

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 4-[(1,3-Dioxoisoindolin-2-yl)methyl]benzenesulfonamide

# Joel T. Mague,<sup>a</sup>\* Alaa A.-M. Abdel-Aziz,<sup>b,c</sup>‡ Adel S. El-Azab<sup>b,d</sup> and Magda A. El-Sherbeny<sup>c</sup>

<sup>a</sup>Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, <sup>b</sup>Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, <sup>c</sup>Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and  $^{\mathbf{d}}$ Department of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884 Egypt

Correspondence e-mail: joelt@tulane.edu

Received 5 February 2014; accepted 6 February 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.097; data-to-parameter ratio = 12.2.

The title compound,  $C_{15}H_{12}N_2O_4S$ , is V-shaped with the isoindoline ring system (r.m.s. deviation = 0.006 Å) inclined to the benzene ring by 84.27 (13)°. In the crystal, inversion dimers are formed via pairwise N-H···O hydrogen bonds. These dimers associate further into corrugated ribbons, via pairwise  $N-H \cdots O$  and  $C-H \cdots O$  hydrogen bonds, propagating along the *a*-axis direction and lying parallel to (001).

### **Related literature**

For the biological activity of cyclic imides, see: Abdel-Aziz et al. (2011a,b); Abdel-Aziz (2007). For related crystal structures, see: Jiang et al. (2008); Li (2007); Warzecha et al. (2006). For the preparation of the title compound, see: Abdel-Aziz et al. (2011*a*).



‡ Additional correspondence author, e-mail: alaa\_moenes@yahoo.com.

V = 1357.30 (6) Å<sup>3</sup>

 $0.27 \times 0.07 \times 0.02 \ \mathrm{mm}$ 

22413 measured reflections

2533 independent reflections

2277 reflections with  $I > 2\sigma(I)$ 

Cu Ka radiation

 $\mu = 2.33 \text{ mm}^-$ 

T = 100 K

 $R_{\rm int} = 0.036$ 

Z = 4

## **Experimental**

### Crystal data

| C15H12N2O4S                    |  |
|--------------------------------|--|
| $M_{\rm r} = 316.33$           |  |
| Monoclinic, $P2_1/n$           |  |
| $a = 4.9803 (1) \text{\AA}$    |  |
| b = 26.5291 (7) Å              |  |
| c = 10.2740 (3) Å              |  |
| $\beta = 90.804 \ (1)^{\circ}$ |  |

#### Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2012)  $T_{\min} = 0.85, T_{\max} = 0.95$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.042$ |  |
|---------------------------------|--|
| $wR(F^2) = 0.097$               |  |
| S = 1.17                        |  |
| 2533 reflections                |  |
| 207 parameters                  |  |
| 60 restraints                   |  |

### H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.48~{\rm e}~{\rm \AA}^{-3}$

### Table 1

Hydrogen-bond geometry (Å, °).

| $D - \mathbf{H} \cdot \cdot \cdot A$      | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N2-H2A\cdots O3^{i}$                     | 0.89 (4) | 2.11 (4)                | 2.963 (3)    | 162 (3)                              |
| $N2 - H2B \cdot \cdot \cdot O4^{ii}$      | 0.88 (3) | 2.36 (3)                | 3.105 (3)    | 142 (3)                              |
| $\rm C15{-}H15{\cdot}{\cdot}\rm O1^{iii}$ | 0.95     | 2.38                    | 3.307 (3)    | 166                                  |

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2012): cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for financial support. The support of the NSF-MRI [grant No. 1228232] for the purchase of the diffractometer is gratefully acknowledged, as is the Chemistry Department of Tulane University for the ongoing support of the Tulane Crystallography Laboratory.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2697).

### References

- Abdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614-626.
- Abdel-Aziz, A. A.-M., El-Azab, A. S., Attia, S. M., Al-Obaid, A. M., Al-Omar, M. A. & El-Subbagh, H. I. (2011a). Eur. J. Med. Chem. 46, 4324-4329.
- Abdel-Aziz, A. A.-M., ElTahir, K. E. H. & Asiri, Y. A. (2011b). Eur. J. Med. Chem. 46, 1648-1655.
- Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
- Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.

Jiang, Z., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2008). Acta Cryst. E64, 0324.
Li, J. (2007). Acta Cryst. E63, 03515.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006). Acta Cryst. E62, o2367o2368.

## supporting information

### Acta Cryst. (2014). E70, o291-o292 [doi:10.1107/S1600536814002803]

## 4-[(1,3-Dioxoisoindolin-2-yl)methyl]benzenesulfonamide

## Joel T. Mague, Alaa A.-M. Abdel-Aziz, Adel S. El-Azab and Magda A. El-Sherbeny

### S1. Comment

Cyclic imides are an interesting class of compounds possessing important biological functions including antihyperlipidemic, anti-diabetic, anti-tumor and anti-inflammatory activities (Abdel-Aziz *et al.*, 2011*a,b*; Abdel-Aziz, 2007). As part of our ongoing studies in drug design and discovery, we report herein on the crystal structure of the title compound.

The title molecule, Fig. 1, is V-shaped with the mean plane of the isoindoline ring system (N1/C1-C8; r.m.s. deviation 0.006 Å) being inclined to the benzene ring (C10-C15) by 84.27 (13)°. The entire isoindoline-1,3-dione moiety is planar with the exception of atoms O1 and O2 which lie 0.013 (2) and 0.030 (2) Å, respectively, out of the mean plane of the carbon and nitrogen atoms.

In the crystal, inversion dimers are formed via N2—H2A···O3 hydrogen bonds (Table 1). These units associate further into corrugated ribbons *via* pairwise N2—H2B···O4 and C15—H15···O1 hydrogen bonds (Table 1 and Fig. 2). The ribbons run in the *a* direction and are parallel to (001).

### **S2. Experimental**

The synthesis of the title compound has been reported previously (Abdel-Aziz *et al.*, 2011*a*). A solution of 4-(aminomethyl)benzene-1-sulfonamide (10 mmol) and phthalic anhydride (10 mmol) in glacial acetic acid (10 ml) was heated under reflux for 6 h. After evaporation of the reaction mixture to dryness under reduced pressure, the residue was neutralized using aqueous sodium bicarbonate solution (4%) until effervescence ceased. The precipitate obtained was washed with water, dried *in vacuo* and recrystallized from methanol yielding colourless plate-like crystals.

### **S3. Refinement**

The NH<sub>2</sub> H atoms were located in a difference electron-density map and freely refined. The C bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 and 0.99 Å for CH and CH<sub>2</sub>H atoms, respectively, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .





A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.



Figure 2

A view along *a* axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (N—H···O purple; C—H···O green; see Table 1 for details).

4-[(1,3-Dioxoisoindolin-2-yl)methyl]benzenesulfonamide

Crystal data

| $C_{15}H_{12}N_2O_4S$ | c = 10.2740 (3) Å              |
|-----------------------|--------------------------------|
| $M_r = 316.33$        | $\beta = 90.804 \ (1)^{\circ}$ |
| Monoclinic, $P2_1/n$  | V = 1357.30 (6) Å <sup>3</sup> |
| a = 4.9803 (1)  Å     | Z = 4                          |
| b = 26.5291 (7) Å     | F(000) = 656                   |
|                       |                                |

| $D_{\rm x} = 1.548 {\rm ~Mg} {\rm ~m}^{-3}$    |
|------------------------------------------------|
| Cu K $\alpha$ radiation, $\lambda = 1.54178$ Å |
| Cell parameters from 9982 reflections          |
| $\theta = 3.3 - 69.7^{\circ}$                  |

| Data collection                                      |                                                                           |
|------------------------------------------------------|---------------------------------------------------------------------------|
| Bruker D8 VENTURE PHOTON 100 CMOS                    | $T_{\min} = 0.85, T_{\max} = 0.95$                                        |
| Radiation source: INCOATEC LuS micro-focus           | 2533 independent reflections                                              |
| source                                               | 2277 reflections with $I > 2\sigma(I)$                                    |
| Mirror monochromator                                 | $R_{\rm int} = 0.036$                                                     |
| Detector resolution: 10.4167 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 69.7^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$ |
| ω scans                                              | $h = -6 \rightarrow 5$                                                    |
| Absorption correction: multi-scan                    | $k = -32 \rightarrow 32$                                                  |
| (SADABS; Bruker, 2012)                               | $l = -12 \rightarrow 12$                                                  |
| Refinement                                           |                                                                           |
| Refinement on $F^2$                                  | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                           | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.042$                      | Hydrogen site location: mixed                                             |
| $wR(F^2) = 0.097$                                    | H atoms treated by a mixture of independent                               |

 $\mu = 2.33 \text{ mm}^{-1}$ T = 100 K Plate, colourless 0.27 × 0.07 × 0.02 mm

| $R[F^2 > 2\sigma(F^2)] = 0.042$                 | Hydrogen site location: mixed                              |
|-------------------------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.097$                               | H atoms treated by a mixture of indep                      |
| S = 1.17                                        | and constrained refinement                                 |
| 2533 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.007P)^2 + 2.7892P]$           |
| 207 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 60 restraints                                   | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$  |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$ |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$ | equivalent isotropic displacement parameters $(A^2)$ |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| S1  | 0.34446 (12) | 0.06815 (2)  | 0.37785 (6)  | 0.01772 (16)                |  |
| 01  | 0.8787 (4)   | 0.29938 (7)  | 0.42647 (19) | 0.0289 (5)                  |  |
| O2  | 0.2038 (4)   | 0.33953 (7)  | 0.70508 (18) | 0.0270 (4)                  |  |
| 03  | 0.2231 (4)   | 0.03320 (7)  | 0.46699 (18) | 0.0234 (4)                  |  |
| 04  | 0.1931 (4)   | 0.08113 (7)  | 0.26280 (17) | 0.0228 (4)                  |  |
| N1  | 0.5522 (4)   | 0.30797 (8)  | 0.5821 (2)   | 0.0196 (5)                  |  |
| N2  | 0.6245 (5)   | 0.04320 (9)  | 0.3351 (2)   | 0.0213 (5)                  |  |
| H2A | 0.699 (7)    | 0.0253 (13)  | 0.399 (3)    | 0.036 (9)*                  |  |
| H2B | 0.734 (7)    | 0.0629 (13)  | 0.291 (3)    | 0.035 (9)*                  |  |
| C1  | 0.6940 (5)   | 0.32243 (10) | 0.4720 (2)   | 0.0203 (5)                  |  |
|     |              |              |              |                             |  |

| C2  | 0.5700 (5) | 0.37076 (10) | 0.4278 (2) | 0.0195 (5) |
|-----|------------|--------------|------------|------------|
| C3  | 0.6315 (5) | 0.40119 (10) | 0.3228 (3) | 0.0250 (6) |
| H3  | 0.7724     | 0.3928       | 0.2653     | 0.030*     |
| C4  | 0.4774 (6) | 0.44466 (10) | 0.3052 (3) | 0.0277 (6) |
| H4  | 0.5141     | 0.4665       | 0.2344     | 0.033*     |
| C5  | 0.2713 (6) | 0.45654 (10) | 0.3897 (3) | 0.0291 (6) |
| H5  | 0.1695     | 0.4864       | 0.3754     | 0.035*     |
| C6  | 0.2107 (6) | 0.42563 (10) | 0.4950 (3) | 0.0254 (6) |
| H6  | 0.0700     | 0.4337       | 0.5528     | 0.030*     |
| C7  | 0.3644 (5) | 0.38266 (9)  | 0.5114 (2) | 0.0194 (5) |
| C8  | 0.3516 (5) | 0.34265 (10) | 0.6129 (2) | 0.0195 (5) |
| С9  | 0.6122 (6) | 0.26288 (10) | 0.6576 (3) | 0.0224 (6) |
| H9A | 0.5115     | 0.2643       | 0.7400     | 0.027*     |
| H9B | 0.8060     | 0.2627       | 0.6803     | 0.027*     |
| C10 | 0.5424 (5) | 0.21422 (10) | 0.5873 (2) | 0.0200 (5) |
| C11 | 0.6909 (5) | 0.17103 (10) | 0.6137 (3) | 0.0229 (6) |
| H11 | 0.8343     | 0.1723       | 0.6757     | 0.027*     |
| C12 | 0.6324 (5) | 0.12619 (10) | 0.5508 (3) | 0.0222 (6) |
| H12 | 0.7363     | 0.0969       | 0.5682     | 0.027*     |
| C13 | 0.4197 (5) | 0.12451 (9)  | 0.4619 (2) | 0.0179 (5) |
| C14 | 0.2657 (5) | 0.16688 (10) | 0.4370 (3) | 0.0212 (6) |
| H14 | 0.1191     | 0.1653       | 0.3769     | 0.025*     |
| C15 | 0.3270 (5) | 0.21161 (10) | 0.5003 (3) | 0.0229 (6) |
| H15 | 0.2208     | 0.2407       | 0.4841     | 0.027*     |
|     |            |              |            |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0184 (3)  | 0.0157 (3)  | 0.0191 (3)  | -0.0011 (2)  | -0.0001 (2)  | 0.0007 (2)   |
| 01  | 0.0278 (11) | 0.0321 (11) | 0.0269 (10) | 0.0094 (9)   | 0.0047 (8)   | 0.0021 (9)   |
| O2  | 0.0296 (10) | 0.0318 (11) | 0.0197 (10) | 0.0032 (8)   | 0.0056 (8)   | 0.0010 (8)   |
| 03  | 0.0224 (10) | 0.0206 (9)  | 0.0272 (10) | -0.0019 (7)  | 0.0032 (8)   | 0.0046 (8)   |
| O4  | 0.0249 (10) | 0.0214 (9)  | 0.0219 (9)  | -0.0009 (7)  | -0.0054 (7)  | 0.0002 (8)   |
| N1  | 0.0235 (11) | 0.0175 (11) | 0.0177 (11) | 0.0008 (9)   | -0.0002 (9)  | 0.0004 (9)   |
| N2  | 0.0221 (12) | 0.0201 (12) | 0.0218 (12) | -0.0002 (9)  | 0.0009 (10)  | 0.0003 (10)  |
| C1  | 0.0221 (13) | 0.0216 (13) | 0.0171 (13) | 0.0005 (10)  | -0.0007 (10) | -0.0004 (10) |
| C2  | 0.0197 (13) | 0.0201 (13) | 0.0185 (13) | -0.0024 (10) | -0.0027 (10) | -0.0014 (10) |
| C3  | 0.0240 (14) | 0.0282 (15) | 0.0228 (14) | -0.0051 (11) | -0.0005 (11) | 0.0029 (12)  |
| C4  | 0.0346 (16) | 0.0235 (14) | 0.0249 (14) | -0.0083 (12) | -0.0063 (12) | 0.0068 (12)  |
| C5  | 0.0393 (17) | 0.0173 (13) | 0.0303 (15) | 0.0034 (12)  | -0.0098 (13) | 0.0008 (12)  |
| C6  | 0.0302 (15) | 0.0219 (14) | 0.0239 (14) | 0.0061 (11)  | -0.0043 (11) | -0.0042 (11) |
| C7  | 0.0223 (13) | 0.0176 (12) | 0.0183 (13) | -0.0009 (10) | -0.0044 (10) | -0.0008 (10) |
| C8  | 0.0220 (13) | 0.0185 (13) | 0.0178 (13) | -0.0001 (10) | -0.0026 (10) | -0.0043 (10) |
| C9  | 0.0288 (14) | 0.0195 (13) | 0.0189 (13) | 0.0029 (11)  | -0.0031 (11) | 0.0021 (10)  |
| C10 | 0.0243 (13) | 0.0204 (13) | 0.0155 (12) | 0.0008 (10)  | 0.0022 (10)  | 0.0006 (10)  |
| C11 | 0.0269 (14) | 0.0226 (13) | 0.0189 (13) | 0.0022 (11)  | -0.0058 (11) | 0.0024 (11)  |
| C12 | 0.0247 (14) | 0.0186 (13) | 0.0232 (14) | 0.0037 (11)  | -0.0035 (11) | 0.0018 (11)  |
| C13 | 0.0196 (13) | 0.0176 (12) | 0.0165 (12) | -0.0015 (10) | 0.0029 (10)  | 0.0023 (10)  |

## supporting information

| C14 | 0.0213 (13) | 0.0223 (13) | 0.0199 (13) | 0.0006 (10) | -0.0027 (10) | 0.0016 (11) |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| C15 | 0.0258 (14) | 0.0192 (13) | 0.0237 (14) | 0.0044 (11) | -0.0028 (11) | 0.0005 (11) |

Geometric parameters (Å, °)

| S1—O4      | 1.4350 (18) | C5—C6       | 1.394 (4)   |
|------------|-------------|-------------|-------------|
| S1—O3      | 1.4419 (18) | С5—Н5       | 0.9500      |
| S1—N2      | 1.610 (2)   | C6—C7       | 1.382 (4)   |
| S1—C13     | 1.764 (3)   | С6—Н6       | 0.9500      |
| 01—C1      | 1.205 (3)   | C7—C8       | 1.490 (4)   |
| O2—C8      | 1.211 (3)   | C9—C10      | 1.517 (4)   |
| N1—C1      | 1.396 (3)   | С9—Н9А      | 0.9900      |
| N1—C8      | 1.397 (3)   | С9—Н9В      | 0.9900      |
| N1—C9      | 1.454 (3)   | C10—C15     | 1.388 (4)   |
| N2—H2A     | 0.89 (4)    | C10-C11     | 1.389 (4)   |
| N2—H2B     | 0.88 (3)    | C11—C12     | 1.383 (4)   |
| C1—C2      | 1.491 (4)   | C11—H11     | 0.9500      |
| C2—C7      | 1.382 (4)   | C12—C13     | 1.390 (4)   |
| C2—C3      | 1.385 (4)   | C12—H12     | 0.9500      |
| C3—C4      | 1.396 (4)   | C13—C14     | 1.382 (4)   |
| С3—Н3      | 0.9500      | C14—C15     | 1.386 (4)   |
| C4—C5      | 1.390 (4)   | C14—H14     | 0.9500      |
| C4—H4      | 0.9500      | C15—H15     | 0.9500      |
|            |             |             |             |
| O4—S1—O3   | 117.22 (11) | C6—C7—C2    | 121.7 (2)   |
| O4—S1—N2   | 108.72 (12) | C6—C7—C8    | 130.1 (2)   |
| O3—S1—N2   | 106.35 (12) | C2—C7—C8    | 108.1 (2)   |
| O4—S1—C13  | 107.77 (11) | O2—C8—N1    | 125.2 (2)   |
| O3—S1—C13  | 108.78 (11) | O2—C8—C7    | 128.9 (2)   |
| N2—S1—C13  | 107.65 (12) | N1—C8—C7    | 105.9 (2)   |
| C1—N1—C8   | 111.9 (2)   | N1          | 113.7 (2)   |
| C1—N1—C9   | 123.8 (2)   | N1—C9—H9A   | 108.8       |
| C8—N1—C9   | 124.3 (2)   | С10—С9—Н9А  | 108.8       |
| S1—N2—H2A  | 112 (2)     | N1—C9—H9B   | 108.8       |
| S1—N2—H2B  | 116 (2)     | С10—С9—Н9В  | 108.8       |
| H2A—N2—H2B | 116 (3)     | H9A—C9—H9B  | 107.7       |
| O1—C1—N1   | 125.0 (2)   | C15—C10—C11 | 119.3 (2)   |
| O1—C1—C2   | 129.3 (2)   | C15—C10—C9  | 121.2 (2)   |
| N1—C1—C2   | 105.7 (2)   | C11—C10—C9  | 119.4 (2)   |
| C7—C2—C3   | 121.7 (2)   | C12—C11—C10 | 120.7 (2)   |
| C7—C2—C1   | 108.3 (2)   | C12—C11—H11 | 119.7       |
| C3—C2—C1   | 130.0 (2)   | C10-C11-H11 | 119.7       |
| C2—C3—C4   | 117.1 (3)   | C11—C12—C13 | 119.3 (2)   |
| С2—С3—Н3   | 121.5       | C11—C12—H12 | 120.4       |
| С4—С3—Н3   | 121.5       | C13—C12—H12 | 120.4       |
| C5—C4—C3   | 121.1 (3)   | C14—C13—C12 | 120.8 (2)   |
| С5—С4—Н4   | 119.5       | C14—C13—S1  | 119.0 (2)   |
| C3—C4—H4   | 119.5       | C12—C13—S1  | 120.22 (19) |

| C4—C5—C6    | 121.4 (3)  | C13—C14—C15     | 119.4 (2)  |
|-------------|------------|-----------------|------------|
| C4—C5—H5    | 119.3      | C13—C14—H14     | 120.3      |
| С6—С5—Н5    | 119.3      | C15—C14—H14     | 120.3      |
| C7—C6—C5    | 117.0 (3)  | C14—C15—C10     | 120.6 (2)  |
| С7—С6—Н6    | 121.5      | C14—C15—H15     | 119.7      |
| С5—С6—Н6    | 121.5      | C10—C15—H15     | 119.7      |
|             |            |                 |            |
| C8—N1—C1—O1 | 179.0 (3)  | C2C7C8O2        | 178.4 (3)  |
| C9—N1—C1—O1 | 0.7 (4)    | C6C7C8N1        | 179.6 (3)  |
| C8—N1—C1—C2 | -0.5 (3)   | C2C7C8N1        | -0.9 (3)   |
| C9—N1—C1—C2 | -178.9 (2) | C1—N1—C9—C10    | -70.0 (3)  |
| O1—C1—C2—C7 | -179.6 (3) | C8—N1—C9—C10    | 111.9 (3)  |
| N1—C1—C2—C7 | -0.1 (3)   | N1—C9—C10—C15   | -32.3 (4)  |
| O1—C1—C2—C3 | 1.0 (5)    | N1-C9-C10-C11   | 149.9 (2)  |
| N1—C1—C2—C3 | -179.5 (3) | C15-C10-C11-C12 | 2.4 (4)    |
| C7—C2—C3—C4 | 0.3 (4)    | C9—C10—C11—C12  | -179.8 (2) |
| C1—C2—C3—C4 | 179.7 (3)  | C10-C11-C12-C13 | -1.0 (4)   |
| C2—C3—C4—C5 | -0.1 (4)   | C11—C12—C13—C14 | -0.6 (4)   |
| C3—C4—C5—C6 | 0.1 (4)    | C11—C12—C13—S1  | 178.8 (2)  |
| C4—C5—C6—C7 | -0.1 (4)   | O4—S1—C13—C14   | 20.6 (2)   |
| C5—C6—C7—C2 | 0.2 (4)    | O3—S1—C13—C14   | -107.4 (2) |
| C5—C6—C7—C8 | 179.7 (3)  | N2-S1-C13-C14   | 137.7 (2)  |
| C3—C2—C7—C6 | -0.3 (4)   | O4—S1—C13—C12   | -158.8 (2) |
| C1—C2—C7—C6 | -179.8 (2) | O3—S1—C13—C12   | 73.2 (2)   |
| C3—C2—C7—C8 | -179.9 (2) | N2-S1-C13-C12   | -41.7 (2)  |
| C1—C2—C7—C8 | 0.6 (3)    | C12—C13—C14—C15 | 0.8 (4)    |
| C1—N1—C8—O2 | -178.4 (2) | S1—C13—C14—C15  | -178.5 (2) |
| C9—N1—C8—O2 | -0.1 (4)   | C13—C14—C15—C10 | 0.5 (4)    |
| C1—N1—C8—C7 | 0.9 (3)    | C11—C10—C15—C14 | -2.1 (4)   |
| C9—N1—C8—C7 | 179.2 (2)  | C9-C10-C15-C14  | -179.9 (2) |
| C6—C7—C8—O2 | -1.2 (5)   |                 |            |
|             |            |                 |            |

## Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H      | H···A    | D···A     | D—H···A |
|------------------------------------|----------|----------|-----------|---------|
| N2—H2 $A$ ···O3 <sup>i</sup>       | 0.89 (4) | 2.11 (4) | 2.963 (3) | 162 (3) |
| N2—H2 <i>B</i> ···O4 <sup>ii</sup> | 0.88 (3) | 2.36 (3) | 3.105 (3) | 142 (3) |
| C15—H15…O1 <sup>iii</sup>          | 0.95     | 2.38     | 3.307 (3) | 166     |

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.