organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(12-Amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide

Joel T. Mague,^a* Alaa A.-M. Abdel-Aziz,^{b,c}‡ Adel S. El-Azab^{b,d} and Magda A. El-Sherbeny^c

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bDepartment of Pharmaceutical Chemistry, College of, Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and ^dDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt

Correspondence e-mail: joelt@tulane.edu

Received 28 January 2014; accepted 29 January 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.066; data-to-parameter ratio = 12.5.

The title compound, $C_{23}H_{22}N_2O_2S$, crystallizes with the 4methylbenzenesulfonamide entity oriented towards the center of the bridgehead C atoms with a C-N-S-C torsion angle of -61.3 (2)°. The molecule features an intramolecular N-H···N hydrogen bond. Weak C-H···O and C-H··· π interactions aid in forming the three-dimensional supramolecular structure.

Related literature

For chiral ligand devlopment, see: Abdel-Aziz *et al.* (2000, 2001, 2004); Matsunaga *et al.* (2005); Seo *et al.* (2001). For similar compounds and applications, see: Yamakuchi *et al.* (2005); Matsunaga *et al.* (2005); Abdel-Aziz *et al.* (2004). For the synthesis of the title compound, see: Matsunaga *et al.* (2005).

‡ Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

V = 952.38 (4) Å³

Cu Ka radiation

 $0.25 \times 0.13 \times 0.03 \text{ mm}$

16018 measured reflections

3531 independent reflections

3255 reflections with $I > 2\sigma(I)$

Absolute structure: Flack (1983),

Absolute structure parameter: 0.036

 $\mu = 1.68 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.035$

(13)

 $\Delta \rho_{\text{max}} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e } \text{\AA}^{-3}$

1582 Friedel pairs

Z = 2

Experimental

Crystal data

 $\begin{array}{l} C_{23}H_{22}N_2O_2S\\ M_r = 390.49\\ Monoclinic, P2_1\\ a = 8.9362 \ (2) \ \AA\\ b = 6.8766 \ (2) \ \AA\\ c = 15.5039 \ (4) \ \AA\\ \beta = 91.540 \ (1)^\circ \end{array}$

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2012) *T*_{min} = 0.83, *T*_{max} = 0.95

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.066$ S = 1.07 3531 reflections 282 parameters 1 restraintH atoms treated by a mixture of independent and constrained refinement}

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3-C8 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1N\cdots N2C11-H11\cdots Cg1^{i}C5-H5\cdots O1^{ii}C12-H12\cdots O1^{iii}C23-H23A\cdots O1^{iv}$	0.90 (2) 0.95 0.95 0.95 0.95 0.98	2.04 (2) 2.87 2.58 2.52 2.51	2.592 (2) 3.712 (2) 3.269 (2) 3.446 (2) 3.259 (3)	117.9 (17) 149 129 166 133

Symmetry codes: (i) -x, $y - \frac{1}{2}$, -z + 1; (ii) x - 1, y + 1, z; (iii) -x + 1, $y + \frac{1}{2}$, -z + 1; (iv) -x + 1, $y - \frac{1}{2}$, -z.

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Bruker, 2012).

The authors extend their appreciation to the Research Center of Pharmacy, King Saud University, for funding this work. JTM thanks the Tulane Chemistry Department for support of the Tulane Crystallography Laboratory and NSF– MRI grant No. 1228232 for the purchase of the diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5292).

References

Abdel-Aziz, A. A.-M., El Bialy, S. A. A., Goda, F. E. & Kunieda, T. (2004). *Tetrahedron Lett.* 45, 8073–8077.

Abdel-Aziz, A. A.-M., Matsunaga, H. & Kunieda, T. (2001). *Tetrahedron Lett.* **42**, 6565–6567.

- Abdel-Aziz, A. A.-M., Okuno, J., Tanaka, S., Ishizuka, T., Matsunaga, H. & Kunieda, T. (2000). *Tetrahedron Lett.* **41**, 8533–8537.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2012). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Matsunaga, H., Ishizuka, T. & Kunieda, T. (2005). Tetrahedron Lett. 46, 3645–3648.
- Seo, R., Ishizuka, T., Abdel-Aziz, A. A.-M. & Kunieda, T. (2001). *Tetrahedron Lett.* 42, 6353–6355.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yamakuchi, M., Matsunaga, H., Tokuda, R., Ishizuka, T., Nakajima, M. & Kuniedab, T. (2005). *Tetrahedron Lett.* 46, 4019–4022.

supporting information

Acta Cryst. (2014). E70, o248-o249 [doi:10.1107/S1600536814002189]

N-(12-Amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-methylbenzene-sulfonamide

Joel T. Mague, Alaa A.-M. Abdel-Aziz, Adel S. El-Azab and Magda A. El-Sherbeny

S1. Experimental

S1.1. Synthesis and crystallization

The title compound was prepared by the literature method (Matsunaga *et al.*, 2005) and recrystallized from CH₂Cl₂/EtOH as colourless plates.

S1.2. Refinement

H-atoms attached to the bridgehead carbon atoms and to nitrogen were located and refined. The remainder were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached carbon atoms.

S2. Results and discussion

The development of chiral ligands for asymmetric catalytic reactions is a subject of considerable interest in the field of asymmetric synthesis (Abdel-Aziz *et al.*, 2000, 2001, 2004; Matsunaga *et al.*, 2005; Seo *et al.*, 2001). As part of our onging program of drug design and discovery we report the structure of the title compound. Some applications of related compounds have been reported (Yamakuchi *et al.*, 2005; Matsunaga *et al.*, 2005; Abdel-Aziz *et al.*, 2004). The 4-methylbenzenesulfonamide entity is oriented towards the center of the bridgehead carbon atoms (C1, C16), partly due to the N1 —H1N···N2 interaction, as indicated by the C1—N1—S1—C17 torsion angle of -61.3 (2)°. The dihedral angle between the benzene ring (C17–C22) and the mean plane of the C1/C2/C9/C16 unit is 87.78 (7)°. The packing of the molecules is aided by weak C—H···O hydrogen bonds as well as a C—H···*π* interaction between C11—H11 and the centroid of the C3–C8 ring at *-x*, -0.5 + *y*, 1 - *z* forming the three-dimensional supramolecular structure (Table 1 and Fig. 2).

Perspective view of the title molecule showing the intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing diagram viewed down *b* with intermolecular interactions shown as dotted lines (C—H···O, purple; C—H··· π , green).

N-(12-Amino-9,10-dihydro-9,10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide

Crystal data	
$C_{23}H_{22}N_2O_2S$	$\beta = 91.540 \ (1)^{\circ}$
$M_r = 390.49$	V = 952.38 (4) Å ³
Monoclinic, $P2_1$	Z = 2
a = 8.9362 (2) Å	F(000) = 412
b = 6.8766 (2) Å	$D_{\rm x} = 1.362 {\rm Mg} {\rm m}^{-3}$
c = 15.5039 (4) Å	Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å

Cell parameters from 9974 reflections $\theta = 2.9-69.8^{\circ}$ $\mu = 1.68 \text{ mm}^{-1}$	T = 100 K Plate, colourless $0.25 \times 0.13 \times 0.03 \text{ mm}$
Data collection	
 Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Radiation source: INCOATEC IμS micro-focus source Mirror monochromator Detector resolution: 10.4167 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) 	$T_{\min} = 0.83, T_{\max} = 0.95$ 16018 measured reflections 3531 independent reflections 3255 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{\max} = 69.8^{\circ}, \theta_{\min} = 2.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -8 \rightarrow 8$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.066$ S = 1.07 3531 reflections 282 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0302P)^2 + 0.1321P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.17$ e Å ⁻³ $\Delta\rho_{min} = -0.21$ e Å ⁻³ Absolute structure: Flack (1983), 1582 Friedel
Secondary atom site location: difference Fourier map	pairs Absolute structure parameter: 0.036 (13)

Special details

Experimental. The diffraction data were obtained from 8 sets of 340 frames, each of width 0.5° in ω , collected at $\varphi = 0.00, 90.00, 180.00$ and 270.00° and at $2\theta = -50.00$ and -90.00° and 4 sets of 340 frames, each of width 0.5° in ω collected at $2\theta = -90.00^{\circ}$ and $\varphi = 45.00, 135.00, 225.00$ and 315.00° . The scan time was 20 sec/frame. **Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to the bridgehead carbon atoms and to nitrogen were located and refined. The remainder were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.47223 (4)	0.59364 (7)	0.19075 (3)	0.02581 (11)	
01	0.60539 (14)	0.4887 (2)	0.21492 (8)	0.0344 (3)	
O2	0.48013 (14)	0.79099 (19)	0.16197 (8)	0.0314 (3)	
N1	0.36963 (15)	0.5913 (3)	0.27530 (9)	0.0254 (3)	
H1N	0.370(2)	0.473 (3)	0.3000 (13)	0.036 (6)*	

N2	0.19878 (19)	0.4067 (2)	0.38013 (13)	0.0310 (4)
H2A	0.149 (3)	0.296 (4)	0.3825 (16)	0.053 (7)*
H2B	0.228 (2)	0.440 (3)	0.4308 (15)	0.036 (6)*
C1	0.21944 (19)	0.6768 (3)	0.27202 (12)	0.0239 (4)
H1	0.1753 (18)	0.667 (3)	0.2111 (11)	0.020 (5)*
C2	0.22327 (19)	0.8966 (3)	0.29742 (11)	0.0223 (4)
H2	0.295 (2)	0.963 (3)	0.2608 (12)	0.024 (5)*
C3	0.06161 (19)	0.9626 (2)	0.28635 (11)	0.0213 (4)
C4	0.00777 (18)	1.1038 (3)	0.22989 (10)	0.0253 (4)
H4	0.0742	1.1748	0.1949	0.03*
C5	-0.1461(2)	1.1400 (3)	0.22537 (11)	0.0276 (4)
H5	-0.1842	1.2399	0.1886	0.033*
C6	-0.2433(2)	1.0319 (3)	0.27387(12)	0.0280(4)
H6	-0.348	1.0544	0.2683	0.034*
C7	-0.18973(19)	0.8909 (3)	0.33066 (12)	0.0252 (4)
H7	-0.257	0.8172	0.364	0.03*
C8	-0.03595(19)	0.8586(2)	0.33827(11)	0.0224(4)
C9	0.04146(19)	0.0000(2) 0.7098(3)	0.39548(12)	0.0229(4)
H9	-0.0255(19)	0.644 (3)	0.339(11)	0.022 (1) 0.021 (5)*
C10	0 16898 (18)	0.8096(2)	0 44541 (11)	0.021(3)
C11	0.1950 (2)	0.8058 (3)	0.53355(11)	0.0200(1) 0.0246(4)
H11	0.1301	0.7354	0.5697	0.03*
C12	0.1301 0.3175(2)	0.9060 (3)	0.56923 (11)	0.0254(4)
H12	0.3357	0.9047	0.6299	0.03*
C13	0.3327 0.41273(19)	1 0076 (3)	0.51641(12)	0.0254(4)
H13	0 4947	1 0779	0.5412	0.03*
C14	0 38929 (19)	1 0075 (3)	0.42748(12)	0.0232(4)
H14	0.4565	1 0744	0 3914	0.028*
C15	0 26676 (18)	0.9089(2)	0 39163 (11)	0.0208(4)
C16	0.1156 (2)	0.5601 (3)	0.33479(12)	0.0258(4)
H16	0.0421(19)	0.500(3)	0.2966(11)	0.0250(1)
C17	0.37770(19)	0.500(3)	0.10866 (11)	0.010(1)
C18	0.37770(15) 0.4012(2)	0.2615(3)	0.10068(12)	0.0212(1) 0.0299(4)
H18	0.47	0.1958	0.1383	0.036*
C19	0.3221(2)	0.1610 (3)	0.03665 (13)	0.0366 (5)
H19	0.338	0.0251	0.0306	0.044*
C20	0 2202 (2)	0.2533(3)	-0.01897(12)	0.0346 (5)
C21	0.12202(2)	0.2555(3) 0.4513(3)	-0.00981(12)	0.0310(3)
H21	0.1302	0.5167	-0.0472	0.042*
C22	0.2777(2)	0 5561 (3)	0.05282(12)	0.0315(4)
H22	0.2632	0.6925	0.0577	0.038*
C23	0.1345 (3)	0.1440 (4)	-0.08860(15)	0.0525 (7)
H23A	0.1836	0.1615	-0.1438	0.079*
H23B	0.0319	0.1941	-0.0932	0.079*
H23C	0 1322	0.0054	-0.074	0.079*
11230	V.1 <i>J 22</i>	0.0001	0.071	0.017

supporting information

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
<u>S1</u>	0.0225 (2)	0.0273 (2)	0.0275 (2)	0.0056 (2)	-0.00269 (16)	-0.0029 (2)
01	0.0248 (7)	0.0437 (8)	0.0345 (7)	0.0115 (6)	-0.0042 (5)	-0.0040 (6)
O2	0.0285 (7)	0.0281 (7)	0.0377 (7)	-0.0004 (6)	-0.0011 (6)	-0.0022 (6)
N1	0.0255 (7)	0.0255 (8)	0.0250 (7)	0.0081 (8)	-0.0050 (6)	-0.0017 (8)
N2	0.0301 (9)	0.0185 (8)	0.0440 (11)	0.0015 (7)	-0.0045 (8)	0.0020 (8)
C1	0.0222 (9)	0.0221 (8)	0.0270 (10)	0.0063 (8)	-0.0060 (8)	-0.0029 (8)
C2	0.0213 (9)	0.0206 (9)	0.0249 (9)	0.0007 (7)	-0.0010 (7)	-0.0006 (7)
C3	0.0229 (9)	0.0188 (9)	0.0221 (9)	0.0036 (7)	-0.0037 (7)	-0.0054 (7)
C4	0.0286 (9)	0.0226 (8)	0.0244 (8)	0.0038 (9)	-0.0022 (7)	-0.0028 (9)
C5	0.0338 (10)	0.0244 (10)	0.0241 (9)	0.0094 (8)	-0.0068 (8)	-0.0024 (7)
C6	0.0243 (9)	0.0288 (10)	0.0304 (10)	0.0078 (8)	-0.0058 (8)	-0.0068 (8)
C7	0.0233 (9)	0.0224 (9)	0.0298 (10)	0.0002 (7)	-0.0024 (7)	-0.0058 (8)
C8	0.0230 (9)	0.0195 (9)	0.0242 (9)	-0.0003 (7)	-0.0053 (7)	-0.0051 (7)
C9	0.0211 (9)	0.0194 (9)	0.0283 (10)	-0.0017 (7)	0.0001 (8)	0.0016 (7)
C10	0.0199 (8)	0.0152 (8)	0.0271 (10)	0.0028 (7)	-0.0019 (7)	0.0003 (7)
C11	0.0262 (9)	0.0194 (9)	0.0283 (10)	0.0053 (7)	0.0023 (7)	0.0032 (7)
C12	0.0302 (10)	0.0229 (9)	0.0226 (9)	0.0070 (8)	-0.0061 (7)	-0.0026 (7)
C13	0.0227 (9)	0.0187 (8)	0.0343 (10)	0.0034 (7)	-0.0078 (8)	-0.0058 (8)
C14	0.0208 (9)	0.0175 (8)	0.0311 (9)	0.0022 (7)	-0.0012 (7)	-0.0003 (7)
C15	0.0198 (8)	0.0154 (8)	0.0270 (9)	0.0050 (7)	-0.0014 (7)	-0.0013 (7)
C16	0.0229 (9)	0.0193 (10)	0.0347 (10)	0.0000 (7)	-0.0070 (7)	-0.0028 (8)
C17	0.0237 (9)	0.0275 (10)	0.0216 (9)	0.0007 (8)	0.0027 (7)	-0.0010 (8)
C18	0.0323 (11)	0.0269 (10)	0.0305 (10)	0.0032 (8)	0.0039 (8)	0.0019 (9)
C19	0.0434 (12)	0.0263 (10)	0.0407 (12)	-0.0041 (9)	0.0135 (10)	-0.0067 (9)
C20	0.0315 (11)	0.0439 (12)	0.0287 (10)	-0.0074 (9)	0.0082 (8)	-0.0082 (9)
C21	0.0342 (11)	0.0448 (13)	0.0265 (10)	-0.0002 (10)	-0.0030 (8)	-0.0008 (9)
C22	0.0343 (10)	0.0309 (11)	0.0291 (10)	0.0044 (8)	-0.0022 (8)	0.0010 (8)
C23	0.0447 (12)	0.0670 (19)	0.0459 (13)	-0.0138 (12)	0.0058 (10)	-0.0235 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

<u>81—02</u>	1.4309 (14)	C9—C16	1.555 (3)
S1—O1	1.4328 (13)	С9—Н9	0.968 (18)
S1—N1	1.6197 (15)	C10—C11	1.380 (2)
S1—C17	1.7631 (18)	C10—C15	1.401 (2)
N1-C1	1.465 (2)	C11—C12	1.395 (3)
N1—H1N	0.90 (2)	C11—H11	0.95
N2-C16	1.460 (2)	C12—C13	1.386 (3)
N2—H2A	0.88 (3)	C12—H12	0.95
N2—H2B	0.85 (2)	C13—C14	1.389 (2)
C1—C2	1.562 (2)	C13—H13	0.95
C1-C16	1.581 (3)	C14—C15	1.391 (2)
С1—Н1	1.015 (17)	C14—H14	0.95
C2—C15	1.504 (2)	C16—H16	0.967 (17)
C2—C3	1.520 (2)	C17—C22	1.391 (2)

C2—H2	0.982 (19)	C17—C18	1.393 (3)
C3—C4	1.385 (3)	C18—C19	1.388 (3)
C3—C8	1.399 (3)	C18—H18	0.95
C4—C5	1.397 (2)	C19—C20	1.390 (3)
C4—H4	0.95	C19—H19	0.95
C5-C6	1 381 (3)	C20—C21	1 382 (3)
C5—H5	0.95	C_{20} C_{21} C_{20} C_{23}	1.502(3)
C6-C7	1 386 (3)	C21-C22	1.300(3) 1.384(3)
С6 Н6	0.05	C21 H21	0.05
C_{0}	1.304(2)	C21—1121 C22 H22	0.95
C7_U7	1.394 (2)	C22—1122 C22—1122 A	0.95
C = H	0.95	С23—П23А	0.98
C_{0}	1.510(2)	C23—H23B	0.98
C9—C10	1.524 (2)	C23—H23C	0.98
O2—S1—O1	120.76 (9)	C11—C10—C15	120.47 (16)
O2—S1—N1	107.20 (9)	C11—C10—C9	126.75 (16)
O1—S1—N1	105.51 (8)	C15—C10—C9	112.76 (15)
02— <u></u> S1—C17	107.00 (8)	C10-C11-C12	119.52 (17)
01 - S1 - C17	107.86 (8)	C10—C11—H11	120.2
N1 - S1 - C17	107.96 (8)	C12—C11—H11	120.2
C1 - N1 - S1	120.39(12)	C13 - C12 - C11	120.2
C1 - N1 - H1N	111.6 (13)	C13 - C12 - H12	119.9
SI_NI_HIN	111.0 (13)	C11 - C12 - H12	119.9
C_{16} N2 H2A	113.1 (16)	C12 C13 C14	119.9
C16 N2 H2P	113.1(10) 112.2(16)	C12 - C13 - C14	120.31 (10)
C10 $N2$ $H2D$	115.2(10)	C12-C13-H13	119.7
HZA - NZ - HZB	109(2)	C14 $C15$ $-H15$	119.7
NI - CI - C2	111.40 (14)	C13 - C14 - C15	119.52 (17)
NI = CI = CI6	109.09 (14)	C13—C14—H14	120.2
C2—C1—C16	110.19 (15)	C15—C14—H14	120.2
NI—CI—HI	109.8 (10)	C14—C15—C10	119.77 (16)
C2—C1—H1	107.7 (10)	C14—C15—C2	126.55 (16)
C16—C1—H1	108.6 (10)	C10—C15—C2	113.69 (15)
C15—C2—C3	108.25 (14)	N2—C16—C9	113.99 (15)
C15—C2—C1	107.61 (14)	N2—C16—C1	111.32 (14)
C3—C2—C1	104.26 (14)	C9—C16—C1	107.66 (14)
C15—C2—H2	112.3 (11)	N2—C16—H16	108.2 (11)
C3—C2—H2	115.5 (11)	C9—C16—H16	111.2 (10)
C1—C2—H2	108.3 (11)	C1-C16-H16	104.0 (10)
C4—C3—C8	120.72 (16)	C22—C17—C18	120.25 (17)
C4—C3—C2	126.44 (16)	C22—C17—S1	119.53 (14)
C8—C3—C2	112.80 (15)	C18—C17—S1	120.20 (14)
C3—C4—C5	118.77 (17)	C19—C18—C17	118.60 (18)
C3—C4—H4	120.6	C19—C18—H18	120.7
C5—C4—H4	120.6	C17—C18—H18	120.7
C6—C5—C4	120.62 (16)	C18—C19—C20	121.91 (18)
С6—С5—Н5	119.7	C18—C19—H19	119.0
С4—С5—Н5	119.7	C20—C19—H19	119.0
C5—C6—C7	120.72 (17)	C21—C20—C19	118.26 (18)

С5—С6—Н6	119.6	C21—C20—C23	119.9 (2)
С7—С6—Н6	119.6	C19—C20—C23	121.9 (2)
C6—C7—C8	119.20 (17)	C20—C21—C22	121.26 (19)
С6—С7—Н7	120.4	C20—C21—H21	119.4
C8—C7—H7	120.4	$C_{22} = C_{21} = H_{21}$	119.4
C7 - C8 - C3	119.86 (16)	C_{21} C_{22} C_{17}	119.70 (18)
C7 C8 C9	126.36 (16)	$C_{21} = C_{22} = C_{17}$	120.2
$C^{2} = C^{2} = C^{2}$	120.50(10) 112.60(15)	$C_{21} = C_{22} = H_{22}$	120.2
C_{3}	113.09(13) 109.52(14)	C17 - C22 - H22	120.2
	108.52 (14)	C20—C23—H23A	109.5
C8—C9—C16	106.81 (14)	С20—С23—Н23В	109.5
C10—C9—C16	106.30 (14)	H23A—C23—H23B	109.5
С8—С9—Н9	113.4 (10)	C20—C23—H23C	109.5
С10—С9—Н9	111.4 (10)	H23A—C23—H23C	109.5
С16—С9—Н9	110.0 (11)	H23B—C23—H23C	109.5
02—S1—N1—C1	53.66 (16)	C12—C13—C14—C15	1.8 (3)
01—S1—N1—C1	-176.43 (14)	C13—C14—C15—C10	-0.4(2)
C17—S1—N1—C1	-61.31 (17)	C13—C14—C15—C2	178.89 (16)
S1-N1-C1-C2	-90.01(17)	$C_{11} - C_{10} - C_{15} - C_{14}$	-13(2)
S1 - N1 - C1 - C16	148.09(14)	C9-C10-C15-C14	-179.93(15)
N1-C1-C2-C15	-67.85(18)	$C_{11} - C_{10} - C_{15} - C_{2}$	179 27 (15)
$C_{16} C_{1} C_{2} C_{15}$	53 /1 (18)	C_{10} C_{10} C_{15} C_{2}	0.7(2)
$V_{10} = C_{11} = C_{22} = C_{13}$	177 25 (14)	$C_{3} = C_{10} = C_{13} = C_{2}$	-126.01(18)
$N_1 = C_1 = C_2 = C_3$	(17)	C_{3} C_{2} C_{13} C_{14}	120.01(10)
C10 - C1 - C2 - C3	-01.39(17)	C1 - C2 - C15 - C14	121.80(18)
C15 - C2 - C3 - C4	127.49 (18)	$C_3 - C_2 - C_{15} - C_{10}$	53.35 (19)
C1—C2—C3—C4	-118.15 (18)	C1—C2—C15—C10	-58.78 (18)
C15—C2—C3—C8	-54.95 (19)	C8—C9—C16—N2	178.79 (14)
C1—C2—C3—C8	59.40 (18)	C10—C9—C16—N2	63.07 (19)
C8—C3—C4—C5	-0.3 (2)	C8—C9—C16—C1	54.78 (16)
C2—C3—C4—C5	177.07 (16)	C10-C9-C16-C1	-60.94 (17)
C3—C4—C5—C6	-2.4 (3)	N1—C1—C16—N2	2.1 (2)
C4—C5—C6—C7	2.7 (3)	C2-C1-C16-N2	-120.58 (16)
C5—C6—C7—C8	-0.2 (3)	N1-C1-C16-C9	127.70 (15)
C6—C7—C8—C3	-2.6 (3)	C2-C1-C16-C9	5.03 (18)
C6—C7—C8—C9	-178.97 (16)	O2—S1—C17—C22	-25.90 (17)
C4—C3—C8—C7	2.8 (3)	O1—S1—C17—C22	-157.23 (14)
C2—C3—C8—C7	-174.90 (15)	N1—S1—C17—C22	89.20 (16)
C4—C3—C8—C9	179.66 (15)	O2—S1—C17—C18	155.12 (14)
C2—C3—C8—C9	1.9 (2)	Q1—S1—C17—C18	23.79 (17)
C7-C8-C9-C10	-13140(18)	N1 - S1 - C17 - C18	-89 78 (16)
C_{3} C_{8} C_{9} C_{10}	520(2)	C^{22} C^{17} C^{18} C^{19}	-0.5(3)
C_{7} C_{8} C_{9} C_{16}	114 37 (19)	S1 - C17 - C18 - C19	17843(13)
C_{3} C_{8} C_{9} C_{16}	-62 23 (18)	C_{17} C_{18} C_{19} C_{20}	-0.3(3)
$C_{8} = C_{9} = C_{10} = C_{11}$	127.23(10)	C18 - C19 - C20	0.5(3)
$C_{16} = C_{10} = C_{11}$	-11750(19)	$C_{10} - C_{10} - C_{20} - C_{21}$	170.02(10)
$C_{10} - C_{7} - C_{10} - C_{11}$	-5257(10)	$C_{10} = C_{17} = C_{20} = C_{23}$	1/7.72(19)
$C_{16} = C_{10} = C_{10} = C_{15}$	55.57(17)	$C_{13} = C_{20} = C_{21} = C_{22}$	170.29 (10)
	1.9.(2)	(23 - (20 - (21 - (22 - (21 - (22 - (21 - (22 - (21 - (22 - (21 - (22 - (21 - (22 - (21	-1/9.28(19)
CI3-CI0-CII-CI2	1.8 (2)	$C_{20} - C_{21} - C_{22} - C_{17}$	-0.9 (3)

supporting information

C9-C10-C11-C12	-179.86 (16)	C18—C17—C22—C21	1.2 (3)
C10-C11-C12-C13	-0.4 (3)	S1—C17—C22—C21	-177.80 (15)
C11—C12—C13—C14	-1.3 (3)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 benzene ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1 <i>N</i> ···N2	0.90 (2)	2.04 (2)	2.592 (2)	117.9 (17)
C11—H11···Cg1 ⁱ	0.95	2.87	3.712 (2)	149
С5—Н5…О1 ^{іі}	0.95	2.58	3.269 (2)	129
C12—H12···O1 ⁱⁱⁱ	0.95	2.52	3.446 (2)	166
C23—H23A····O1 ^{iv}	0.98	2.51	3.259 (3)	133

Symmetry codes: (i) -x, y-1/2, -z+1; (ii) x-1, y+1, z; (iii) -x+1, y+1/2, -z+1; (iv) -x+1, y-1/2, -z.