

V = 1180.54 (8) Å³

Mo $K\alpha$ radiation

 $0.5 \times 0.03 \times 0.03$ mm

14527 measured reflections 5899 independent reflections

5216 reflections with $I > 2\sigma(I)$

 $\mu = 1.78 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.024$

Z = 2

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

12-{[4-(4-Bromophenyl)piperazin-1-yl]methyl}-9a-hydroxy-4,8-dimethyl-3,14dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

Mohamed Loubidi,^a* Ahmed Benharref,^a Lahcen El Ammari,^b Mohamed Saadi^b and Moha Berraho^a

^aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and ^bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Battouta, Rabat, Morocco

Correspondence e-mail: loubidim@gmail.com

Received 17 March 2014; accepted 24 March 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.076; data-to-parameter ratio = 20.2.

The title compound, $C_{25}H_{33}BrN_2O_4$, was synthesized from 9α hydroxyparthenolide (9 α -hydroxy-4,8-dimethyl-12-methylen-3,14-dioxa-tricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one), which was isolated from the chloroform extract of the aerial parts of Anvillea radiata. The molecule is built up from two fused fiveand ten-membered rings with an additional epoxy ring system and a bromophenylpiperazine group as a substituent. The tenmembered ring adopts an approximate chair-chair-chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring shows an envelope conformation with the C atom closest to the hydroxy group forming the flap. An intramolecular O-H···N hydrogen bond stabilizes the molecular conformation. The crystal packing features C-H···O hydrogen bonds, which link the molecules into zigzag chains running along the b-axis direction.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); El Hassany et al. (2004); Oureshi et al. (1990). For the reactivity of this sesquiterpene, see: Neukirch et al. (2003); Hwang et al. (2006); Neelakantan et al. (2009). For the synthetic procedure, see: Moumou et al. (2010). For conformational analysis, see: Cremer & Pople (1975)

Experimental

Crystal data

C ₂₅ H ₃₃ BrN ₂ O ₄	
$M_r = 505.44$	
Monoclinic, P2 ₁	
a = 9.6790 (4) Å	
b = 7.0710 (3) Å	
c = 17.3117 (7) Å	
$\beta = 94.872 \ (2)^{\circ}$	

Data collection

Bruker X8 APEX diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.634, \ T_{\max} = 0.746$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.076$	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$
S = 1.03	Absolute structure: Flack &
5899 reflections	Bernardinelli (2000), 2614 Friedel
292 parameters	pairs
1 restraint	Absolute structure parameter:
H-atom parameters constrained	0.007 (5)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H4···N1	0.82	2.18	2.995 (4)	171
$C1 - H1 \cdots O1^{i}$	0.98	2.52	3.389 (3)	148
$C15-H15C\cdots O1^{i}$	0.96	2.47	3.410 (3)	167

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + 1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6970).

References

- Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). *Fitoterapia*, **75**, 573–576.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). *Bioorg. Med. Chem.* 14, 83–91.
- Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, 02395.
- Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.
- Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). *Bioorg. Med. Chem.* **11**, 1503–1510.
- Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o497-o498 [doi:10.1107/S1600536814006473]

12-{[4-(4-Bromophenyl)piperazin-1-yl]methyl}-9 α -hydroxy-4,8-dimethyl-3,14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one

Mohamed Loubidi, Ahmed Benharref, Lahcen El Ammari, Mohamed Saadi and Moha Berraho

S1. Comment

The natural sesquiterpene lactone 9α -hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of *Anvillea radiata* (El Hassany *et al.*, 2004) and of *Anvillea garcini* (Abdel Sattar *et al.*, 1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Hwang *et al.*, 2006; Neelakantan *et al.*, 2009; Moumou *et al.*, 2010), in order to prepare products with a high added value that can be used in the pharmacological industry. In this context, we have treated 9α -hydroxyparthenolide with an equivalent amount of 1- (4-bromophenyl)piperazine gives the title compound. The molecule contains a fused ring system and the bromophenyl-pyperazine group as a substituent to the lactone ring. The molecular structure (Fig. 1) shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters QT = 0.2525 (19) Å and $\varphi 2 = 259.3$ (4)°. The ten-membered ring displays an approximate chair-chair-chair conformation, while the pyperazine ring has a perfect chair conformation with QT = 0.586 (2) Å, $\theta = 177.96$ (18) and $\varphi 2 = 165$ (4)°. In the crystal, C—H···O hydrogen bonding links the molecules to zigzag chains running along the b-axis (Table 1, Fig. 2). In addition, an intramolecular O4—H4···N1 hydrogen bond is also observed. Owing to the presence of a Br atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(S), C2(R) C3(R), C8(R), C10(S) and C11(R).

S2. Experimental

The mixture of 9?-hydoxypartenolide (9 α -hydroxy-4,8-dimethyl- 12-methylene- 3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7en-13-one) (1 g, 3.8 mmol) and one equivalent of 1-(4-bromophenyl-piperazine) in EtOH (20 ml) was stirred for twelve hours at room temperature. Then, the reaction was stopped by adding water (10 ml) and the solution was extracted with chloroform (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under vacuum to give 1.5 g (3 mmol) of the title compound (yield: 79%). Recrystallization was performed from in ethyl acetate.

S3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and O–H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}$ (methylene, methine) or $U_{iso}(H) = 1.5U_{eq}(C_{methyl}, O)$. The torsion angles about the C-C_{methyl} and C-O bonds were refined.

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2

Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

$12-\{[4-(4-Bromophenyl)piperazin-1-yl]methyl\}-9a-hydroxy-4, 8-dimethyl-3, 14-dioxatricyclo[9.3.0.0^{2,4}]tetradec-7-en-13-one$

Crystal data	
$C_{25}H_{33}BrN_2O_4$	Hall symbol: P 2yb
$M_r = 505.44$	a = 9.6790 (4) Å
Monoclinic, $P2_1$	b = 7.0710 (3) Å

Cell parameters from 5899 reflections

 $\theta = 2.4 - 28.7^{\circ}$

 $\mu = 1.78 \text{ mm}^{-1}$

Box, colourless

 $0.5 \times 0.03 \times 0.03$ mm

14527 measured reflections 5899 independent reflections

 $\theta_{\rm max} = 28.7^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$

5216 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.024$

 $h = -12 \rightarrow 13$

 $k = -9 \rightarrow 9$

 $l = -23 \rightarrow 23$

c = 17.3117 (7) Å $\beta = 94.872$ (2)° V = 1180.54 (8) Å³ Z = 2 F(000) = 528 $D_x = 1.422$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å

Data collection

Bruker X8 APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.634, T_{\max} = 0.746$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.030$ H-atom parameters constrained $wR(F^2) = 0.076$ $w = 1/[\sigma^2(F_o^2) + (0.0313P)^2]$ *S* = 1.03 where $P = (F_0^2 + 2F_c^2)/3$ 5899 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ 292 parameters $\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$ 1 restraint $\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Flack & Bernardinelli (2000), 2614 Friedel pairs direct methods Secondary atom site location: difference Fourier Absolute structure parameter: 0.007 (5) map

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.81297 (2)	0.79383 (4)	-0.080172 (12)	0.06016 (9)	
01	0.06025 (14)	-0.47571 (19)	0.48432 (7)	0.0400 (3)	
03	0.29861 (12)	-0.1832 (2)	0.50486 (6)	0.0367 (3)	
O4	0.34442 (13)	-0.25359 (19)	0.21350 (8)	0.0418 (3)	
H4	0.4035	-0.1779	0.2306	0.063*	
N1	0.53704 (14)	0.0338 (2)	0.29071 (8)	0.0302 (3)	
N2	0.63915 (15)	0.2755 (2)	0.17458 (8)	0.0351 (3)	
C1	0.20134 (15)	-0.2018 (3)	0.43565 (8)	0.0280 (3)	
H1	0.1227	-0.1152	0.4376	0.034*	
O2	0.51010 (17)	-0.0713 (3)	0.53716 (9)	0.0637 (5)	
C11	0.40639 (17)	-0.0352 (2)	0.40481 (10)	0.0301 (3)	
H11	0.3778	0.0978	0.4024	0.036*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C10	0 28736 (16)	-0.1544(2)	0 36682 (9)	0.0257(3)
H10	0.3270	-0.2728	0.3492	0.021*
C2	0.15415 (18)	-0.4034(2)	0.3192 0.43110 (10)	0.031
H2	0 2277	-0.4925	0.4205	0.036*
C9	0.2277 0.20719 (17)	-0.0612(2)	0.29633 (10)	0.020
НОЛ	0.2462	0.0630	0.2885	0.0275 (5)
H9R	0.1115	-0.0439	0.3075	0.033*
C20	0.66722 (19)	0.3843(3)	0.11021 (10)	0.033(4)
C15	-0.1053(2)	-0.3330(3)	0.38362(13)	0.0335(4)
H15A	-0.1899	-0.3920	0.3961	0.0410(4)
H15R	-0.1117	-0.3022	0.3294	0.062*
H15C	-0.0903	-0.2196	0.4136	0.062*
	0.0903 0.21012 (17)	-0.1764(2)	0.22020 (0)	0.002
H8	0.1889	-0.0899	0.1766	0.037*
C7	0.09765 (18)	-0.3259(3)	0.21770 (10)	0.037
C14	-0.0380(2)	-0.2547(3)	0.21770(10) 0.18031(13)	0.0315(5)
H14A	-0.1000	-0.3441	0.18051 (15)	0.0400 (3)
H14R	-0.0312	-0.2303	0.1257	0.009
	-0.0595	-0.1353	0.1237	0.009
	0.0575 0.01452 (10)	-0.4672(2)	0.2027 0.40100 (10)	0.007
C16	0.01432(19) 0.5343(2)	0.4072(2) 0.2401(3)	0.40199(10) 0.29620(11)	0.0319(4)
H16A	0.6185	0.2834	0.3253	0.0372 (4)
H16R	0.4563	0.2834	0.3233	0.047
C17	0.4303 0.5224 (2)	0.2785	0.3242 0.21754 (11)	0.047
H17A	0.3224(2)	0.3318 (3)	0.1801	0.0421(3)
1117A 1117B	0.4301	0.2940	0.1091	0.051*
C5	0.5215	-0.6207(2)	0.2255	0.031
U5 A	0.0038 (2)	-0.7510	0.27100 (12)	0.0393 (4)
HJA USB	-0.0830	-0.5833	0.2478	0.047*
115D C6	0.0039 0.1160 (2)	-0.4025(2)	0.2507	0.047
	0.1109 (2)	-0.4923(2)	0.23238 (10)	0.0343 (4)
П0 С12	0.2081 0.54475 (10)	-0.3278 -0.0520(2)	0.2000	0.041°
	0.54475 (19)	0.0320 (3)	0.30882 (11)	0.0304 (4)
ПІЗА ЦІ2Р	0.0100	0.0107	0.4020	0.044*
ПІЗ Б С21	0.5090	-0.1044	0.3033	0.044°
U21	0.3923 (2)	0.5468 (5)	0.08802 (11)	0.0379(4)
П21 С22	0.5155	0.3702	0.1133	0.040°
U22	0.0333 (2)	0.0037 (3)	0.03103 (11)	0.0420 (4)
П22 С19	0.5820	0.7743	0.0179 0.24052 (12)	0.030°
	0.0378 (2)	-0.0183(3)	0.24955 (12)	0.0387 (4)
	0.0027	-0.1331	0.2431	0.046*
	0.7419	0.0249	0.2780	0.040
	0.0055 (2)	-0.6550 (2)	0.36027 (12)	0.0398 (4)
П4А ЦИР	-0.0788	-0./194	0.3717	0.048
П4D С12	0.0000	-0.7333	0.3/90	0.040
C12	0.4109(2)	-0.0901(3)	0.40030(11)	0.0569 (4)
U24 U24	0.8214 (2)	0.4389 (4)	0.01092(13)	0.0514(5)
П24 С22	0.09/0	0.4200	-0.0138	0.002
0.23	0.7487 (2)	0.0223 (3)	-0.00048 (11)	0.0414 (4)

supporting information

C19	0.6466 (2)	0.0693 (3)	0.16953 (11)	0.0383 (4)
H19A	0.7265	0.0336	0.1427	0.046*
H19B	0.5642	0.0220	0.1399	0.046*
C25	0.7808 (2)	0.3408 (3)	0.06823 (12)	0.0471 (5)
H25	0.8299	0.2297	0.0793	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.06273 (15)	0.07268 (15)	0.04532 (12)	-0.01813 (12)	0.00605 (9)	0.02022 (11)
O1	0.0448 (8)	0.0446 (7)	0.0312 (7)	-0.0100 (6)	0.0071 (6)	0.0077 (5)
O3	0.0389 (6)	0.0481 (7)	0.0232 (5)	-0.0105 (6)	0.0036 (4)	0.0038 (5)
O4	0.0341 (7)	0.0539 (8)	0.0390 (7)	0.0043 (6)	0.0129 (6)	-0.0079 (6)
N1	0.0268 (7)	0.0342 (7)	0.0301 (7)	0.0026 (6)	0.0059 (6)	0.0041 (6)
N2	0.0405 (8)	0.0358 (7)	0.0306 (7)	0.0071 (7)	0.0129 (6)	0.0049 (6)
C1	0.0287 (7)	0.0316 (7)	0.0241 (7)	-0.0003 (7)	0.0043 (5)	0.0015 (7)
O2	0.0577 (10)	0.0973 (13)	0.0334 (8)	-0.0328 (10)	-0.0125 (7)	0.0183 (9)
C11	0.0295 (9)	0.0359 (8)	0.0245 (8)	-0.0029 (7)	0.0003 (6)	0.0029 (6)
C10	0.0262 (8)	0.0286 (7)	0.0227 (7)	0.0038 (6)	0.0043 (6)	0.0011 (5)
C2	0.0328 (9)	0.0299 (7)	0.0283 (8)	0.0024 (7)	0.0045 (7)	0.0058 (6)
C9	0.0280 (8)	0.0271 (7)	0.0274 (8)	0.0050 (6)	0.0014 (6)	0.0022 (6)
C20	0.0325 (9)	0.0395 (9)	0.0281 (9)	0.0016 (7)	0.0033 (7)	0.0017 (7)
C15	0.0328 (10)	0.0442 (10)	0.0484 (12)	0.0042 (8)	0.0058 (8)	-0.0078 (9)
C8	0.0338 (8)	0.0362 (9)	0.0232 (7)	0.0060 (7)	0.0028 (6)	0.0036 (7)
C7	0.0332 (9)	0.0361 (8)	0.0252 (8)	0.0059 (7)	0.0015 (7)	-0.0057 (6)
C14	0.0394 (10)	0.0482 (11)	0.0478 (11)	0.0022 (8)	-0.0109 (8)	0.0045 (9)
C3	0.0338 (9)	0.0315 (8)	0.0310 (9)	-0.0022 (7)	0.0065 (7)	0.0005 (7)
C16	0.0476 (11)	0.0376 (9)	0.0346 (9)	0.0001 (7)	0.0158 (8)	-0.0007 (7)
C17	0.0503 (11)	0.0362 (10)	0.0428 (10)	0.0128 (8)	0.0219 (9)	0.0053 (8)
C5	0.0468 (11)	0.0280 (8)	0.0428 (11)	0.0010 (7)	-0.0005 (8)	-0.0059 (7)
C6	0.0372 (9)	0.0337 (8)	0.0321 (9)	0.0074 (7)	0.0035 (7)	-0.0058 (7)
C13	0.0274 (9)	0.0472 (10)	0.0343 (9)	-0.0015 (7)	0.0016 (7)	0.0097 (8)
C21	0.0371 (10)	0.0421 (9)	0.0353 (9)	0.0033 (8)	0.0073 (8)	0.0044 (8)
C22	0.0491 (12)	0.0412 (9)	0.0353 (10)	0.0011 (9)	0.0019 (8)	0.0077 (8)
C18	0.0330 (9)	0.0410 (10)	0.0435 (11)	0.0087 (8)	0.0119 (8)	0.0073 (8)
C4	0.0444 (11)	0.0303 (9)	0.0447 (11)	-0.0045 (7)	0.0047 (8)	0.0019 (7)
C12	0.0408 (11)	0.0483 (10)	0.0273 (9)	-0.0103 (8)	0.0003 (7)	0.0050 (8)
C24	0.0478 (12)	0.0690 (14)	0.0397 (11)	0.0096 (11)	0.0177 (9)	0.0107 (10)
C23	0.0443 (11)	0.0519 (12)	0.0275 (9)	-0.0110 (9)	-0.0005 (8)	0.0069 (8)
C19	0.0432 (11)	0.0365 (9)	0.0374 (10)	0.0094 (8)	0.0161 (8)	0.0013 (7)
C25	0.0480 (11)	0.0559 (13)	0.0396 (10)	0.0154 (9)	0.0160 (9)	0.0120 (9)

Geometric parameters (Å, °)

Br1—C23	1.9020 (19)	С8—Н8	0.9800
O1—C2	1.442 (2)	С7—С6	1.329 (3)
O1—C3	1.457 (2)	C7—C14	1.500 (3)
O3—C12	1.351 (2)	C14—H14A	0.9600

O3—C1	1.465 (2)	C14—H14B	0.9600
O4—C8	1.424 (2)	C14—H14C	0.9600
O4—H4	0.8200	C3—C4	1.510 (3)
N1—C16	1.462 (3)	C16—C17	1.504 (3)
N1—C18	1.467 (2)	C16—H16A	0.9700
N1—C13	1.478 (2)	C16—H16B	0.9700
N2—C20	1.400 (2)	C17—H17A	0.9700
N2—C17	1.460 (2)	C17—H17B	0.9700
N2—C19	1.462 (3)	C5—C6	1.505 (3)
C1—C2	1.497 (3)	C5—C4	1.545 (3)
C1—C10	1.5473 (19)	C5—H5A	0.9700
C1—H1	0.9800	С5—Н5В	0.9700
O2—C12	1.193 (3)	С6—Н6	0.9300
C11—C12	1.508 (2)	С13—Н13А	0.9700
C11—C13	1.529 (2)	С13—Н13В	0.9700
C11—C10	1.530 (2)	C21—C22	1.387 (3)
C11—H11	0.9800	C21—H21	0.9300
С10—С9	1.538 (2)	C22—C23	1.374 (3)
C10—H10	0.9800	С22—Н22	0.9300
C2—C3	1.473 (3)	C18—C19	1.513 (3)
C2—H2	0.9800	C18—H18A	0.9700
C9—C8	1.550 (2)	C18—H18B	0.9700
С9—Н9А	0.9700	C4—H4A	0.9700
С9—Н9В	0.9700	C4—H4B	0.9700
C20—C21	1.393 (3)	C24—C23	1.373 (3)
C20—C25	1.402 (2)	C24—C25	1.379 (3)
C15—C3	1.511 (3)	C24—H24	0.9300
С15—Н15А	0.9600	C19—H19A	0.9700
С15—Н15В	0.9600	C19—H19B	0.9700
C15—H15C	0.9600	C25—H25	0.9300
C8—C7	1.516 (3)		
C2—O1—C3	61.05 (11)	O1—C3—C15	113.30 (14)
C12—O3—C1	111.57 (12)	C2—C3—C15	123.01 (16)
C8—O4—H4	109.5	C4—C3—C15	116.06 (17)
C16—N1—C18	107.64 (14)	N1—C16—C17	111.83 (16)
C16—N1—C13	110.47 (15)	N1—C16—H16A	109.2
C18—N1—C13	111.14 (14)	C17—C16—H16A	109.2
C20—N2—C17	117.81 (15)	N1—C16—H16B	109.2
C20—N2—C19	119.11 (14)	C17—C16—H16B	109.2
C17—N2—C19	110.26 (14)	H16A—C16—H16B	107.9
O3-C1-C2	107.50 (14)	N2—C17—C16	109.89 (15)
O3-C1-C10	105.06 (12)	N2—C17—H17A	109.7
C2—C1—C10	110.33 (13)	C16—C17—H17A	109.7
O3—C1—H1	111.2	N2—C17—H17B	109.7
С2—С1—Н1	111.2	C16—C17—H17B	109.7
C10—C1—H1	111.2	H17A—C17—H17B	108.2
C12—C11—C13	112.33 (15)	C6—C5—C4	110.75 (16)

C12—C11—C10	104.05 (13)	С6—С5—Н5А	109.5
C13—C11—C10	115.82 (14)	С4—С5—Н5А	109.5
C12—C11—H11	108.1	С6—С5—Н5В	109.5
C13—C11—H11	108.1	C4—C5—H5B	109.5
C10—C11—H11	108.1	H5A—C5—H5B	108.1
C11—C10—C9	114.56 (13)	C7—C6—C5	126.55 (18)
C11—C10—C1	102.89 (13)	С7—С6—Н6	116.7
C9—C10—C1	115.83 (13)	С5—С6—Н6	116.7
C11—C10—H10	107.7	N1—C13—C11	111.29 (14)
С9—С10—Н10	107.7	N1—C13—H13A	109.4
C1-C10-H10	107.7	C11—C13—H13A	109.4
O1—C2—C3	59.99 (11)	N1—C13—H13B	109.4
O1—C2—C1	120.69 (14)	C11—C13—H13B	109.4
C3—C2—C1	125.25 (15)	H13A—C13—H13B	108.0
O1—C2—H2	113.5	C22—C21—C20	121.23 (17)
С3—С2—Н2	113.5	C22—C21—H21	119.4
C1—C2—H2	113.5	C20—C21—H21	119.4
C10—C9—C8	113.85 (13)	C23—C22—C21	119.91 (19)
С10—С9—Н9А	108.8	С23—С22—Н22	120.0
С8—С9—Н9А	108.8	С21—С22—Н22	120.0
С10—С9—Н9В	108.8	N1—C18—C19	110.06 (15)
С8—С9—Н9В	108.8	N1—C18—H18A	109.6
H9A—C9—H9B	107.7	C19—C18—H18A	109.6
C21—C20—N2	122.36 (15)	N1—C18—H18B	109.6
C21—C20—C25	117.07 (17)	C19—C18—H18B	109.6
N2—C20—C25	120.38 (16)	H18A—C18—H18B	108.2
С3—С15—Н15А	109.5	C3—C4—C5	111.61 (15)
C3—C15—H15B	109.5	C3—C4—H4A	109.3
H15A—C15—H15B	109.5	C5—C4—H4A	109.3
C3—C15—H15C	109.5	C3—C4—H4B	109.3
H15A—C15—H15C	109.5	C5—C4—H4B	109.3
H15B—C15—H15C	109.5	H4A—C4—H4B	108.0
O4—C8—C7	112.85 (15)	O2—C12—O3	121.57 (17)
O4—C8—C9	110.74 (14)	O2—C12—C11	128.41 (17)
C7—C8—C9	109.07 (12)	O3—C12—C11	109.99 (16)
O4—C8—H8	108.0	C23—C24—C25	119.72 (18)
С7—С8—Н8	108.0	C23—C24—H24	120.1
С9—С8—Н8	108.0	C25—C24—H24	120.1
C6—C7—C14	125.23 (18)	C24—C23—C22	120.37 (18)
C6—C7—C8	122.16 (17)	C24—C23—Br1	119.54 (15)
C14—C7—C8	112.24 (16)	C22—C23—Br1	120.05 (16)
C7—C14—H14A	109.5	N2—C19—C18	110.77 (16)
C7—C14—H14B	109.5	N2—C19—H19A	109.5
H14A—C14—H14B	109.5	C18—C19—H19A	109.5
C7—C14—H14C	109.5	N2—C19—H19B	109.5
H14A—C14—H14C	109.5	C18—C19—H19B	109.5
H14B—C14—H14C	109.5	H19A—C19—H19B	108.1
O1—C3—C2	58.95 (11)	C24—C25—C20	121.58 (19)

supporting information

O1—C3—C4	115.59 (15)	C24—C25—H25	119.2
C2—C3—C4	116.57 (15)	С20—С25—Н25	119.2

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
O4—H4…N1	0.82	2.18	2.995 (4)	171
C1—H1···O1 ⁱ	0.98	2.52	3.389 (3)	148
C15—H15C…O1 ⁱ	0.96	2.47	3.410 (3)	167

Symmetry code: (i) -x, y+1/2, -z+1.