
C32—C27—C26	120.3 (3)	C60—C61—C62	120.8 (3)
C28—C27—C26	120.5 (4)	С60—С61—Н61	119.6
C29—C28—C27	119.6 (4)	С62—С61—Н61	119.6
C29—C28—H28	120.2	C61—C62—C63	119.6 (4)
С27—С28—Н28	120.2	С61—С62—Н62	120.2
C30—C29—C28	120.3 (4)	С63—С62—Н62	120.2
С30—С29—Н29	119.9	C64—C63—C62	119.8 (4)
С28—С29—Н29	119.9	С64—С63—Н63	120.1
C31—C30—C29	120.0 (5)	С62—С63—Н63	120.1
С31—С30—Н30	120.0	C63—C64—C59	121.5 (3)
С29—С30—Н30	120.0	С63—С64—Н64	119.3
C30—C31—C32	119.9 (4)	С59—С64—Н64	119.3
C30—C31—H31	120.0	C2	117.1 (3)
С32—С31—Н31	120.0	C11—O3—C26	114.1 (3)
C27—C32—C31	121.0 (4)	C34—O5—C33	117.9 (3)
С27—С32—Н32	119.5	C58—O7—C43	113.6 (2)
С31—С32—Н32	119.5	C9—N1—C8	123.1 (3)
O5—C33—H33A	109.5	C9—N1—C12	114.3 (2)
O5—C33—H33B	109.5	C8—N1—C12	122.3 (2)
H33A—C33—H33B	109.5	C41—N2—C44	114.2 (2)
О5—С33—Н33С	109.5	C41—N2—C40	123.2 (3)
Н33А—С33—Н33С	109.5	C44—N2—C40	122.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C62—H62····O4 ⁱ	0.93	2.47	3.260 (5)	143
C17—H17…O2 ⁱⁱ	0.93	2.38	3.237 (4)	153
C49—H49…O6 ⁱⁱ	0.93	2.33	3.190 (4)	154

Symmetry codes: (i) -x+1, y-1/2, -z+1; (ii) x-1, y, z.