Structure Reports

Online
ISSN 1600-5368

4-Thiocarbamoylpyridin-1-ium iodide

Ibukun O. Shotonwa and René T. Boeré*

Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
Correspondence e-mail: boere@uleth.ca
Received 29 January 2014; accepted 17 February 2014

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.014 ; w R$ factor $=0.034 ;$ data-to-parameter ratio $=19.7$.

The title salt, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-}$, crystallizes with two independent cations and two anions in the asymmetric unit. In one of the cations, the dihedral angle between the pyridinium ring and the thioamide group is $28.9(2)^{\circ}$; in the other it is $33.5(2)^{\circ}$. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds link the independent cations into pairs. These pairs form a threedimensional network through additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds to the anions.

Related literature

For details of the synthesis, see: Liebscher \& Hartmann (1977). For related structures, see: Alléaume et al. (1973); Cardoso et al. (2008); Colleter \& Gadret (1967, 1968a,b); Colleter et al. (1970, 1973); Gadret \& Goursolle (1969); Gel'mbol'dt, et al. (2010); Kavitha et al. (2008); Revathi et al. (2009). For drug action, see: Vannelli et al. (2002). For a DFT computational study of the parent thioamide and for vibrational spectroscopy data, see: Wysokińsky et al. (2006).

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-}$

$M_{r}=266.10$
Monoclinic, $C 2 / c$
$a=18.7580$ (11) \AA
$b=7.7476$ (4) A 。
$c=24.1784$ (14) \AA
$\beta=101.165(1)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer

$$
V=3447.3(3) \AA^{3}
$$

$Z=16$
Mo $K \alpha$ radiation
$\mu=3.89 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.31 \times 0.23 \times 0.18 \mathrm{~mm}$

Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.541, T_{\text {max }}=0.746$
19180 measured reflections

3923 independent reflections
$R_{\text {int }}=0.020$
3684 reflections with $I>2 \sigma(I)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.034$ independent and constrained refinement
$S=1.08$
3923 reflections
199 parameters
$\Delta \rho_{\max }=0.30 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}_{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{I} 2^{\mathrm{i}}$	$0.83(2)$	$2.79(2)$	$3.5996(18)$	$164(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{I} 1^{\text {ii }}$	$0.86(2)$	$2.78(3)$	$3.6232(17)$	$167(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{I} 2$	$0.84(2)$	$3.06(2)$	$3.6622(16)$	$131.0(18)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 2$	$0.84(2)$	$2.71(2)$	$3.3410(16)$	$133.2(18)$
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{I} 1^{\text {iii }}$	$0.81(2)$	$2.86(2)$	$3.6188(17)$	$157(2)$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{I} 2$	$0.86(2)$	$2.73(3)$	$3.5854(18)$	$173(2)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{I} 1$	$0.86(2)$	$2.69(2)$	$3.4804(17)$	$152.9(19)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{I} 2^{\text {iv }}$	0.95	3.03	$3.8684(19)$	149
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~S} 2$	0.95	2.87	$3.4275(19)$	119
Symmetry codes:	(i) $-x+1, y+1,-z+\frac{3}{2} ;$	(ii) $x-\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2} ;$	(iii)	
$-x+\frac{3}{2},-y+\frac{1}{2},-z+1 ;$ (iv) $x, y+1, z$.				

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINTPlus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

Supporting information for this paper is available from the IUCr electronic archives (Reference: RN2122).

References

Alléaume, M., Leroy, F., Gadret, M. \& Goursolle, M. (1973). Acta Cryst. B29, 1994-2000.
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cardoso, S. H., de Almeida, M. V., de Assis, J. V., Diniz, R., Speziali, N. L. \& de Souza, M. V. N. (2008). J. Sulfur Chem. 29, 145-149.
Colleter, J.-C. \& Gadret, M. (1967). Bull. Soc. Chim. Fr. pp. 3463-3469.
Colleter, J. C. \& Gadret, M. (1968a). Acta Cryst. B24, 513-519.
Colleter, J. C. \& Gadret, M. (1968b). Acta Cryst. B24, 519-525.
Colleter, J. C., Gadret, M. \& Coursolle, M. (1970). Acta Cryst. B26, 1510-1518.
Colleter, J. C., Gadret, M., Goursolle, M. \& Leroy, F. (1973). Acta Cryst. B29, 2337-2344.
Gadret, M. \& Goursolle, M. (1969). Bull. Soc. Pharm. Bord. 108, 38-44.
Gel'mbol'dt, V. O., Ganin, E. V., Minacheva, L. Kh., Koroeva, L. V. \& Sergienko, V. S. (2010). Russ. J. Inorg. Chem. 55, 1209-1215.
Kavitha, T., Revathi, C., Hemalatha, M., Dayalan, A. \& Ponnuswamy, M. N. (2008). Acta Cryst. E64, o114.

Liebscher, J. \& Hartmann, H. (1977). Liebigs Ann. pp. 1005-1012.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Revathi, C., Dayalan, A. \& SethuSankar, K. (2009). Acta Cryst. E65, m795m796.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

Vannelli, T. A., Dykman, A. \& Ortiz de Montellano, P. R. (2002). J. Biol. Chem. 277, 12824-12829.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Wysokiński, R., Michalska, D., Bieńko, D. C., Ilakiamani, S., Sundaraganesan, N. \& Ramalingam, K. (2006). J. Mol. Struct. 791, 70-76.

supporting information

Acta Cryst. (2014). E70, o340-0341 [doi:10.1107/S1600536814003511]

4-Thiocarbamoylpyridin-1-ium iodide

Ibukun O. Shotonwa and René T. Boeré

S1. Comment

Crystal structures of pyridine rings carrying a thioamide functional group (specifically, 4-thiocarbamoylpyridines) have been investigated primarily because of their use as anti-tuberculosis medications. Thus Colleter and Gadret determined the structure of neutral 4-thiocarbamoylpyridine (Colleter \& Gadret, 1967). Ethionamide (2-ethyl-4-thiocaraboylpyridine) is a second line drug used in regimens to treat multi-drug-resistant tuberculosis; its in vivo activation has been investigated (Vannelli et al., 2002). The crystal structure of both the HCl and HBr salts of ethionamide have been reported (Colleter \& Gadret, 1968a, 1968b) as has the hexafluorsilicate (Gel'mbol'dt et al., 2010); clinically, ethionamide is administered as the hydrochloride. In order to investigate solubility issues related to drug delivery and the search for similar therapeutic agents, the structures of neutral ethionamide (Alléaume et al., 1973) and the closely related 2-methyl derivative have also been determined (Gadret \& Goursolle, 1969). Similarly the 2-propyl (Colleter et al., 1970) and 2butyl analogues (Colleter et al., 1973) have also been determined as neutral compounds. More recently, the structure of a secondary amine derivative of ethionamide has been determined (Cardoso, et al., 2008). The vibrational spectra of the parent compound have been measured and compared to DFT calculated results (Wysokiński et al., 2006). There is also one reported structure wherein a (substituted) neutral 4-pyridylthioamide coordinates to a copper(II) glyoximato complex (Revathi et al., 2009); this same group earlier undertook the structure determination of the free ligand which is also a secondary amine derivative (Kavitha et al., 2008).
The structure of (I) determined from the X-ray diffraction analysis contains two independent cations and anions (Figure 1). Compared to the parent compound, the average $\mathrm{S}-\mathrm{C}, \mathrm{N} 2-\mathrm{C}$ and $\mathrm{C} 1-\mathrm{C} 2$ bond distances are shortened in (I); all the other bonds are longer than in the neutral species. There is an extensive network of H -bonds linking the cations and anions in the lattice. One of the independent I^{-}ions interacts with one pyridinium NH donor and two thioamide NH_{2} donors (one from each cation). The second I- interacts strongly with two NH_{2} donors and one of the aromatic ring CH , and only very weakly with a pyridinium NH . In addition, one thioamide S atom is H -bonded to both a pyridinium NH and the ortho CH . The strongest $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interaction (donor-acceptor $3.48(2) \AA$), which corresponds to $0.49 \AA$ less than the sum of the v.d $\cdot \mathrm{W}$. radii of N and H , is between one of the two I^{-}ions and one of the pyridinium N atoms. In close second place at $0.45 \AA$ less than the sum of the v.d $\cdot \mathrm{W}$. radii is the contact between an NH_{2} nitrogen and the other I^{-}ion, which involves the same thioamide ring. This ring also forms an H -bond with the S atom as acceptor towards the pyridinium NH of the second thioamide in the cluster. In all, there are nine H-bonds which exceed $0.1 \AA$ less than the sums of the corresponding v.d•W. radii.
The H-bonding is comparable in strength (shortest contact $0.49 \AA<$ sum v.d•W. radii) to that reported by Colleter \& Gadret (1968a, 1968b) for the HCl and HBr adducts of ethionamide (shortest contacts $0.34 ; 0.31 \AA<$ sum of v.d.W. radii). However, compared to these isostructural salts, in (I) the pattern is quite unusual (Figure 2) wherein pyridinium nitrogen $\mathrm{N} 4-\mathrm{H} 4$ are H -bonded to I 1 , but I 2 is linked to the N 3 amino rather than to a pyridinium group; the H -bond that forms from this second pyridinium unit involves an $\mathrm{S} \cdots \mathrm{HN}$ link. There is in fact an extensive network of H-bonds present
in this lattice, involving the large iodide anions (Figure 1, Table 1) interacting with $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ donors. A unit cell packing diagram is provided in Figure 2.

S2. Experimental

Following a method designed for the oxidation of the thioamide (Liebscher \& Hartmann, 1977), 4-pyridine thioamide $(1.00 \mathrm{~g}, 10 \mathrm{mmol})$ and iodine $(2.00 \mathrm{~g}, 10 \mathrm{mmol})$ in 7.00 ml glacial acetic acid were heated for about 10 minutes to the boil. The brownish colour of iodine in acetic acid changed to dark red on adding 4-pyridine thioamide. Initially, there were undissolved solids in the mixture, but these dissolved during heating. A dark precipitate was formed upon cooling which was collected on a Buchner funnel and rinsed. After drying on the pump to get rid of acetic acid, the solid was recrystallized from acetonitrile, affording $2.17 \mathrm{~g}(84 \%)$ of dark-brown X-ray quality needles, mp. 426.6-426.8 K. ${ }^{1} \mathrm{H}$ NMR, ($\delta, \mathrm{DMSO}): 9.07$ p.p.m. (d, $1 \mathrm{H}, 6.3 \mathrm{~Hz}$), 9.00 p.p.m. (d, $1 \mathrm{H}, 6.3 \mathrm{~Hz}$), 8.67 p.p.m. (d, $1 \mathrm{H}, 6.3 \mathrm{~Hz}$), 8.36 p.p.m. (s, $1 \mathrm{H}, 6.3 \mathrm{~Hz}$), 5.28 p.p.m. (br, 3H + HOD). IR (diamond ATR) $\left(v, \mathrm{~cm}^{-1}\right): 3037 \mathrm{w}, 1633 \mathrm{~m}, 1568 \mathrm{w}, 1473 \mathrm{~s}, 1441 \mathrm{~m}, 1328 \mathrm{w}$, $1301 \mathrm{~m}, 1273 \mathrm{~m}, 1244 \mathrm{~m}, 1207 \mathrm{~m}, 1178 \mathrm{~m}, 1153 \mathrm{~m}, 1037 \mathrm{~m}, 844 \mathrm{~s}, 800 \mathrm{~m}, 710 \mathrm{~s}, 627 \mathrm{~m}, 525 \mathrm{~s}, 501 \mathrm{~s}$.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were located on a difference Fourier map, but for purposes of refinement those bonded to C atoms are treated as riding with $\mathrm{C}-\mathrm{H}($ aromatic $)=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }} \mathrm{C} . \mathrm{H}$ atoms bonded to N atoms in the cations were refined independently but with isotropic displacement parameters set to $1.2 U_{\mathrm{eq}}$ of the attached N atom.

Figure 1

Displacement ellipsoids plot (50\% probability) of (I) showing the two independent cations and anions in the asymmetric unit and including additional iodide ions linked by hydrogen bonds; the latter are shown as dashed tubes. [Symmetry codes: (i) $-x+1, y+1,-z+3 / 2$; (ii) $x-1 / 2,-y+3 / 2, z+1 / 2$; (iii) $-x+3 / 2,-y+1 / 2,-z+1$; (iv) $x, y+1, z$.]

Figure 2
A unit-cell packing diagram viewed down the b axis. The H-bond network is indicated by dashed tubes from H-bond donors to H -bond acceptors.

4-Thiocarbamoylpyridine hydroiodide

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}^{+} \cdot \mathrm{I}^{-}$
$M_{r}=266.10$
Monoclinic, C2/c
$a=18.7580$ (11) \AA
$b=7.7476$ (4) \AA
$c=24.1784(14) \AA$
$\beta=101.165(1)^{\circ}$
$V=3447.3(3) \AA^{3}$
$Z=16$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube, Bruker D8
Graphite monochromator
Detector resolution: 66.06 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014$
$w R\left(F^{2}\right)=0.034$
$S=1.08$
$F(000)=2016$
$D_{\mathrm{x}}=2.051 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9990 reflections
$\theta=2.5-27.4^{\circ}$
$\mu=3.89 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, orange
$0.31 \times 0.23 \times 0.18 \mathrm{~mm}$
$T_{\text {min }}=0.541, T_{\text {max }}=0.746$
19180 measured reflections
3923 independent reflections
3684 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.4^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=-24 \rightarrow 24$
$k=-10 \rightarrow 10$
$l=-31 \rightarrow 31$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.014 P)^{2}+2.9155 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.30 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Amine and pyridinium NH atoms freely refined in order to get H-bond s.u. data. The isotropic displacements were set to 1.2^{*} values of attached N .

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	0.73295 (2)	0.78676 (2)	0.40917 (2)	0.02306 (4)
I2	0.50416 (2)	-0.34932 (2)	0.65408 (2)	0.02433 (4)
S1	0.23724 (3)	0.15493 (7)	0.82498 (2)	0.03064 (11)
N1	0.32690 (10)	0.4190 (2)	0.83135 (8)	0.0322 (4)
H1A	0.3653 (13)	0.467 (3)	0.8274 (10)	0.039*
H1B	0.3022 (13)	0.473 (3)	0.8524 (10)	0.039*
N2	0.42894 (8)	0.0542 (2)	0.69703 (6)	0.0237 (3)
H2	0.4497 (11)	0.014 (3)	0.6721 (9)	0.028*
C1	0.30728 (10)	0.2657 (2)	0.81067 (7)	0.0221 (4)
C2	0.35203 (9)	0.1918 (2)	0.77127 (7)	0.0201 (3)
C3	0.38691 (10)	0.2986 (2)	0.73855 (8)	0.0226 (4)
H3	0.3849	0.4204	0.7424	0.027*
C4	0.42429 (10)	0.2264 (2)	0.70060 (8)	0.0238 (4)
H4	0.4467	0.2983	0.6771	0.029*
C5	0.39722 (10)	-0.0526 (2)	0.72831 (8)	0.0258 (4)
H5	0.4018	-0.1740	0.7247	0.031*
C6	0.35787 (10)	0.0139 (2)	0.76581 (8)	0.0253 (4)
H6	0.3348	-0.0613	0.7879	0.030*
S2	0.48535 (3)	0.15223 (6)	0.57798 (2)	0.02810 (10)
N3	0.59993 (10)	-0.0467 (2)	0.58319 (8)	0.0304 (4)
H3A	0.6393 (13)	-0.078 (3)	0.5779 (10)	0.036*
H3B	0.5804 (13)	-0.120 (3)	0.6025 (10)	0.036*
N4	0.66095 (9)	0.4143 (2)	0.45727 (7)	0.0294 (4)
H4A	0.6785 (12)	0.483 (3)	0.4351 (9)	0.035*
C7	0.56575 (10)	0.0956 (2)	0.56424 (7)	0.0209 (4)
C8	0.60102 (9)	0.2080 (2)	0.52709 (7)	0.0203 (4)
C9	0.64262 (10)	0.1370 (2)	0.49061 (8)	0.0244 (4)
H9	0.6511	0.0161	0.4904	0.029*
C10	0.67111 (11)	0.2439 (3)	0.45512 (8)	0.0287 (4)
H10	0.6979	0.1969	0.4291	0.034*

C11	$0.62265(11)$	$0.4872(3)$	$0.49209(8)$	$0.0299(4)$
H11	0.6173	0.6091	0.4926	0.036^{*}
C12	$0.59099(10)$	$0.3860(2)$	$0.52727(8)$	$0.0259(4)$
H12	0.5626	0.4369	0.5514	0.031^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02298(6)$	$0.02070(6)$	$0.02617(6)$	$-0.00052(4)$	$0.00639(5)$	$0.00397(4)$
I2	$0.02670(7)$	$0.01916(6)$	$0.02859(7)$	$0.00127(5)$	$0.00896(5)$	$0.00029(5)$
S1	$0.0295(3)$	$0.0312(3)$	$0.0355(3)$	$-0.0050(2)$	$0.0170(2)$	$-0.0023(2)$
N1	$0.0314(9)$	$0.0302(10)$	$0.0400(10)$	$-0.0058(8)$	$0.0195(8)$	$-0.0138(8)$
N2	$0.0205(8)$	$0.0296(9)$	$0.0216(8)$	$0.0028(6)$	$0.0058(6)$	$-0.0056(6)$
C1	$0.0227(9)$	$0.0233(9)$	$0.0211(8)$	$0.0025(7)$	$0.0060(7)$	$0.0004(7)$
C2	$0.0185(8)$	$0.0228(9)$	$0.0186(8)$	$0.0012(7)$	$0.0029(7)$	$-0.0017(7)$
C3	$0.0246(9)$	$0.0197(9)$	$0.0235(9)$	$-0.0001(7)$	$0.0048(7)$	$-0.0003(7)$
C4	$0.0246(9)$	$0.0248(9)$	$0.0226(9)$	$-0.0017(7)$	$0.0056(7)$	$0.0002(7)$
C5	$0.0270(10)$	$0.0198(9)$	$0.0304(10)$	$0.0022(7)$	$0.0052(8)$	$-0.0026(7)$
C6	$0.0280(10)$	$0.0206(9)$	$0.0287(9)$	$-0.0006(8)$	$0.0086(8)$	$0.0014(7)$
S2	$0.0268(2)$	$0.0295(3)$	$0.0317(2)$	$0.00596(19)$	$0.0148(2)$	$0.0049(2)$
N3	$0.0259(9)$	$0.0295(9)$	$0.0392(10)$	$0.0061(7)$	$0.0150(8)$	$0.0130(8)$
N4	$0.0259(8)$	$0.0325(9)$	$0.0284(8)$	$-0.0097(7)$	$0.0017(7)$	$0.0105(7)$
C7	$0.0219(9)$	$0.0219(9)$	$0.0194(8)$	$-0.0004(7)$	$0.0053(7)$	$-0.0006(7)$
C8	$0.0185(8)$	$0.0213(9)$	$0.0204(8)$	$-0.0016(7)$	$0.0018(7)$	$0.0005(7)$
C9	$0.0229(9)$	$0.0250(10)$	$0.0263(9)$	$-0.0019(7)$	$0.0073(7)$	$-0.0004(7)$
C10	$0.0260(10)$	$0.0353(11)$	$0.0261(9)$	$-0.0044(8)$	$0.0082(8)$	$0.0019(8)$
C11	$0.0295(10)$	$0.0212(9)$	$0.0358(11)$	$-0.0043(8)$	$-0.0020(8)$	$0.0061(8)$
C12	$0.0278(10)$	$0.0225(9)$	$0.0267(9)$	$-0.0002(8)$	$0.0036(8)$	$-0.0004(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{C} 1$	$1.6608(19)$	$\mathrm{S} 2-\mathrm{C} 7$	$1.6648(18)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.313(3)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.312(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$0.83(2)$	$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	$0.81(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	$0.86(2)$	$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	$0.86(2)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.336(2)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.334(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.341(2)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.336(3)$
$\mathrm{N} 2-\mathrm{H} 2$	$0.84(2)$	$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	$0.86(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.500(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.494(2)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.391(2)$	$\mathrm{C} 8-\mathrm{C} 12$	$1.392(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.392(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.399(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.377(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.373(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 9-\mathrm{H} 9$	0.9500
$\mathrm{C} 4-\mathrm{H} 4$	0.9500	$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 5-\mathrm{C} 6$	$1.376(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.374(3)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500	$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 6-\mathrm{H} 6$	0.9500	$\mathrm{C} 12-\mathrm{H} 12$	0.9500

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	123.0 (17)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	121.3 (16)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	115 (2)
C5-N2-C4	122.57 (16)
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2$	120.0 (15)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2$	117.2 (15)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	115.93 (16)
N1-C1-S1	124.24 (14)
C2-C1-S1	119.83 (14)
C6-C2-C3	118.73 (16)
C6-C2-C1	120.18 (16)
C3-C2-C1	121.07 (16)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.58 (17)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.2
C2-C3-H3	120.2
N2-C4-C3	119.64 (17)
N2-C4-H4	120.2
C3-C4-H4	120.2
N2-C5-C6	119.70 (17)
N2-C5-H5	120.1
C6-C5-H5	120.1
C5-C6-C2	119.74 (17)
C5-C6-H6	120.1
C2-C6-H6	120.1
N1-C1-C2-C6	152.73 (19)
S1-C1-C2-C6	-28.0 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-28.9 (3)
S1-C1-C2-C3	150.45 (15)
C6-C2-C3-C4	1.9 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-176.50 (17)
C5-N2-C4-C3	1.4 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	-2.4 (3)
C4-N2-C5-C6	0.2 (3)
N2-C5-C6-C2	-0.6 (3)
C3-C2-C6-C5	-0.4 (3)
C1-C2-C6-C5	178.03 (17)

C7-N3-H3A	126.7 (17)
C7-N3-H3B	120.9 (16)
H3A-N3-H3B	112 (2)
C11-N4-C10	122.80 (17)
C11-N4-H4A	116.7 (15)
C10-N4-H4A	120.5 (15)
N3-C7-C8	117.14 (16)
N3-C7-S2	123.51 (15)
C8-C7-S2	119.32 (13)
C12-C8-C9	118.95 (17)
C12-C8-C7	119.98 (16)
C9-C8-C7	121.04 (16)
C10-C9-C8	119.26 (18)
C10-C9-H9	120.4
C8-C9-H9	120.4
N4-C10-C9	119.73 (18)
N4-C10-H10	120.1
C9-C10-H10	120.1
N4-C11-C12	119.95 (18)
N4-C11-H11	120.0
C12-C11-H11	120.0
C11-C12-C8	119.26 (18)
C11-C12-H12	120.4
C8-C12-H12	120.4
N3-C7-C8-C12	-148.94 (18)
S2-C7-C8-C12	32.8 (2)
N3-C7-C8-C9	32.9 (3)
S2-C7-C8-C9	-145.37 (15)
C12-C8-C9-C10	-1.4 (3)
C7-C8-C9-C10	176.76 (17)
C11-N4-C10-C9	-1.3 (3)
C8-C9-C10-N4	2.3 (3)
C10-N4-C11-C12	-0.8 (3)
N4-C11-C12-C8	1.7 (3)
C9-C8-C12-C11	-0.6 (3)
C7-C8-C12-C11	-178.77 (17)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
H -bonds link iodide I1 threefold to pyridinium N 4 and thioamide NH 2 groups N 1 and N 3 . Similarly, I2 is linked to pyridinium N 2 and thioamide NH 2 groups N 1 and N 3 (the latter forming an I-N-I-N ring in the lattice) but also involves a (possibly involuntary) short contact to aromatic C4-H. Finally, there are two short contacts lining thioamide S 2 with pyridinium $\mathrm{N} 2-\mathrm{H}$ and aromatic $\mathrm{C} 4-\mathrm{H}$ (the latter may also be involuntary.)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{I} 2^{\mathrm{i}}$	$0.83(2)$	$2.79(2)$	$3.5996(18)$	$164(2)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{I} 1^{\mathrm{ii}}$	$0.86(2)$	$2.78(3)$	$3.6232(17)$	$167(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{I} 2$	$0.84(2)$	$3.06(2)$	$3.6622(16)$	$131.0(18)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{~S} 2$	$0.84(2)$	$2.71(2)$	$3.3410(16)$	$133.2(18)$

supporting information

$\mathrm{N} 3 — \mathrm{H} 3 A \cdots \mathrm{I} 1^{\text {iii }}$	$0.81(2)$	$2.86(2)$	$3.6188(17)$	$157(2)$
$\mathrm{N} 3 — \mathrm{H} 3 B \cdots \mathrm{I} 2$	$0.86(2)$	$2.73(3)$	$3.5854(18)$	$173(2)$
$\mathrm{N} 4 — \mathrm{H} 4 A \cdots \mathrm{I} 1$	$0.86(2)$	$2.69(2)$	$3.4804(17)$	$152.9(19)$
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{I} 2^{\mathrm{iv}}$	0.95	3.03	$3.8684(19)$	149
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{~S} 2$	0.95	2.87	$3.4275(19)$	119

Symmetry codes: (i) $-x+1, y+1,-z+3 / 2$; (ii) $x-1 / 2,-y+3 / 2, z+1 / 2$; (iii) $-x+3 / 2,-y+1 / 2,-z+1$; (iv) $x, y+1, z$.

