Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-Bis(chloromethyl)-4,4'-diethoxy-1,1'-biphenyl

Hager Trad, ${ }^{\text {a }}$ Mohamed Salah Belkhiria ${ }^{\text {b* }}$ and Mustapha Majdoub ${ }^{\text {b }}$

${ }^{\text {a }}$ University of Monastir, Faculté de Pharmacie, Avenue Avicenne, 5019 Monastir, Tunisia, and ${ }^{\mathbf{b}}$ University of Monastir, Faculté des Sciences, Avenue de l'Environnement, 5019 Monastir, Tunisia
Correspondence e-mail: salah_belkiria@yahoo.com

Received 11 February 2014; accepted 26 February 2014

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.048 ; ~ w R$ factor $=0.149$; data-to-parameter ratio $=20.1$.

The asymmetric unit of the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$, consists of a half-molecule, the other half being generated by an inversion center, located at the mid-point of the benzenebenzene bond. Except for the two Cl atoms, all other atoms of the compound are nearly coplanar, with the atomic displacements from the molecular mean plane ranging from 0.0037 (19) to 0.071 (2) \AA. The two Cl atoms are in trans positions and are displaced with respect to the mean plane by 1.687 (2) and -1.693 (3) A. The crystal packing is governed by van der Waals interactions.

Related literature

For general background and synthesis, see: Trad et al. (2006); Hrichi et al. (2013). For related structures, see: Huang et al. (2011); Trad et al. (2012).

Experimental

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=339.24$
Monoclinic, $P 2_{1} / n$
$V=833.7(7) \AA^{3}$
$Z=2$
$a=4.984$ (2) A
$b=11.598$ (5) \AA
$c=14.578$ (8) \AA
$\beta=98.387(2)^{\circ}$

Data collection

Bruker-Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.937, T_{\text {max }}=0.953$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048 \quad 100$ parameters
$w R\left(F^{2}\right)=0.149$
$S=1.05$
2010 reflections

H -atom parameters constrained
Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.20 \times 0.14 \times 0.10 \mathrm{~mm}$

8808 measured reflections 2010 independent reflections 1252 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e}^{-3}$

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia and they acknowledge Dr Michel Giorgi, University of Aix-Marseille, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: DS2239).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hrichi, H., Hriz, K., Jaballah, N., Ben Chaâbane, R., Simonetti, O. \& Majdoub, M. (2013). J. Polym. Res. 20, 241.

Huang, X., Ren, L.-H., Yin, R.-H. \& Gao, F. (2011). Acta Cryst. E67, o2330.
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Trad, H., Majdoub, M. \& Belkhiria, M. S. (2012). Acta Cryst. E68, o2339.
Trad, H., Majdoub, M. \& Davenas, J. (2006). Mater. Sci. Eng. C, 26, 334-339.

supporting information

Acta Cryst. (2014). E70, o387 [doi:10.1107/S1600536814004528]

3,3'-Bis(chloromethyl)-4,4'-diethoxy-1,1'-biphenyl

Hager Trad, Mohamed Salah Belkhiria and Mustapha Majdoub

S1. Comment

The synthesis of the compound $3,3^{\prime}$-Bis(chloromethyl)-4,4'-diethoxy-1, 1^{\prime}-biphenyl (BipEt 2 Cl 2) is a part of an ongoing program on the investigation of new π-conjugated electroluminescent polymers derived from bisphenols (Trad et al., 2006; Hrichi et al., 2013).
The asymmetric unit of the title compound contains one-half of the molecule (Fig. 1) with the other half generated by an inversion center lieing between the two phenyl groups, at the the mid-point of the carbon-carbon bond. All atoms of the compound (BipEt2C12) lie in the same plane, the largest deviation being 0.0709 (22) \AA for atom C9, except the two chlorine atoms. A π-conjugated system accounts for the planarity of the molecule and probably prevents the free rotation around the central carbon-carbon bond between the phenyl groups. The planes containing respectively the chloromethyl group and the biphenyl group are nearly orthogonal to each other, with a dihedral angle equal to $88.98(9)^{\circ}$, such a value is nearly close to that observed for the 1-benzyloxy-2,5-bis(chloromethyl)-4-methoxybenzene (Trad et al., 2012). The values of bond lengths and angles agree with those reported for similar compounds (Huang et al. 2011; Trad et al. 2012). A projection of the crystal structure of the compound, on the (010) plane, is given the by the figure 2.

S2. Experimental

The compound $3,3^{\prime}$-Bis(chloromethyl)-4,4'-diethoxy-1, 1^{\prime}-biphenyl (BipEt 2 Cl 2) was synthesized in two steps: a mixture of 4, 4^{\prime}-dihydroxy-1, 1^{\prime}-biphenyl (10 mmol), bromoethane (30 mmol) and anhydrous potassium carbonate (60 mmol) was added to 10 ml of DMF and was stirred for 24 h at room temperature. The reaction mixture was poured into distilled water and the intermediate product, $4,4^{\prime}$-diethoxy-1, 1^{\prime}-biphenyl (BipEt2), was extracted with diethyl ether, purified by recrystallization from ethanol/acetone (4/1) and then obtained as white fine powder. Yield: 80%; mp : 450-452 K. In a second step, a suspension of (BipEt2) (10 mmol) and paraformaldehyde (80 mmol), in a mixture of glacial acetic acid (30 $\mathrm{ml})$ and 37% hydrochloric acid (8 ml), was left to stir for approximately 5 h at 328 K . After cooling, the resulting mixture was then poured into distilled water. The product (BipEt 2 Cl 2) was extracted with diethylether and recrystallized from ethanol as colorless needle-like crystals. Yield: 65\%; mp: 388 (2) K.

S3. Refinement

All H atoms were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.96(\mathrm{CH} 3), 0.97(\mathrm{CH} 2), 0.93(\mathrm{CArH}) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5$ $U_{\mathrm{eq}}(\mathrm{C}), 1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ respectively.

Figure 1
The molecular structure of the title compound BipEt2C12 with displacement ellipsoids drawn at 20\% probability level for non hydrogen atoms.

Figure 2
The crystal packing of compound BipEt2Cl2 viewed along b axis.

3,3'-Bis(chloromethyl)-4,4'-diethoxy-1,1'-biphenyl

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$F(000)=356$
$M_{r}=339.24$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P $2 y n$
$a=4.984$ (2) \AA
$b=11.598$ (5) \AA
$c=14.578$ (8) \AA
$\beta=98.387(2)^{\circ}$
$V=833.7$ (7) \AA^{3}
$Z=2$
$D_{\mathrm{x}}=1.351 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8808 reflections
$\theta=2.3-29.0^{\circ}$
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle, colourless
$0.20 \times 0.14 \times 0.10 \mathrm{~mm}$

Data collection

Bruker-Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi/w scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.937, T_{\text {max }}=0.953$

> 8808 measured reflections
> 2010 independent reflections
> 1252 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.048$
> $\theta_{\max }=28.1^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-6 \rightarrow 6$
> $k=0 \rightarrow 15$
> $l=0 \rightarrow 19$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.149$
$S=1.05$
2010 reflections
100 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C 1	$0.58814(14)$	$0.13757(6)$	$0.12470(5)$	$0.0713(3)$
O	$0.5754(3)$	$0.20148(12)$	$-0.11362(11)$	$0.0483(4)$
C 1	$0.0870(3)$	$0.45550(16)$	$-0.01787(13)$	$0.0345(4)$
C 2	$0.1168(4)$	$0.34506(17)$	$0.01950(15)$	$0.0391(5)$

supporting information

H2	0.0217	0.3264	0.0678	0.047^{*}
C3	$0.2804(4)$	$0.26160(17)$	$-0.01136(13)$	$0.0385(5)$
C4	$0.4206(4)$	$0.28839(17)$	$-0.08584(14)$	$0.0388(5)$
C5	$0.3944(4)$	$0.39671(18)$	$-0.12463(14)$	$0.0425(5)$
H5	0.4869	0.4150	-0.1737	0.051^{*}
C6	$0.2315(4)$	$0.47848(18)$	$-0.09126(14)$	$0.0424(5)$
H6	0.2173	0.5512	-0.1185	0.051^{*}
C7	$0.3035(4)$	$0.14484(18)$	$0.03221(16)$	$0.0493(6)$
H7A	0.3263	0.0876	-0.0145	0.059^{*}
H7B	0.1377	0.1272	0.0568	0.059^{*}
C8	$0.7054(4)$	$0.2217(2)$	$-0.19346(16)$	$0.0500(6)$
H8A	0.8346	0.2844	-0.1816	0.060^{*}
H8B	0.5720	0.2422	-0.2462	0.060^{*}
C9	$0.8482(5)$	$0.1126(2)$	$-0.21296(19)$	$0.0618(7)$
H9A	0.9380	0.1234	-0.2663	0.093^{*}
H9B	0.7183	0.0513	-0.2248	0.093^{*}
H9C	0.9795	0.0932	-0.1603	0.093^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0797(5)$	$0.0631(5)$	$0.0694(5)$	$0.0113(3)$	$0.0046(3)$	$0.0182(3)$
O	$0.0565(9)$	$0.0371(9)$	$0.0568(9)$	$0.0086(6)$	$0.0266(7)$	$-0.0025(7)$
C 1	$0.0339(10)$	$0.0325(11)$	$0.0380(10)$	$0.0000(7)$	$0.0090(7)$	$-0.0006(8)$
C 2	$0.0423(10)$	$0.0346(12)$	$0.0433(11)$	$0.0010(8)$	$0.0156(8)$	$0.0015(9)$
C 3	$0.0444(11)$	$0.0293(11)$	$0.0435(11)$	$-0.0001(8)$	$0.0115(9)$	$-0.0002(9)$
C 4	$0.0364(10)$	$0.0359(12)$	$0.0459(12)$	$0.0019(7)$	$0.0122(8)$	$-0.0045(9)$
C5	$0.0466(12)$	$0.0398(12)$	$0.0454(12)$	$0.0020(8)$	$0.0206(9)$	$0.0042(9)$
C6	$0.0485(11)$	$0.0327(11)$	$0.0490(12)$	$0.0026(8)$	$0.0169(9)$	$0.0071(9)$
C7	$0.0557(13)$	$0.0360(12)$	$0.0596(15)$	$0.0039(9)$	$0.0193(11)$	$0.0031(10)$
C8	$0.0524(13)$	$0.0511(14)$	$0.0503(13)$	$0.0068(10)$	$0.0206(10)$	$-0.0039(10)$
C9	$0.0685(16)$	$0.0540(16)$	$0.0679(16)$	$0.0123(11)$	$0.0267(13)$	$-0.0088(12)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\mathrm{Cl}-\mathrm{C} 7$	$1.811(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.382(3)$
$\mathrm{O}-\mathrm{C} 4$	$1.366(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.409(3)$
$\mathrm{O}-\mathrm{C} 8$	$1.432(3)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.493(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.391(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.376(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.399(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.382(3)$
$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.490(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.499(3)$
$\mathrm{C} 4-\mathrm{O}-\mathrm{C} 8$	$117.53(16)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{Cl}$	$111.25(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$115.93(17)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$122.3(2)$	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.4
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$121.7(2)$	$\mathrm{C} 3-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$123.47(18)$	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	118.3	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	108.0

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	118.3	$\mathrm{O}-\mathrm{C} 8-\mathrm{C} 9$	$107.42(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.59(18)$	$\mathrm{O}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	110.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7$	$120.61(18)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	110.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 7$	$120.78(17)$	$\mathrm{O}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	110.2
$\mathrm{O}-\mathrm{C} 4-\mathrm{C} 5$	$125.14(18)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	110.2
$\mathrm{O}-\mathrm{C} 4-\mathrm{C} 3$	$115.51(17)$	$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	108.5
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.35(17)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.47(18)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.8	$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.5
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.8	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$122.17(19)$	$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	118.9	$\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	118.9		

Symmetry code: (i) $-x,-y+1,-z$.

