

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2-Dimethyl-N-(4-methylpyridin-2-yl)propanamide

Gamal A. El-Hiti,^a* Keith Smith,^b Asim A. Balakit,^c Amany S. Hegazy^b and Benson M. Kariuki^{b*}

^aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Rivadh 11433, Saudi Arabia, ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and ^cDepartment of Chemistry, College of Science for Women, University of Babylon, Babylon, Irag

Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Received 6 February 2014; accepted 18 February 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.154; data-to-parameter ratio = 17.1.

In the title compound, $C_{11}H_{16}N_2O$, the dihedral angle between the mean plane of the 4-methypyridine group and the plane of the amide link is 16.7 $(1)^{\circ}$, and there is a short intramolecular $C-H\cdots O$ contact. Hydrogen bonding $(N-H\cdots O)$ between amide groups forms chains parallel to the b axis. Pairs of methylpyridine groups from molecules in adjacent chains are parallel but there is minimal π - π interaction.

Related literature

For biological applications of related compounds, see: de Candia et al. (2013); Thorat et al. (2013); Abdel-Megeed et al. (2012). For convenient routes for modifying pyridine derivatives, see: Smith et al. (2013); Smith et al. (2012); El-Hiti (2003); Joule & Mills (2000); Smith et al. (1994, 1995, 1999); Turner (1983). For the X-ray structures of related compounds, see: Mazik & Sicking (2004); Mazik et al. (2004); Hodorowicz et al. (2007); Koch et al. (2008); Liang et al. (2008); Seidler et al. (2011).

Experimental Crystal data

C11H16N2O $M_r = 192.26$ Orthorhombic, Pbca a = 10.7954 (3) Å b = 10.1809 (2) Å c = 20.8390(5) Å

 $V = 2290.35 (10) \text{ Å}^3$ Z = 8Cu Ka radiation $\mu = 0.58 \text{ mm}^-$ T = 296 K $0.27 \times 0.19 \times 0.14 \text{ mm}$ 5219 measured reflections

 $R_{\rm int} = 0.017$

2253 independent reflections

1808 reflections with $I > 2\sigma(I)$

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.930, \ T_{\max} = 0.957$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	132 parameters
$wR(F^2) = 0.154$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
2253 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline N2 - H2A \cdots O1^{i} \\ C5 - H5 \cdots O1 \end{array}$	0.86	2.22	3.0644 (17)	168
	0.93	2.28	2.842 (2)	118

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, z$.

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (CambridgeSoft, 2001).

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the research group project RGP-VPP-239.

Supporting information for this paper is available from the IUCr electronic archives (Reference: MW2120).

References

- Abdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252-2258.
- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- CambridgeSoft (2001). CHEMDRAW Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.
- Candia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696-8711.
- El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hodorowicz, M., Stadnicka, K., Trzewik, B. & Zaleska, B. (2007). Acta Cryst. E63. 04115.
- Joule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. England: Blackwell Science Publishers.
- Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.
- Liang, D., Gao, L.-X., Gao, Y., Xu, J. & Wang, W. (2008). Acta Cryst. E64, o201.
- Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.
- Mazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117-3121.
- Seidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, 01507
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.
- Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2013). Synthesis, 45, 3426-3434.
- Smith, K., El-Hiti, G. A., Fekri, A. & Alshammari, M. B. (2012). Heterocycles, 86, 391-410.

- Smith, K., El-Hiti, G. A., Pritchard, G. J. & Hamilton, A. (1999). J. Chem. Soc. *Perkin Trans. 1*, pp. 2299–2303. Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994).
- Sulfur Lett. 17, 197–216.
- Thorat, S. A., Kang, D. W., Ryu, H. C., Kim, M. S., Kim, H. S., Ann, J., Ha, T., Kim, S.-E., Son, K., Choi, S., Blumberg, P. M., Frank, R., Bahrenberg, G., Schiene, K., Christoph, T. & Lee, J. (2013). Eur. J. Med. Chem. 64, 589-602. Turner, J. A. (1983). J. Org. Chem. 48, 3401-3408.

supporting information

Acta Cryst. (2014). E70, o351-o352 [doi:10.1107/S1600536814003729]

2,2-Dimethyl-N-(4-methylpyridin-2-yl)propanamide

Gamal A. El-Hiti, Keith Smith, Asim A. Balakit, Amany S. Hegazy and Benson M. Kariuki

S1. Structural commentary

Synthetic and naturally occurring pyridine derivatives have a broad range of biological activities (Thorat *et al.*, 2013) including anticancer and antimicrobial (Abdel-Megeed *et al.*, 2012) and anticoagulant (de Candia *et al.*, 2013) properties. Hence, pyridine derivatives are important compounds (Joule and Mills, 2000) and some synthetic approaches involve lithiation of 2-acylaminopyridines (Smith *et al.*, 1995; Turner, 1983). The structures of a number of 2-acylaminopyridines have been determined (Mazik & Sicking, 2004; Mazik *et al.*, 2004; Hodorowicz *et al.*, 2007; Koch *et al.*, 2008; Liang *et al.*, 2008; Seidler *et al.*, 2011). During research focused on new synthetic routes towards novel substituted pyridine derivatives (Smith *et al.*, 1995; Smith *et al.*, 1999; El-Hiti, 2003; Smith *et al.*, 2012; Smith *et al.*, 2013) we have synthesized the title compound in high yield. In the 4-methyl-2-pivaloylaminopyridine molecule (Figure 1), the least squares plane through the 4-methypyridine group makes a dihedral angle of 16.7 (1)° with the plane through the amide link and a short intramolecular C5—H5…O1 contact is observed (Table 1). In the crystal structure (Figure 2) N —H…O hydrogen bonding between amide groups forms chains parallel to the *b* axis. Pairs of methyl-pyridine groups in molecules from adjacent chains are parallel but there is minimal π - π interaction. The ring nitrogen is not involved in strong hydrogen bonding.

S2. Synthesis and crystallization

To a cooled solution (0 °C) of 2-amino-4-methylpyridine (5.41 g, 50.0 mmol) and triethylamine (10 ml) in dichloromethane (DCM, 80 ml) pivaloyl chloride (6.63 g, 55.0 mmol) was slowly added in a drop-wise manner over 10 min. The reaction mixture was stirred at 0 °C for an extra 1 h. The mixture was poured into H₂O (100 ml) and the organic layer was separated, washed with H₂O (2 × 50 ml), dried (MgSO₄) and evaporated under reduced pressure to remove the solvent. The solid obtained was purified by crystallization from Et₂O–hexane (2:1) to give 4-methyl-2-pivaloylaminopyridine (9.04 g, 47.0 mmol; 94%) as colourless crystals, m.p. 103–104 °C [lit. 96–98 °C (hexane); Turner (1983)]. ¹H NMR (500 MHz, CDCl₃, δ , p.p.m.) 8.11–8.10 (br, 2 H, H-3 and H-6), 8.05 (br, exch., 1 H, NH), 6.85 (m, 1 H, H-5), 2.34 (s, 3 H, CH₃), 1.31 [s, 9 H, C(CH₃)₃]. ¹³CNMR (125 MHz, CDCl₃, δ , p.p.m.) 177.2 (s, C=O), 151.5 (s, C-4), 149.9 (s, C-2), 147.2 (d, C-6), 120.9 (d, C-5), 114.5 (d, C-3), 39.8 [s, *C*(CH₃)₃], 27.5 [q, *C*(*C*H₃)₃]), 21.4 (q, CH₃). EI⁺–MS (*m*/*z*, %): 192 (*M*⁺, 43), 177 (5), 149 (11), 135 (25), 108 (100), 92 (15), 81 (15), 57 (25). HRMS (EI⁺): Calculated for C₁₁H₁₆N₂O [*M*] 192.1263; found, 192.1260.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H) = 1.2$ times U_{eq} for the atom they are bonded to except for the methyl groups where 1.5 times U_{eq} was used with free rotation about the C—C bond.

Figure 2

Crystal structure packing showing NH..O hydrogen bonds as green dotted lines with the rest of the hydrogen atoms omitted for clarity.

2,2-Dimethyl-N-(4-methylpyridin-2-yl)propanamide

Crystal data

C₁₁H₁₆N₂O $M_r = 192.26$ Orthorhombic, *Pbca* a = 10.7954 (3) Å b = 10.1809 (2) Å c = 20.8390 (5) Å V = 2290.35 (10) Å³ Z = 8F(000) = 832

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Radiation source: sealed X-ray tube ω scans Absorption correction: gaussian (*CrysAlis PRO*; Agilent, 2014) $T_{\min} = 0.930, T_{\max} = 0.957$ 5219 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0734P)^2 + 0.4299P]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.154$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.08	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
2253 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
132 parameters	Extinction correction: SHELXL2013 (Sheldrick,
0 restraints	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Hydrogen site location: inferred from	Extinction coefficient: 0.0037 (5)
neighbouring sites	

Special details

Experimental. Absorption correction: CrysAlisPro (Agilent, 2014): Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 $D_{\rm x} = 1.115 {\rm Mg} {\rm m}^{-3}$

 $\theta = 4.2 - 74.0^{\circ}$

 $\mu = 0.58 \text{ mm}^{-1}$

Block, colourless

 $0.27 \times 0.19 \times 0.14 \text{ mm}$

 $\theta_{\rm max} = 74.0^\circ, \ \theta_{\rm min} = 4.2^\circ$

2253 independent reflections

1808 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.017$

 $h = -7 \rightarrow 13$

 $k = -12 \rightarrow 8$

 $l = -25 \rightarrow 20$

Cu K α radiation, $\lambda = 1.54184$ Å Cell parameters from 1808 reflections

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.90730 (14)	0.81479 (14)	0.59591 (7)	0.0489 (4)	
C2	1.0228 (2)	0.6963 (2)	0.52600 (11)	0.0816 (6)	
H2	1.0345	0.6201	0.5021	0.098*	
C3	1.1102 (2)	0.7922 (2)	0.52141 (11)	0.0792 (6)	
H3	1.1786	0.7811	0.4948	0.095*	
C4	1.09637 (16)	0.90571 (19)	0.55651 (9)	0.0632 (5)	

C5	0.99149 (14)	0.91744 (16)	0.59451 (8)	0.0552 (4)
Н5	0.9779	0.9929	0.6186	0.066*
C6	1.1912 (2)	1.0138 (3)	0.55444 (12)	0.0922 (7)
H6A	1.2409	1.0107	0.5926	0.138*
H6B	1.1499	1.0972	0.5520	0.138*
H6C	1.2431	1.0025	0.5175	0.138*
C7	0.74226 (15)	0.91931 (14)	0.66136 (8)	0.0515 (4)
C8	0.62472 (16)	0.88824 (16)	0.69967 (9)	0.0606 (5)
C9	0.6598 (2)	0.8017 (2)	0.75696 (11)	0.0851 (7)
H9A	0.7235	0.8442	0.7815	0.128*
H9B	0.6895	0.7185	0.7418	0.128*
H9C	0.5882	0.7883	0.7835	0.128*
C10	0.5677 (2)	1.0158 (2)	0.72312 (13)	0.0997 (9)
H10A	0.6251	1.0600	0.7509	0.149*
H10B	0.4929	0.9970	0.7463	0.149*
H10C	0.5490	1.0709	0.6870	0.149*
C11	0.53133 (19)	0.8146 (3)	0.65810(13)	0.0933 (8)
H11A	0.4578	0.7976	0.6826	0.140*
H11B	0.5668	0.7329	0.6442	0.140*
H11C	0.5107	0.8670	0.6213	0.140*
N1	0.92138 (14)	0.70437 (14)	0.56251 (8)	0.0654 (4)
N2	0.79937 (12)	0.81473 (12)	0.63366 (7)	0.0554 (4)
H2A	0.7654	0.7394	0.6400	0.067*
01	0.78283 (12)	1.03049 (11)	0.65664 (7)	0.0699 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0475 (8)	0.0469 (8)	0.0523 (8)	0.0056 (6)	0.0003 (6)	0.0012 (6)
C2	0.0788 (13)	0.0735 (12)	0.0924 (14)	0.0131 (10)	0.0224 (11)	-0.0152 (11)
C3	0.0626 (11)	0.0889 (14)	0.0861 (13)	0.0180 (10)	0.0226 (10)	0.0029 (11)
C4	0.0481 (9)	0.0720 (11)	0.0694 (10)	0.0027 (8)	0.0020 (7)	0.0171 (9)
C5	0.0518 (9)	0.0531 (9)	0.0607 (9)	0.0001 (7)	0.0028 (7)	0.0032 (7)
C6	0.0587 (11)	0.1052 (17)	0.1126 (18)	-0.0166 (11)	0.0083 (11)	0.0244 (15)
C7	0.0533 (8)	0.0390 (7)	0.0622 (8)	0.0022 (6)	0.0061 (7)	-0.0009 (6)
C8	0.0592 (10)	0.0478 (8)	0.0749 (10)	0.0016 (7)	0.0190 (8)	-0.0021 (7)
C9	0.0969 (16)	0.0788 (13)	0.0798 (13)	0.0035 (12)	0.0275 (12)	0.0104 (10)
C10	0.1026 (17)	0.0605 (12)	0.136 (2)	0.0135 (11)	0.0640 (16)	-0.0025 (12)
C11	0.0548 (11)	0.1121 (19)	0.1129 (18)	-0.0056 (11)	0.0126 (12)	-0.0159 (15)
N1	0.0646 (9)	0.0546 (8)	0.0770 (9)	0.0056 (7)	0.0107 (7)	-0.0124 (7)
N2	0.0551 (8)	0.0401 (7)	0.0711 (8)	-0.0038 (5)	0.0153 (6)	-0.0040 (6)
01	0.0673 (8)	0.0389 (6)	0.1034 (10)	-0.0010 (5)	0.0213 (7)	-0.0030 (6)

Geometric parameters (Å, °)

C1—N1	1.3310 (19)	C7—N2	1.3590 (19)
C1—C5	1.385 (2)	С7—С8	1.532 (2)
C1—N2	1.406 (2)	C8—C10	1.518 (2)

supporting information

C2—N1	1.336 (3)	C8—C11	1.526 (3)
C2—C3	1.361 (3)	C8—C9	1.531 (3)
С2—Н2	0.9300	С9—Н9А	0.9600
C3—C4	1.376 (3)	С9—Н9В	0.9600
С3—Н3	0.9300	С9—Н9С	0.9600
C4—C5	1.387 (2)	C10—H10A	0.9600
C4—C6	1.503 (3)	C10—H10B	0.9600
С5—Н5	0.9300	C10—H10C	0.9600
С6—Н6А	0.9600	C11—H11A	0.9600
С6—Н6В	0.9600	C11—H11B	0.9600
С6—Н6С	0.9600	C11—H11C	0.9600
C7—O1	1.2177 (18)	N2—H2A	0.8600
N1—C1—C5	123.45 (15)	C11—C8—C9	108.85 (18)
N1—C1—N2	112.76 (13)	C10—C8—C7	109.09 (14)
C5—C1—N2	123.78 (14)	C11—C8—C7	110.66 (15)
N1—C2—C3	124.35 (19)	C9—C8—C7	108.69 (15)
N1—C2—H2	117.8	С8—С9—Н9А	109.5
С3—С2—Н2	117.8	С8—С9—Н9В	109.5
C2—C3—C4	119.33 (18)	H9A—C9—H9B	109.5
С2—С3—Н3	120.3	С8—С9—Н9С	109.5
С4—С3—Н3	120.3	H9A—C9—H9C	109.5
C3—C4—C5	117.68 (17)	H9B—C9—H9C	109.5
C3—C4—C6	121.72 (19)	C8—C10—H10A	109.5
C5—C4—C6	120.60 (19)	C8-C10-H10B	109.5
C1—C5—C4	118.87 (16)	H10A—C10—H10B	109.5
С1—С5—Н5	120.6	C8—C10—H10C	109.5
С4—С5—Н5	120.6	H10A-C10-H10C	109.5
С4—С6—Н6А	109.5	H10B-C10-H10C	109.5
С4—С6—Н6В	109.5	C8—C11—H11A	109.5
H6A—C6—H6B	109.5	C8—C11—H11B	109.5
С4—С6—Н6С	109.5	H11A—C11—H11B	109.5
H6A—C6—H6C	109.5	C8—C11—H11C	109.5
H6B—C6—H6C	109.5	H11A—C11—H11C	109.5
O1—C7—N2	122.06 (15)	H11B—C11—H11C	109.5
O1—C7—C8	122.14 (14)	C1—N1—C2	116.32 (16)
N2—C7—C8	115.80 (13)	C7—N2—C1	127.83 (13)
C10-C8-C11	109.58 (19)	C7—N2—H2A	116.1
C10—C8—C9	109.95 (18)	C1—N2—H2A	116.1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
N2—H2A····O1 ⁱ	0.86	2.22	3.0644 (17)	168
С5—Н5…О1	0.93	2.28	2.842 (2)	118

Symmetry code: (i) -x+3/2, y-1/2, z.