

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Fluoro-2-nitrophenyl)-4-hydroxy-9phenylsulfonyl-9H-carbazole-3-carbaldehyde

S. Gopinath,^a K. Sethusankar,^a* Velu Saravanan^b and Arasambattu K. Mohanakrishnan^b

^aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and ^bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India Correspondence e-mail: ksethusankar@yahoo.co.in

Received 31 January 2014; accepted 5 February 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.143; data-to-parameter ratio = 22.8.

In the title compound, $C_{25}H_{15}FN_2O_6S$, the carbazole ring system is essentially planar, with a maximum deviation of 0.1534 (16) Å for the C atom connected to the 4-fluoro-2nitrophenyl ring. It is almost orthogonal to the phenylsulfonyl and nitrophenyl rings, making dihedral angles of 88.45 (8) and $79.26(7)^{\circ}$, respectively. The molecular structure is stabilized by $O-H \cdots O$ and $C-H \cdots O$ hydrogen bonds, which generate three S(6) ring motifs. In the crystal, molecules are linked by two C-H···O hydrogen bonds, which generate C(6) and C(9)chains running in the [100] and [010] directions, respectively, so forming a two-dimensional network lying parallel to (001). There are also supramolecular $R_4^3(28)$ graph-set ring motifs enclosed within these networks.

Related literature

For the biological activity and uses of carbazole derivatives, see: Itoigawa et al. (2000); Ramsewak et al. (1999). For their electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For a related structure, see: Gopinath et al. (2013). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995). For the the Thrope-Ingold effect, see: Bassindale (1984).

V = 2140.4 (16) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.25 \ \text{mm}$

31082 measured reflections

7207 independent reflections

4725 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.21 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.035$

316 parameters

 $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 4

Experimental

Crystal data $C_{25}H_{15}FN_2O_6S$ $M_r = 490.45$ Monoclinic, $P2_1/c$ a = 8.124 (5) Å b = 14.191 (5) Å c = 18.607 (5) Å $\beta = 93.820(5)^{\circ}$

Data collection

```
Brukker Kappa APEXII CCD
```

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\min} = 0.930, T_{\max} = 0.949
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.143$ S = 1.017207 reflections

 $\Delta \rho_{\rm min} = -0.44$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···O2	0.82	1.89	2.611 (3)	146
$C2-H2\cdots O3$	0.93	2.37	2.956 (3)	121
C9−H9···O4	0.93	2.30	2.902 (3)	122
$C18-H18\cdots O4^{i}$	0.93	2.55	3.221 (3)	129
$C13-H13\cdots O4^{ii}$	0.93	2.50	3.337 (3)	150

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

SG and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2695).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bassindale, A. (1984). *The Third Dimension in Organic Chemistry*, ch. 1, p. 11. New York: John Wiley and Sons.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). *Nature (London)*, **397**, 121–127.

- Gopinath, S., Sethusankar, K., Ramalingam, B. M. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, 01420–01421.
- Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zhang, Q., Chen, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.

supporting information

Acta Cryst. (2014). E70, o273-o274 [doi:10.1107/S1600536814002633]

2-(4-Fluoro-2-nitrophenyl)-4-hydroxy-9-phenylsulfonyl-9*H*-carbazole-3-carbaldehyde

S. Gopinath, K. Sethusankar, Velu Saravanan and Arasambattu K. Mohanakrishnan

S1. Comment

Carbazole and its derivatives have become attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor and antioxidative (Itoigawa *et al.*, 2000), and anti-inflammatory and antimutagenic (Ramsewak *et al.*, 1999). They also exhibit electroactivity and luminescence and are considered to be potential candidates for electronic applications such as colour displays, organic, semiconductors, laser and solar cells (Friend *et al.*, 1999; Zhang *et al.*, 2004).

The title compound, Fig. 1, comprises a carbazole ring system which is attached to a phenylsulfonyl ring, a nitrophenyl ring, a carbaldehyde group and a hydroxyl group. The carbazole ring system is essentially planar with maximum deviation of 0.1534 (16) Å for the carbon atom C10. The atom O1 significantly deviates from the carbazole ring by 0.1845 (15) Å. The carbazole ring system is almost orthogonal to the phenyl ring attached to the sulfonyl group and the nitrophenyl ring with dihedral angles of 88.45 (8)° and 79.26 (7)°, respectively.

As a result of electron-withdrawing character of the phenylsulfonyl group, the bond lengths N1–C1 = 1.427 (2) Å and N1–C8 = 1.412 (2) Å are longer than the mean value of 1.355 (14) Å (Allen *et al.*, 1987). Atom S1 has a distorted tetrahedral configuration. The widening of angle O3—S1—O4 [119.96 (7)°] and narrowing of angle N1—S1—C14 [104.20 (7) °] from the ideal tetrahedral value are attributed to the Thrope-Ingold effect (Bassindale *et al.*, 1984).

The sum of the bond angles around atom N1 [356.77°] indicate sp² hybridization. The benzene ring (C20–C25) is almost coplanar with the nitro group and the fluorine atom with torsion angles C21–C20–C25–N2 [-179.64 (16) °] and C21–C22–C23–F1 [179.40 (18) °].

The molecular structure is stabilized by O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 1), which generate three S(6) ring motifs (Bernstein *et al.*, 1995).

In the crystal, molecules are linked by C-H···O hydrogen bonds, which generate C(6) and C(9) chains running in the directions [1 0 0] and [0 1 0] respectively (Table 1 and Fig 2), and form a two dimensional network lying parallel to (0 0 1). There are also $R_4^3(28)$ supramolecular graph-set ring motifs enclosed within these networks. The symmetry codes are: (i) -1 + x, *y*, *z* (ii) 1 - x, 1/2 + y, 1/2 - z.

S2. Experimental

To a solution of 2-(4-fluoro-2-nitrophenyl)-4-methoxy-9-(phenylsulfonyl)-9H-carbazole-3-cabaldehyde (0.76 g, 1.5 mmol) in dry DCM (20 mL), 1*M* solution of BBr3 (1.65 mL, 1.65 mmol) in DCM was added at 273 K. After completion of the reaction (monitored by TLC), the mixture was poured into ice water (50 mL) containing HCl (5 mL). The organic layer was seperated and the aqueous layer was then extracted with DCM (2×10 ml). The combined organic layers were washed with water (2×30 ml) and dried (NaSO4). Removal of the solvent followed by tituration of the crude product with MeOH (10 mL) afforded the title compound as a pale yellow solid (0.73 g, 96%; M.p. 501–503 K). Block-like

yellow crystals were obtained by slow evaporation of a solution in methanol.

S3. Refinement

The H atoms were localized from difference electron-density maps. They were refined as riding atoms with their distances geometrically constrained: O-H = 0.82 Å with $U_{iso}(H) = 1.5U_{eq}(O)$, and C—H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at 30% probability level. The O—H…O and C—H…O hydrogen bonds are shown as dashed lines [see Table 1 for details].

Figure 2

The crystal packing of the title compound viewed along the a axis. The C—H···O hydrogen bonds are shown as dashed lines [see Table 1 for details; symmetry codes: (i) x-1, y, z; (ii) -x+1, y+1/2, -z+1/2].

2-(4-Fluoro-2-nitrophenyl)-4-hydroxy-9-phenylsulfonyl-9H-carbazole-3-carbaldehyde

F(000) = 1008

 $\theta = 2.2 - 31.7^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 296 K

Block, yellow

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

 $D_{\rm x} = 1.522 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7207 reflections

Crystal data

C₂₅H₁₅FN₂O₆S $M_r = 490.45$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.124 (5) Å b = 14.191 (5) Å c = 18.607 (5) Å $\beta = 93.820$ (5)° V = 2140.4 (16) Å³ Z = 4

Data collection

Brukker Kappa APEXII CCD	31082 measured reflections
diffractometer	7207 independent reflections
Radiation source: fine-focus sealed tube	4725 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
$\omega \& \varphi$ scans	$\theta_{\text{max}} = 31.7^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2008)	$k = -20 \rightarrow 20$
$T_{\min} = 0.930, \ T_{\max} = 0.949$	<i>l</i> = −26→27
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.143$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
7207 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0698P)^2 + 0.4156P]$
316 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.32$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.22774 (18)	0.88060 (12)	-0.01369 (8)	0.0374 (3)	
C2	0.1387 (2)	0.83895 (14)	-0.07118 (9)	0.0495 (4)	
H2	0.1307	0.7738	-0.0757	0.059*	
C3	0.0621 (2)	0.89880 (16)	-0.12166 (10)	0.0566 (5)	

нз	-0.0006	0 8729	-0 1604	0.068*
C4	0.0000	0.99483(15)	-0.11661(10)	0.000
H4	0.0208	1 0325	-0.1514	0.066*
C5	0.1683(2)	1.03627 (14)	-0.06079(9)	0.0482(4)
H5	0.1798	1.1014	-0.0582	0.058*
C6	0.24489(19)	0.97816 (12)	-0.00809(8)	0.0378(3)
C7	0.33800 (19)	0.99774 (11)	0.05859 (8)	0.0361 (3)
C8	0.37439 (17)	0.91229 (10)	0.09332 (8)	0.0338 (3)
C9	0.45053 (19)	0.90720 (11)	0.16234 (8)	0.0368 (3)
H9	0.4734	0.8494	0.1843	0.044*
C10	0.49084 (19)	0.99004 (11)	0.19702 (8)	0.0366 (3)
C11	0.4656 (2)	1.07785 (11)	0.16215 (9)	0.0412 (4)
C12	0.3891 (2)	1.08113 (11)	0.09237 (9)	0.0408 (4)
C13	0.5105 (3)	1.16400 (13)	0.19907 (11)	0.0577 (5)
H13	0.5595	1.1591	0.2455	0.069*
C14	0.10618 (19)	0.73000 (10)	0.11778 (9)	0.0380(3)
C15	0.1077 (2)	0.76246 (12)	0.18780 (10)	0.0470 (4)
H15	0.2061	0.7803	0.2125	0.056*
C16	-0.0402(3)	0.76793 (15)	0.22048 (13)	0.0623 (5)
H16	-0.0425	0.7906	0.2673	0.075*
C17	-0.1846(3)	0.73945 (18)	0.18295 (16)	0.0730 (7)
H17	-0.2839	0.7433	0.2049	0.088*
C18	-0.1833 (3)	0.70603 (18)	0.11453 (15)	0.0729(7)
H18	-0.2812	0.6863	0.0905	0.087*
C19	-0.0383(2)	0.70121 (14)	0.08066 (12)	0.0558 (5)
H19	-0.0374	0.6790	0.0337	0.067*
C20	0.55668 (19)	0.98415 (11)	0.27357 (8)	0.0367 (3)
C21	0.7260 (2)	0.98788 (14)	0.29145 (10)	0.0503 (4)
H21	0.7975	0.9992	0.2554	0.060*
C22	0.7897 (2)	0.97524 (15)	0.36099 (11)	0.0550 (5)
H22	0.9028	0.9789	0.3721	0.066*
C23	0.6842 (2)	0.95715 (13)	0.41362 (10)	0.0500 (4)
C24	0.5168 (2)	0.95119 (12)	0.39949 (10)	0.0460 (4)
H24	0.4468	0.9375	0.4356	0.055*
C25	0.45671 (19)	0.96635 (11)	0.32961 (8)	0.0367 (3)
N1	0.31385 (16)	0.83887 (9)	0.04768 (7)	0.0369 (3)
N2	0.27697 (18)	0.96048 (12)	0.31633 (8)	0.0497 (4)
01	0.35888 (18)	1.16282 (9)	0.05773 (7)	0.0589 (4)
H1	0.3946	1.2066	0.0830	0.088*
O2	0.4894 (3)	1.24286 (10)	0.17434 (9)	0.0816 (5)
03	0.26853 (16)	0.67320 (8)	0.01041 (7)	0.0514 (3)
O4	0.42270 (13)	0.70889 (8)	0.12536 (6)	0.0419 (3)
05	0.20964 (17)	1.00982 (13)	0.27085 (9)	0.0735 (5)
O6	0.2029 (2)	0.90511 (16)	0.35160 (11)	0.1023 (7)
F1	0.74611 (17)	0.94386 (10)	0.48170 (7)	0.0770 (4)
S 1	0.28971 (5)	0.72821 (3)	0.07403 (2)	0.03511 (11)
	× /	× /		

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
C1	0.0366 (7)	0.0465 (8)	0.0296 (7)	-0.0002 (6)	0.0053 (6)	0.0006 (6)
C2	0.0556 (10)	0.0548 (10)	0.0374 (9)	-0.0056 (8)	-0.0022 (7)	-0.0026 (7)
C3	0.0590 (11)	0.0758 (14)	0.0339 (9)	-0.0018 (10)	-0.0047 (8)	0.0001 (9)
C4	0.0575 (11)	0.0727 (13)	0.0352 (9)	0.0114 (9)	0.0013 (8)	0.0106 (8)
C5	0.0543 (10)	0.0519 (10)	0.0392 (9)	0.0066 (8)	0.0093 (8)	0.0095 (7)
C6	0.0378 (8)	0.0447 (8)	0.0319 (8)	0.0003 (6)	0.0092 (6)	0.0038 (6)
C7	0.0382 (8)	0.0376 (7)	0.0333 (8)	-0.0016 (6)	0.0089 (6)	0.0028 (6)
C8	0.0331 (7)	0.0355 (7)	0.0333 (7)	-0.0034 (5)	0.0059 (6)	-0.0021 (6)
C9	0.0406 (8)	0.0347 (7)	0.0349 (8)	-0.0031 (6)	0.0017 (6)	0.0009 (6)
C10	0.0386 (8)	0.0391 (8)	0.0325 (8)	-0.0048 (6)	0.0066 (6)	-0.0027 (6)
C11	0.0521 (9)	0.0346 (7)	0.0382 (8)	-0.0067 (6)	0.0114 (7)	-0.0024 (6)
C12	0.0482 (9)	0.0353 (8)	0.0401 (9)	-0.0015 (6)	0.0125 (7)	0.0036 (6)
C13	0.0858 (14)	0.0397 (9)	0.0481 (11)	-0.0105 (9)	0.0095 (10)	-0.0066 (8)
C14	0.0328 (7)	0.0342 (7)	0.0472 (9)	0.0001 (6)	0.0033 (6)	0.0046 (6)
C15	0.0430 (9)	0.0484 (9)	0.0504 (10)	0.0018 (7)	0.0084 (7)	0.0019 (8)
C16	0.0641 (13)	0.0635 (12)	0.0624 (13)	0.0120 (10)	0.0268 (10)	0.0099 (10)
C17	0.0427 (11)	0.0805 (15)	0.099 (2)	0.0087 (10)	0.0262 (12)	0.0261 (14)
C18	0.0370 (10)	0.0903 (17)	0.0909 (19)	-0.0082 (10)	0.0017 (10)	0.0159 (14)
C19	0.0393 (9)	0.0626 (11)	0.0643 (13)	-0.0084 (8)	-0.0046 (8)	0.0023 (10)
C20	0.0407 (8)	0.0355 (7)	0.0342 (8)	-0.0041 (6)	0.0039 (6)	-0.0051 (6)
C21	0.0396 (9)	0.0625 (11)	0.0495 (10)	-0.0061 (8)	0.0085 (7)	-0.0077 (8)
C22	0.0401 (9)	0.0656 (12)	0.0581 (12)	0.0034 (8)	-0.0046 (8)	-0.0095 (9)
C23	0.0586 (11)	0.0491 (10)	0.0407 (9)	0.0097 (8)	-0.0084 (8)	-0.0021 (7)
C24	0.0520 (10)	0.0486 (9)	0.0377 (9)	0.0037 (7)	0.0063 (7)	0.0011 (7)
C25	0.0368 (8)	0.0380 (7)	0.0352 (8)	-0.0002 (6)	0.0031 (6)	-0.0031 (6)
N1	0.0413 (7)	0.0368 (6)	0.0322 (7)	-0.0038 (5)	-0.0001 (5)	-0.0018 (5)
N2	0.0401 (8)	0.0659 (10)	0.0436 (8)	-0.0019 (7)	0.0071 (6)	0.0000 (7)
01	0.0898 (10)	0.0357 (6)	0.0513 (8)	-0.0036 (6)	0.0053 (7)	0.0092 (5)
O2	0.1389 (17)	0.0368 (7)	0.0692 (11)	-0.0122 (8)	0.0074 (10)	-0.0030 (7)
O3	0.0634 (8)	0.0438 (6)	0.0469 (7)	0.0007 (6)	0.0015 (6)	-0.0146 (5)
O4	0.0353 (6)	0.0406 (6)	0.0492 (7)	0.0047 (4)	-0.0024 (5)	-0.0001 (5)
O5	0.0471 (8)	0.1079 (13)	0.0652 (10)	0.0121 (8)	0.0009 (7)	0.0162 (9)
O6	0.0562 (10)	0.1501 (19)	0.1014 (14)	-0.0264 (11)	0.0103 (9)	0.0524 (14)
F1	0.0809 (9)	0.0987 (10)	0.0484 (7)	0.0167 (7)	-0.0194 (6)	0.0070 (7)
S 1	0.03481 (19)	0.03234 (18)	0.0381 (2)	0.00070 (14)	0.00198 (14)	-0.00437 (14)

Geometric parameters (Å, °)

C1—C2	1.384 (2)	C14—S1	1.7459 (18)	
C1—C6	1.395 (2)	C15—C16	1.384 (3)	
C1—N1	1.427 (2)	C15—H15	0.9300	
C2—C3	1.383 (3)	C16—C17	1.385 (4)	
С2—Н2	0.9300	C16—H16	0.9300	
C3—C4	1.370 (3)	C17—C18	1.359 (4)	
С3—Н3	0.9300	C17—H17	0.9300	

supporting information

C4—C5	1.375 (3)	C18—C19	1.374 (3)
C4—H4	0.9300	C18—H18	0.9300
C5—C6	1.395 (2)	С19—Н19	0.9300
С5—Н5	0.9300	C20—C25	1.387 (2)
C6—C7	1.437 (2)	C20—C21	1.394 (2)
C7—C12	1.390 (2)	C21—C22	1.373 (3)
C7—C8	1.396 (2)	C21—H21	0.9300
C8—C9	1.390 (2)	C22—C23	1.368 (3)
C8—N1	1.4117 (19)	C22—H22	0.9300
C9-C10	1 370(2)	C23—F1	1345(2)
C9—H9	0.9300	C_{23} C_{24}	1.370(3)
C10-C11	1.414(2)	$C_{23}^{}C_{25}^{$	1.375(3)
C_{10} C_{20}	1.414(2) 1 400(2)	$C_{24} = C_{23}$	1.375(2)
$C_{10} = C_{20}$	1.490(2) 1.402(2)	C_{24} C_{25} N_{2}	0.9300
C11 - C12	1.402(2)	C25—IN2	1.407(2)
	1.437(2)	NI51	1.0008 (14)
	1.3411 (19)	N2	1.202 (2)
C13—02	1.218 (2)	N2—O6	1.209 (2)
С13—Н13	0.9300	O1—H1	0.8200
C14—C15	1.381 (3)	O3—S1	1.4189 (12)
C14—C19	1.384 (2)	O4—S1	1.4202 (13)
C2—C1—C6	121.76 (15)	C16—C15—H15	120.7
C2-C1-N1	130.13 (16)	C15—C16—C17	119.5 (2)
C6-C1-N1	108.11 (13)	C15—C16—H16	120.2
C3—C2—C1	116.81 (18)	C17—C16—H16	120.2
C3—C2—H2	121.6	C18—C17—C16	121.0 (2)
С1—С2—Н2	121.6	C18—C17—H17	119.5
C4-C3-C2	122.32 (18)	C16—C17—H17	119.5
C4—C3—H3	118.8	C17 - C18 - C19	120.5(2)
C2_C3_H3	118.8	C17 - C18 - H18	119.8
$C_2 C_3 C_4 C_5$	120.94(17)	C_{10} C_{18} H_{18}	110.8
$C_3 = C_4 = H_4$	110.5	$C_{19} = C_{10} = C_{14}$	119.0 118.7(2)
$C_5 = C_4 = H_4$	119.5	C18 - C19 - C14	110.7 (2)
C_{3} C_{4} C_{5} C_{4}	119.3	С14 С19—Н19	120.0
C4 = C5 = U5	110.34 (10)	С14—С19—Н19	120.0
C4—C5—H5	120.8	$C_{23} = C_{20} = C_{21}$	110.44 (10)
C6—C5—H5	120.8	$C_{25} = C_{20} = C_{10}$	122.55 (15)
C1—C6—C5	119.77 (16)	C21—C20—C10	120.77 (15)
C1—C6—C7	107.50 (14)	C22—C21—C20	121.61 (17)
C5—C6—C7	132.61 (16)	C22—C21—H21	119.2
C12—C7—C8	118.84 (15)	C20—C21—H21	119.2
C12—C7—C6	132.79 (15)	C23—C22—C21	118.93 (17)
C8—C7—C6	108.34 (14)	C23—C22—H22	120.5
C9—C8—C7	122.70 (14)	C21—C22—H22	120.5
C9—C8—N1	129.30 (14)	F1—C23—C22	119.16 (18)
C7—C8—N1	107.94 (13)	F1—C23—C24	118.45 (18)
С10—С9—С8	117.92 (14)	C22—C23—C24	122.38 (18)
С10—С9—Н9	121.0	C23—C24—C25	117.19 (17)
С8—С9—Н9	121.0	C23—C24—H24	121.4

C9—C10—C11	121.16(15)	C25—C24—H24	121.4
C9—C10—C20	117.47 (14)	C24—C25—C20	123.41 (16)
C11—C10—C20	121.34 (14)	C24—C25—N2	115.91 (15)
C12—C11—C10	119.74 (14)	C20—C25—N2	120.66 (15)
C12—C11—C13	119.79 (16)	C8—N1—C1	107.92 (12)
C10—C11—C13	120.40 (16)	C8—N1—S1	124.30 (11)
O1—C12—C7	118.61 (15)	C1—N1—S1	124.56 (11)
O1—C12—C11	121.96 (15)	O5—N2—O6	122.76 (17)
C7—C12—C11	119.40 (14)	O5—N2—C25	119.13 (15)
O2—C13—C11	125.2 (2)	O6—N2—C25	118.10 (16)
O2—C13—H13	117.4	C12—O1—H1	109.5
C11—C13—H13	117.4	03-\$1-04	119.96 (7)
C15—C14—C19	121.56 (17)	03—S1—N1	106.50 (7)
C15—C14—S1	119.38 (13)	04—S1—N1	106.35 (7)
C19—C14—S1	119.04 (15)	03— <u>S1</u> — <u>C14</u>	109.70 (8)
C14—C15—C16	118.67 (18)	04-S1-C14	108.93 (8)
C14—C15—H15	120.7	N1—S1—C14	104.19 (7)
	120.7		101119 (7)
C6—C1—C2—C3	-2.3 (3)	C15—C14—C19—C18	0.5 (3)
N1-C1-C2-C3	177.26 (16)	S1-C14-C19-C18	-177.66 (16)
C1—C2—C3—C4	1.4 (3)	C9—C10—C20—C25	-75.8 (2)
C2—C3—C4—C5	0.8 (3)	C11—C10—C20—C25	102.15 (19)
C3—C4—C5—C6	-1.9 (3)	C9-C10-C20-C21	98.30 (19)
C2-C1-C6-C5	1.2 (2)	C11—C10—C20—C21	-83.8 (2)
N1-C1-C6-C5	-178.45 (14)	C25—C20—C21—C22	-0.4 (3)
C2-C1-C6-C7	177.77 (15)	C10-C20-C21-C22	-174.86 (17)
N1-C1-C6-C7	-1.89 (17)	C20—C21—C22—C23	1.0 (3)
C4—C5—C6—C1	0.9 (2)	C21—C22—C23—F1	179.39 (18)
C4—C5—C6—C7	-174.60 (17)	C21—C22—C23—C24	0.0 (3)
C1-C6-C7-C12	-178.73 (17)	F1-C23-C24-C25	179.14 (16)
C5—C6—C7—C12	-2.8 (3)	C22—C23—C24—C25	-1.4 (3)
C1—C6—C7—C8	-0.87 (17)	C23—C24—C25—C20	2.0 (3)
C5—C6—C7—C8	175.08 (16)	C23—C24—C25—N2	-179.38 (16)
C12—C7—C8—C9	4.2 (2)	C21—C20—C25—C24	-1.1 (2)
C6—C7—C8—C9	-174.01 (14)	C10-C20-C25-C24	173.19 (16)
C12—C7—C8—N1	-178.49 (13)	C21—C20—C25—N2	-179.64 (15)
C6—C7—C8—N1	3.30 (16)	C10-C20-C25-N2	-5.3 (2)
C7—C8—C9—C10	0.0 (2)	C9—C8—N1—C1	172.62 (15)
N1-C8-C9-C10	-176.72 (14)	C7—C8—N1—C1	-4.45 (16)
C8—C9—C10—C11	-4.0 (2)	C9—C8—N1—S1	12.2 (2)
C8—C9—C10—C20	173.94 (14)	C7—C8—N1—S1	-164.88 (11)
C9—C10—C11—C12	3.8 (2)	C2-C1-N1-C8	-175.68 (16)
C20-C10-C11-C12	-174.03 (15)	C6-C1-N1-C8	3.93 (16)
C9—C10—C11—C13	-179.24 (16)	C2-C1-N1-S1	-15.3 (2)
C20-C10-C11-C13	2.9 (2)	C6-C1-N1-S1	164.29 (11)
C8—C7—C12—O1	177.74 (14)	C24—C25—N2—O5	147.23 (18)
C6—C7—C12—O1	-4.6 (3)	C20—C25—N2—O5	-34.1 (2)
C8—C7—C12—C11	-4.3 (2)	C24—C25—N2—O6	-33.4 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173.39 (16) 178.36 (15) 1.4 (3) 0.5 (2) -176.50 (16) -0.9 (3) -177.9 (2) -1.4 (3) 176.77 (14) 1.1 (3) 0.1 (3) -1.0 (4)	C20—C25—N2—O6 C8—N1—S1—O3 C1—N1—S1—O3 C8—N1—S1—O4 C1—N1—S1—O4 C8—N1—S1—C14 C1—N1—S1—C14 C15—C14—S1—O3 C19—C14—S1—O3 C15—C14—S1—O4 C19—C14—S1—O4 C15—C14—S1—O4 C15—C14—S1—N1	145.2 (2) -165.23 (12) 37.55 (14) -36.20 (14) 166.58 (12) 78.81 (14) -78.41 (14) 166.60 (13) -15.16 (16) 33.48 (15) -148.28 (14) -79.71 (14)
C16—C17—C18—C19	-1.0 (4)	C15—C14—S1—N1	-79.71 (14)
C17—C18—C19—C14	0.7 (3)	C19—C14—S1—N1	98.53 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1…O2	0.82	1.89	2.611 (3)	146
С2—Н2…О3	0.93	2.37	2.956 (3)	121
С9—Н9…О4	0.93	2.30	2.902 (3)	122
C18—H18…O4 ⁱ	0.93	2.55	3.221 (3)	129
C13—H13…O4 ⁱⁱ	0.93	2.50	3.337 (3)	150

Symmetry codes: (i) x-1, y, z; (ii) -x+1, y+1/2, -z+1/2.