

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Ethyl-3-[(R)-2-phenylbutanamido]quinazolin-4(3H)-one monohydrate

Gamal A. El-Hiti,^a* Keith Smith,^b Amany S. Hegazy,^b D. Heulyn Jones^b and Benson M. Kariuki^b*

^aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Rivadh 11433, Saudi Arabia, and ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales

Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Received 10 March 2014; accepted 18 March 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.116; data-to-parameter ratio = 15.4.

In the title compound, $C_{20}H_{21}N_3O_2 \cdot H_2O$ (EQR·H₂O), the quinazoline ring system forms dihedral angles of 53.1 (1) and $85.6 (1)^{\circ}$ with the phenyl ring and the amide link, respectively. In the crystal, $O-H \cdots O$ hydrogen bonds link two EQR and two water molecules into a centrosymmetric $R_4^4(18)$ ring motif. N-H···O hydrogen bonds further link these hydrogenbonded fragments into columns extending in [010].

Related literature

For convenient routes towards modifying 3H-quinazolin-4one derivatives, see: Smith et al. (1995, 1996a,b, 2004). For the crystal structures of related compounds, see: Yang et al. (2009); Srinivasan et al. (2011).

Experimental

Crystal data $C_{20}H_{21}N_3O_2 \cdot H_2O$

 $M_r = 353.41$

Monoclinic, $P2_1/n$	
a = 14.5354 (2) Å	
b = 7.3529(1) Å	
c = 18.1945 (3) Å	

Data collection

 $\beta = 98.591 \ (1)^{\circ}$

V = 1922.76 (5) Å³

Agilent SuperNova (Dual, Cu at	13383 measured reflections
zero, Atlas) diffractometer	3796 independent reflection
Absorption correction: gaussian	3341 reflections with $I > 2c$
(CrysAlis PRO; Agilent, 2014)	$R_{\rm int} = 0.017$
$T_{\min} = 0.723, T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.116$	independent and constrained
S = 1.05	refinement
3796 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
246 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3\cdotsO3$	0.86	1.92	2.7431 (15)	159
$O3-H3A\cdotsO2^{i}$	0.92 (3)	1.89 (3)	2.7806 (15)	164 (2)
$O3-H3B\cdotsO1^{ii}$	0.91 (3)	1.92 (3)	2.8154 (17)	169 (2)

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z.

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (CambridgeSoft, 2001).

The authors thank the College of Applied Medical Sciences Research Center and the Deanship of Scientific Research at King Saud University for funding this research.

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5446).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- CambridgeSoft (2001). CHEMDRAW Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121-2130.
- Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996a). J. Org. Chem. 61, 647-655.
- Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996b). J. Org. Chem. 61. 656-661.
- Smith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029-1033.
- Srinivasan, T., Suhitha, S., Priya, M. G. R., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2928.
- Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185-o186.

Z = 4

Cu $K\alpha$ radiation

 $0.41 \times 0.21 \times 0.08 \text{ mm}$

independent reflections reflections with $I > 2\sigma(I)$

 $\mu = 0.68 \text{ mm}^{-1}$

T = 296 K

supporting information

Acta Cryst. (2014). E70, o467 [doi:10.1107/S1600536814005996]

2-Ethyl-3-[(R)-2-phenylbutanamido]quinazolin-4(3H)-one monohydrate

Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, D. Heulyn Jones and Benson M. Kariuki

S1. Comment

In a continuation of our research focused on new synthetic routes towards novel substituted 3*H*-quinazolin-4-one derivatives (Smith *et al.*, 1995, 1996*a*,*b*, 2004) we have synthesized 2-ethyl-3-((R)-2-phenylbutanoylamino)-3*H*-quinazolin-4-one (EQR) in a high yield. Herewith we present the crystal structure of its monohydrate.

In the title compound, EQR.H₂O (Fig. 1), all bond lengths and angles are normal and correspond well to those observed in the related structures (Smith *et al.*, 2004; Yang *et al.*, 2009; Srinivasan *et al.*, 2011). The quinazoline ring system forms a dihedral angle of 53.1 (1)° with the phenyl ring and an angle of 85.6 (1)° with the amide link. A pair of EQR molecules accepts O–H…O hydrogen bonds from two water molecules to form a $R^4_4(18)$ ring motif. These rings are linked by N– H…O bonds to form columns parallel to the b-axis (Fig. 2).

S2. Experimental

To a stirred mixture of 3-amino-2-ethyl-3*H*-quinazolin-4-one (1.89 g, 10.0 mmol) and Et₃N (3 ml) in anhydrous toluene (20 ml), was added a solution of 2-phenylbutanoyl chloride (0.91 g, 5.0 mmol) in anhydrous toluene (5 ml). The mixture was heated under reflux for 30 min, allowed to cool, washed with saturated aqueous NaHCO₃ (2 x 10 ml) and H₂O (2 x 15 ml), dried (MgSO₄), and evaporated under reduced pressure. The residue obtained was purified by column chromatography on silica gel (Et₂O–hexane, 1:4) followed by recrystallization from ethyl acetate to give 2-ethyl-3-(2-phenylbutanoylamino)-3*H*-quinazolin-4-one (1.36 g, 4.05 mmol; 81% based on acid chloride) as colourless crystals, m.p. 101–103 °C. The title compound (I) appears from its NMR spectra as a mixture of two diastereoisomers in unequal proportions (Ia:Ib = *ca*. 4:6), due to restricted rotation around the *N*–*N* axis (Smith *et al.*, 2004), but the X-ray crystallography showed a single type of crystal containing just one diastereoisomer but with both enantiomers in equal proportions (the structure displayed shows the structure as 2-ethyl-3-(*(R)*-2-phenylbutanoylamino)-3*H*-quinazolin-4-one hydrate). The ¹H NMR spectrum also showed diastereotopism for the CH₂ protons of the ethyl groups, but was temperature dependent and showed a single set of signals at 150 °C (Smith *et al.*, 2004). EI–MS: *m/z* (%) = 335 (*M*⁺, 5), 216 (40), 189 (17), 173 (12), 119 (65), 91 (100). HRMS (EI): Calculated for C₂₀H₂₁N₃O₂ [*M*]: 335.1634; found, 335.1634. NMR assignments have been made on the basis of expected chemical shifts and coupling patterns and have not been rigorously confirmed.

¹H NMR (500 MHz, DMSO- d_6 , δ , p.p.m.) 8.15 (d, J = 8 Hz, 0.6 H, H-5 of Ib), 8.06 (d, J = 8 Hz, 0.4 H, H-5 of Ia), 7.87–7.82 (m, 1 H, H-7 of Ia and Ib), 7.68 (d, J = 8 Hz, 0.4 H, H-8 of Ia), 7.65 (d, J = 8 Hz, 0.6 H, H-8 of Ib), 7.57–5.48 (m, 1 H, H-6 of Ia and Ib), 7.45–7.35 (m, 4 H, H-2 and H-3 of Ph of Ia and Ib), 7.32–7.27 (m, 1 H, H-4 of Ph of Ia and Ib), 3.75–3.67 (m, 1 H, CH of Ia and Ib), 2.76 (dq, J = 15, 7.5 Hz, 0.4 H, ArCH_aH_b of Ia), 2.63 (dq, J = 15, 7.5 Hz, 0.4 H, ArCH_aH_b of Ia), 2.30 (dq, J = 15, 7.5 Hz, 0.6 Hz, ArCH_aH_b of Ib), 2.20 (dq, J = 15, 7.5 Hz, 0.6 H, ArCH_aH_b of Ib), 2.18–2.04 (m, 1 H, CHCH_aH_b of Ia and Ib), 1.86–1.71 (m, 1 H, CHCH_aH_b of Ia and Ib), 1.25 (app. t, J = 7.5 Hz, 1.2 H, CH₃CH₂Ar of Ia), 0.99 (app. t, J = 7.5 Hz, 1.8 H, CH₃CH₂Ar of Ib), 0.96–0.90 (m, 3 H, CH₃CH₂CH of Ia and Ib). ¹³C NMR (125 MHz, DMSO- d_6 , δ , p.p.m.) 173.0 (s, C=O of Ia), 172.9 (s, C=O of Ib), 159.7 (s, C-4 of Ib), 159.6 (s, C-4 of Ia), 159.5 (s, C-2 of Ib), 159.3 (s, C-2 of Ia), 147.1 (s, C-8a of Ib), 147.0 (s, C-8a of Ia), 139.9 (s, C-1 of Ph of Ib), 139.6 (s, C-1 of Ph of Ia), 135.4 (d, C-7 of Ib), 135.3 (d, C-7 of Ia), 128.9 (d, C-3/C-5 of Ph of Ib), 128.7 (d, C-3/C-5 of Ph of Ia), 128.5 (d, C-2/C-6 of Ph od Ia), 128.1 (d, C-2/C-6 of Ph of Ib), 127.6 (d, three overlapping signals, C-6 of Ia and Ib and C-8 of Ib), 127.4 (d, C-8 of Ia), 127.2 (d, C-5 of Ib), 127.1 (d, C-5 of Ia), 126.9 (d, C-4 of Ph), 126.8 (d, C-4 of Ph), 121.1 (s, two overlapping signals, C-4a of Ia and Ib), 51.9 (d, CH of Ia), 51.8 (d, CH of Ib), 27.0 (t, CH₂CH of Ia), 26.9 (t, CH₂Ar of Ib), 25.9 (t, CH₂Ar of Ia), 12.6 (q, CH₃CH₂CH of Ia), 12.5 (q, CH₃CH₂CH of Ib), 11.0 (q, CH₃CH₂Ar of Ia), 10.8 (q, CH₃CH₂Ar of Ib).

S3. Refinement

The hydrogen atoms of the water molecule were located in the difference Fourier map and refined isotropically. The Cand N-bound hydrogen atoms were positioned geometrically, and refined using a riding model, with $U_{iso}(H) = 1.2-1.5 U_{eq}$ of the parent atom.

Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

A portion of the crystal packing viewed along the *a* axis and showing the hydrogen bonds as dotted green lines. C-bound H atoms were omitted for clarity.

2-Ethyl-3-[(R)-2-phenylbutanamido]quinazolin-4(3H)-one monohydrate

Crystal data

 $C_{20}H_{21}N_{3}O_{2} \cdot H_{2}O$ $M_{r} = 353.41$ Monoclinic, $P2_{1}/n$ a = 14.5354 (2) Å b = 7.3529 (1) Å c = 18.1945 (3) Å $\beta = 98.591$ (1)° V = 1922.76 (5) Å³ Z = 4

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Radiation source: sealed X-ray tube ω scans Absorption correction: gaussian (*CrysAlis PRO*; Agilent, 2014) $T_{\min} = 0.723, T_{\max} = 1.000$ 13383 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.116$ S = 1.053796 reflections 246 parameters 0 restraints F(000) = 752 $D_x = 1.221 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 3341 reflections $\theta = 3.6-67.7^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 296 KPlate, colourless $0.41 \times 0.21 \times 0.08 \text{ mm}$

3796 independent reflections 3341 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 73.5^{\circ}, \ \theta_{min} = 3.6^{\circ}$ $h = -16 \rightarrow 17$ $k = -9 \rightarrow 8$ $l = -22 \rightarrow 21$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0544P)^2 + 0.3851P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2013* (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0033 (3)

Special details

Experimental. Absorption correction: CrysAlisPro (Agilent, 2014): Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.71716 (9)	0.66803 (17)	0.06334 (7)	0.0466 (3)	
C2	0.81747 (9)	0.69215 (18)	0.07879 (8)	0.0525 (3)	
C3	0.85958 (9)	0.72040 (19)	0.15199 (9)	0.0557 (3)	
C4	0.72196 (9)	0.69526 (17)	0.19860 (7)	0.0470 (3)	
C5	0.87036 (12)	0.6905 (3)	0.02072 (11)	0.0732 (5)	
H5	0.8418	0.6688	-0.0277	0.088*	
C6	0.96387 (14)	0.7207 (3)	0.03496 (15)	0.0952 (7)	
H6	0.9992	0.7205	-0.0037	0.114*	
C7	1.00601 (13)	0.7517 (3)	0.10751 (16)	0.0979 (7)	
H7	1.0697	0.7731	0.1168	0.117*	
C8	0.95599 (11)	0.7514 (3)	0.16581 (13)	0.0796 (5)	
H8	0.9857	0.7715	0.2140	0.096*	
C9	0.52278 (8)	0.79347 (16)	0.10850 (7)	0.0410 (3)	
C10	0.41982 (8)	0.74708 (17)	0.10069 (7)	0.0418 (3)	
H10	0.4092	0.6357	0.0711	0.050*	
C11	0.39529 (8)	0.70884 (18)	0.17738 (7)	0.0456 (3)	
C12	0.34870 (10)	0.5513 (2)	0.19121 (8)	0.0593 (4)	
H12	0.3334	0.4666	0.1534	0.071*	
C13	0.32464 (13)	0.5187 (3)	0.26100 (10)	0.0781 (5)	
H13	0.2928	0.4128	0.2695	0.094*	
C14	0.34730 (15)	0.6408 (3)	0.31718 (10)	0.0835 (5)	
H14	0.3308	0.6185	0.3638	0.100*	
C15	0.39456 (14)	0.7967 (3)	0.30473 (9)	0.0769 (5)	
H15	0.4110	0.8791	0.3432	0.092*	
C16	0.41781 (11)	0.8314 (2)	0.23522 (8)	0.0600 (4)	
H16	0.4490	0.9383	0.2271	0.072*	
C17	0.66472 (11)	0.6937 (2)	0.26021 (8)	0.0611 (4)	
H17A	0.6266	0.5848	0.2559	0.073*	
H17B	0.6232	0.7977	0.2545	0.073*	
C18	0.72124 (14)	0.6992 (3)	0.33713 (9)	0.0749 (5)	
H18A	0.7599	0.5929	0.3445	0.112*	
H18B	0.6800	0.7021	0.3737	0.112*	
H18C	0.7597	0.8060	0.3419	0.112*	
C19	0.35937 (9)	0.8981 (2)	0.06048 (7)	0.0512 (3)	

0.3635	1.0057	0.0916	0.061*
0.3826	0.9292	0.0148	0.061*
0.25831 (10)	0.8397 (2)	0.04242 (9)	0.0628 (4)
0.2540	0.7337	0.0113	0.094*
0.2224	0.9364	0.0169	0.094*
0.2346	0.8119	0.0876	0.094*
0.81045 (8)	0.72053 (16)	0.21145 (7)	0.0557 (3)
0.67465 (7)	0.66873 (14)	0.12675 (6)	0.0429 (2)
0.57841 (7)	0.64529 (14)	0.11660 (6)	0.0446 (3)
0.5547	0.5380	0.1155	0.054*
0.67227 (7)	0.64818 (15)	0.00151 (5)	0.0613 (3)
0.55448 (6)	0.94696 (12)	0.11169 (6)	0.0557 (3)
0.50861 (9)	0.30699 (16)	0.07666 (10)	0.0873 (5)
0.5189 (19)	0.193 (4)	0.0963 (14)	0.124 (9)*
0.450 (2)	0.306 (4)	0.0514 (15)	0.123 (9)*
	0.3635 0.3826 0.25831 (10) 0.2540 0.2224 0.2346 0.81045 (8) 0.67465 (7) 0.57841 (7) 0.5547 0.67227 (7) 0.55448 (6) 0.50861 (9) 0.5189 (19) 0.450 (2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
C1	0.0444 (6)	0.0406 (6)	0.0543 (7)	0.0049 (5)	0.0061 (5)	0.0001 (5)
C2	0.0436 (7)	0.0456 (7)	0.0687 (8)	0.0041 (5)	0.0100 (6)	0.0023 (6)
C3	0.0412 (7)	0.0474 (7)	0.0766 (9)	0.0026 (5)	0.0032 (6)	0.0011 (6)
C4	0.0482 (7)	0.0384 (6)	0.0518 (7)	0.0015 (5)	-0.0008(5)	0.0040 (5)
C5	0.0592 (9)	0.0781 (11)	0.0871 (12)	0.0042 (8)	0.0264 (8)	-0.0011 (9)
C6	0.0634 (11)	0.1038 (16)	0.1273 (19)	-0.0029 (10)	0.0433 (12)	-0.0105 (14)
C7	0.0429 (9)	0.1033 (15)	0.151 (2)	-0.0051 (9)	0.0268 (11)	-0.0150 (15)
C8	0.0432 (8)	0.0802 (12)	0.1115 (15)	-0.0009 (8)	-0.0010 (8)	-0.0100 (10)
C9	0.0421 (6)	0.0375 (6)	0.0439 (6)	0.0001 (5)	0.0077 (5)	0.0028 (5)
C10	0.0387 (6)	0.0418 (6)	0.0451 (6)	-0.0001 (5)	0.0069 (5)	0.0000 (5)
C11	0.0392 (6)	0.0504 (7)	0.0473 (6)	-0.0002 (5)	0.0070 (5)	0.0036 (5)
C12	0.0591 (8)	0.0608 (9)	0.0582 (8)	-0.0127 (7)	0.0088 (6)	0.0058 (7)
C13	0.0840 (12)	0.0812 (12)	0.0721 (10)	-0.0192 (9)	0.0212 (9)	0.0191 (9)
C14	0.1001 (14)	0.0986 (14)	0.0564 (9)	-0.0080 (11)	0.0265 (9)	0.0127 (9)
C15	0.0934 (13)	0.0861 (12)	0.0536 (9)	-0.0062 (10)	0.0185 (8)	-0.0089 (8)
C16	0.0655 (9)	0.0603 (9)	0.0561 (8)	-0.0090 (7)	0.0157 (7)	-0.0048 (6)
C17	0.0644 (9)	0.0651 (9)	0.0533 (8)	0.0004 (7)	0.0074 (6)	0.0071 (7)
C18	0.0978 (13)	0.0720 (11)	0.0522 (8)	-0.0035 (9)	0.0023 (8)	0.0017 (7)
C19	0.0465 (7)	0.0560 (8)	0.0516 (7)	0.0083 (6)	0.0096 (5)	0.0071 (6)
C20	0.0473 (7)	0.0793 (10)	0.0590 (8)	0.0111 (7)	-0.0012 (6)	-0.0030(7)
N1	0.0464 (6)	0.0538 (7)	0.0627 (7)	0.0000 (5)	-0.0057 (5)	0.0015 (5)
N2	0.0356 (5)	0.0398 (5)	0.0521 (6)	0.0007 (4)	0.0025 (4)	0.0010 (4)
N3	0.0350 (5)	0.0363 (5)	0.0618 (6)	-0.0024 (4)	0.0046 (4)	0.0000 (4)
O1	0.0554 (6)	0.0734 (7)	0.0533 (6)	0.0040 (5)	0.0022 (4)	-0.0047 (5)
O2	0.0473 (5)	0.0367 (5)	0.0830 (7)	-0.0019 (4)	0.0092 (4)	0.0053 (4)
03	0.0695 (8)	0.0397 (6)	0.1395 (13)	-0.0015 (5)	-0.0278 (8)	-0.0025 (6)
03	0.0695 (8)	0.0397 (6)	0.1395 (13)	-0.0015 (5)	-0.0278(8)	-0.0025 (6)

Geometric parameters (Å, °)

C1—01	1.2220 (16)	C12—C13	1.387 (2)	
C1—N2	1.3879 (17)	C12—H12	0.9300	
C1—C2	1.4539 (18)	C13—C14	1.364 (3)	
C2—C3	1.396 (2)	C13—H13	0.9300	
C2—C5	1.397 (2)	C14—C15	1.372 (3)	
C3—N1	1.382 (2)	C14—H14	0.9300	
С3—С8	1.405 (2)	C15—C16	1.381 (2)	
C4—N1	1.2860 (17)	C15—H15	0.9300	
C4—N2	1.3969 (16)	C16—H16	0.9300	
C4—C17	1.493 (2)	C17—C18	1.514 (2)	
С5—С6	1.363 (3)	C17—H17A	0.9700	
С5—Н5	0.9300	C17—H17B	0.9700	
С6—С7	1.389 (3)	C18—H18A	0.9600	
С6—Н6	0.9300	C18—H18B	0.9600	
С7—С8	1.373 (3)	C18—H18C	0.9600	
С7—Н7	0.9300	C19—C20	1.519 (2)	
С8—Н8	0.9300	C19—H19A	0.9700	
С9—О2	1.2172 (15)	C19—H19B	0.9700	
C9—N3	1.3516 (16)	C20—H20A	0.9600	
C9—C10	1.5208 (16)	C20—H20B	0.9600	
C10-C11	1.5171 (17)	C20—H20C	0.9600	
C10-C19	1.5324 (17)	N2—N3	1.3941 (14)	
C10—H10	0.9800	N3—H3	0.8600	
C11—C12	1.3836 (19)	O3—H3A	0.92 (3)	
C11—C16	1.387 (2)	O3—H3B	0.91 (3)	
O1-C1-N2	121.53 (12)	C13—C14—C15	119.81 (16)	
O1—C1—C2	125.08 (13)	C13—C14—H14	120.1	
N2-C1-C2	113.39 (12)	C15—C14—H14	120.1	
C3—C2—C5	120.71 (14)	C14—C15—C16	120.18 (17)	
C3—C2—C1	119.13 (13)	C14—C15—H15	119.9	
C5—C2—C1	120.14 (14)	C16—C15—H15	119.9	
N1—C3—C2	122.86 (12)	C15—C16—C11	120.84 (15)	
N1—C3—C8	118.55 (15)	C15—C16—H16	119.6	
С2—С3—С8	118.58 (16)	C11—C16—H16	119.6	
N1-C4-N2	121.97 (13)	C4—C17—C18	114.06 (14)	
N1-C4-C17	121.28 (12)	C4—C17—H17A	108.7	
N2-C4-C17	116.75 (11)	C18—C17—H17A	108.7	
C6—C5—C2	120.05 (19)	C4—C17—H17B	108.7	
С6—С5—Н5	120.0	C18—C17—H17B	108.7	
С2—С5—Н5	120.0	H17A—C17—H17B	107.6	
C5—C6—C7	119.54 (19)	C17—C18—H18A	109.5	
С5—С6—Н6	120.2	C17—C18—H18B	109.5	
С7—С6—Н6	120.2	H18A—C18—H18B	109.5	
С8—С7—С6	121.67 (17)	C17—C18—H18C	109.5	
С8—С7—Н7	119.2	H18A—C18—H18C	109.5	

C6—C7—H7 C7—C8—C3 C7—C8—H8 C3—C8—H8 O2—C9—N3 O2—C9—C10 N3—C9—C10	119.2 119.43 (19) 120.3 120.3 121.75 (11) 124.94 (11) 113.18 (10)	H18B—C18—H18C C20—C19—C10 C20—C19—H19A C10—C19—H19A C20—C19—H19B C10—C19—H19B H19A—C19—H19B	109.5 111.44 (12) 109.3 109.3 109.3 109.3 109.3 108.0
C11—C10—C9 C11—C10—C19 C9—C10—C19 C11—C10—H10 C9—C10—H10 C19—C10—H10 C12—C11—C16 C12—C11—C10 C16—C11—C10	108.59 (10) 112.12 (10) 111.61 (10) 108.1 108.1 108.1 118.18 (13) 120.74 (12) 121.08 (12)	C19—C20—H20A C19—C20—H20B H20A—C20—H20B C19—C20—H20C H20A—C20—H20C H20B—C20—H20C C4—N1—C3 C1—N2—N3 C1—N2—C4	109.5 109.5 109.5 109.5 109.5 109.5 118.51 (12) 116.87 (10) 124.09 (11)
C11—C12—C13 C11—C12—H12 C13—C12—H12 C14—C13—C12 C14—C13—H13 C12—C13—H13	120.56 (15) 119.7 119.7 120.43 (16) 119.8 119.8	N3—N2—C4 C9—N3—N2 C9—N3—H3 N2—N3—H3 H3A—O3—H3B	119.02 (10) 119.14 (10) 120.4 120.4 106 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
N3—H3…O3	0.86	1.92	2.7431 (15)	159
O3—H3A···O2 ⁱ	0.92 (3)	1.89 (3)	2.7806 (15)	164 (2)
O3—H3 <i>B</i> ···O1 ⁱⁱ	0.91 (3)	1.92 (3)	2.8154 (17)	169 (2)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*+1, -*z*.