Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{(E)-[4-(Diphenylamino)phenyl]iminomethyl}phenol

Jiang Chen,^a Zhe-Peng Jin,^{b,c} Bing-Fei Gao,^{b,c} Jian-Hua Yu^{b,c} and Jie-Ying Wu^{b,c}*

^aDepartment of Chemistry, Bengbu Medical College, Bengbu 233030, People's Republic of China, ^bDepartment of Chemistry, Anhui University, Hefei 230039. People's Republic of China, and ^cKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China Correspondence e-mail: jywu1957@163.com

Received 17 January 2014; accepted 12 February 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.181; data-to-parameter ratio = 17.7.

The asymmetric unit of the title Schiff base molecule, C₂₅H₂₀N₂O, contains two independent molecules. In each molecule, the C=N bond is in an *E* conformation. The most significant difference between the two molecules is seen for the dihedral angles between the methoxy-substituted benzene ring and the two phenyl rings, which are 85.5 (1) and 82.3 $(1)^{\circ}$ in the first molecule, and 49.0 (1) and 40.4 (1) $^{\circ}$ in the second. This conformational difference is reflected in the central C=N-C····C torsion angle, which is 28.7 (2)° in the first molecule and $-29.8 (3)^{\circ}$ in the other. In each molecule, there is an intramolecular $O-H \cdots N$ hydrogen bond.

Related literature

For related structures, see: Damous et al. (2013); Zheng (2013).

Experimental

Crystal data

ł v

S 8

$C_{25}H_{20}N_2O$	$V = 3935.84 (14) \text{ Å}^3$
$M_r = 364.43$	Z = 8
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 18.4128 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 21.2523 (4) Å	$T = 298 { m K}$
c = 10.2080 (2) Å	$0.30 \times 0.20 \times 0.20$ mm
$\beta = 99.834 \ (1)^{\circ}$	

CrossMark

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.978, T_{\rm max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	507 parameters
$vR(F^2) = 0.181$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
961 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

65034 measured reflections 8961 independent reflections 6499 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.029$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1 \cdots N2 \\ O2 - H2 \cdots N4 \end{array}$	0.82	1.88	2.609 (2)	147
	0.82	1.86	2.590 (2)	148

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 51372003 and 21271004).

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5685).

References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Damous, M., Dénès, G., Bouacida, S., Hamlaoui, M., Merazig, H. & Daran, J.-C. (2013). Acta Cryst. E69, o1460-o1461.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zheng, Y.-F. (2013). Acta Cryst. E69, o1349.

supporting information

Acta Cryst. (2014). E70, o314 [doi:10.1107/S1600536814003195]

2-{(*E*)-[4-(Diphenylamino)phenyl]iminomethyl}phenol

Jiang Chen, Zhe-Peng Jin, Bing-Fei Gao, Jian-Hua Yu and Jie-Ying Wu

S1. Comment

Schiff bases are considered important compounds because of their wide range of biological activities, and also because of their use as ligands in conjunction with transition metals (Damous *et al.*, 2013). Schiff bases derived from salicyladehyde and methylaniline with various substituents have exhibited potential application in pharmaceutical fields for their antitumor, antimicrobial and antiviral activities (Zheng *et al.*, 2013). Herein, with we report the crystal structure of the title compound (I).

In (I) (Fig.1), the Schiff base moiety shows an E configuration about the C16=N2 and C19=C20 bonds. The most significant difference between the two molecules are the dihedral angles between the methoxy-substituted benzene ring and the two phenyl rings, which are $85.5 (1)^{\circ}$ [C20-C25/C1-C6] and $82.3 (1)^{\circ}$ [C20-C25/C7-C12] in one molecule and $49.0 (1)^{\circ}$ [C40-C50C26-C31] and $40.4 (1)^{\circ}$ [C45-C50/C32-C37] in the other. This conformational difference is reflected in the central C=N-C:::C torsion angle which is $28.7 (2)^{\circ}$ in one molecule [C19-N2-C16-C15] and $-29.8 (3)^{\circ}$ [C44-N4-C41-C40] in the other. The bond distances of the two independent molecules are the same within experimental error.

S2. Experimental

A solution of N^1 , N^1 -diphenylbenzene-1,4-diamine (13.00 g, 50 ammol) in 30 ml of ethanol was mixed with 2-hydroxybenzaldehyde (9.15 g, 75 mmol) in ethanol 5 ml. The mixture was refluxed for 4h under cooling to room temperature, the soild was filtrated and recrystallized from ethnol to give X-ray quality crystals. Yield: 85%. ¹H NMR (400 MHz, d^6 -(CD₃)₂CO) 6.99 (t, 2H), 7.12 (m, 8H), 7.36 (t, 4H), 7.41 (d, 3H), 7.59 (d, 1H), 8.93(d, 1H), 13.28 (s, 1H).

S3. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C -H = 0.93 Å, O-H = 0.82Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

2-{(*E*)-[4-(Diphenylamino)phenyl]iminomethyl}phenol

Crystal data

C ₂₅ H ₂₀ N ₂ O	F(000) = 1536
$M_r = 364.43$	$D_x = 1.230 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -P 2ybc	Cell parameters from 9854 reflections
a = 18.4128 (4) Å	$\theta = 2.2-24.7^{\circ}$
b = 21.2523 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 10.2080 (2) Å	T = 298 K
R = 99.834 (1)°	Block vellow
$V = 3935.84 (14) Å^{3}$ Z = 8 Data collection	$0.30 \times 0.20 \times 0.20$ mm
Bruker SMART CCD	65034 measured reflections
diffractometer	8961 independent reflections
Radiation source: fine-focus sealed tube	6499 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.029$
φ and ω scans	$\theta_{max} = 27.4^{\circ}, \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -23 \rightarrow 18$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -27 \rightarrow 23$
$T_{\min} = 0.978, T_{\max} = 0.985$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.181$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 1.09	H-atom parameters constrained
8961 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.5243P]$
507 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.13 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N2	0.65015 (7)	0.18511 (7)	0.70724 (14)	0.0475 (3)
01	0.52431 (8)	0.12577 (8)	0.67606 (13)	0.0767 (4)
H1	0.5657	0.1359	0.7130	0.115*
C35	0.71752 (14)	0.54098 (15)	1.1730 (2)	0.0880 (8)
H35	0.7229	0.5554	1.2602	0.106*
N4	0.41701 (8)	0.39242 (7)	0.52112 (15)	0.0553 (4)
N1	0.91196 (7)	0.25341 (7)	1.04786 (15)	0.0546 (4)
O2	0.28230 (8)	0.36766 (9)	0.54581 (15)	0.0775 (4)
H2	0.3237	0.3829	0.5651	0.116*
N3	0.69482 (8)	0.47621 (8)	0.77970 (15)	0.0589 (4)
C16	0.71657 (8)	0.20425 (7)	0.78898 (16)	0.0440 (3)
C13	0.84654 (8)	0.23704 (7)	0.96105 (16)	0.0455 (4)
C20	0.56131 (8)	0.19141 (8)	0.50738 (16)	0.0462 (4)
C7	0.96755 (8)	0.20695 (8)	1.08522 (17)	0.0463 (4)
C19	0.63139 (9)	0.20661 (8)	0.58888 (17)	0.0483 (4)
H19	0.6639	0.2328	0.5543	0.058*
C1	0.92484 (9)	0.31669 (7)	1.09053 (16)	0.0467 (4)
C32	0.70191 (10)	0.49776 (9)	0.91339 (18)	0.0550 (4)
C45	0.33276 (10)	0.34029 (8)	0.35242 (19)	0.0557 (4)
C15	0.74933 (9)	0.26249 (8)	0.77910 (17)	0.0518 (4)
H15	0.7277	0.2911	0.7152	0.062*
C39	0.62060 (9)	0.40697 (8)	0.61860 (18)	0.0537 (4)
H39	0.6634	0.3878	0.6016	0.064*
C26	0.75879 (9)	0.47338 (8)	0.71989 (17)	0.0489 (4)
C8	1.00166 (10)	0.20185 (9)	1.21639 (18)	0.0573 (4)

H8	0.9875	0.2279	1.2807	0.069*
C25	0.50993 (9)	0.15246 (9)	0.55383 (17)	0.0545 (4)
C21	0.54279 (10)	0.21685 (9)	0.38024 (18)	0.0581 (4)
H21	0.5768	0.2422	0.3475	0.070*
C17	0.74919 (9)	0.16321 (8)	0.88735 (16)	0.0470 (4)
H17	0.7276	0.1242	0.8961	0.056*
C40	0.55297 (10)	0.38645 (9)	0.55257 (18)	0.0549 (4)
H40	0.5507	0.3540	0.4909	0.066*
C38	0.62562 (9)	0.45600 (8)	0.71015 (17)	0.0512 (4)
C18	0.81303 (9)	0.17920 (8)	0.97237 (17)	0.0482 (4)
H18	0.8338	0.1510	1.0378	0.058*
C12	0.98805 (9)	0.16712 (8)	0.99112 (18)	0.0528 (4)
H12	0.9648	0.1699	0.9030	0.063*
C2	0.86863 (10)	0.35225 (8)	1.12765 (18)	0.0535 (4)
H2A	0.8223	0.3345	1.1259	0.064*
C11	1.04306 (10)	0.12317 (9)	1.0277 (2)	0.0616 (5)
H11	1.0566	0.0963	0.9640	0.074*
C14	0.81354 (9)	0.27842 (8)	0.86274 (18)	0.0533 (4)
H14	0.8352	0.3173	0.8535	0.064*
C6	0.99364 (10)	0.34357 (9)	1.0969 (2)	0.0612 (5)
H6	1.0320	0.3203	1.0727	0.073*
C44	0.40457 (10)	0.36586 (9)	0.40703 (19)	0.0580 (4)
H44	0.4425	0.3629	0.3579	0.070*
C41	0.48819 (9)	0.41398 (9)	0.57765 (17)	0.0524 (4)
C50	0.27411 (10)	0.34239 (9)	0.4237 (2)	0.0612 (5)
C9	1.05702 (11)	0.15786 (11)	1.2517 (2)	0.0680 (5)
H9	1.0802	0.1548	1.3398	0.082*
C27	0.75680 (10)	0.49235 (9)	0.58993 (19)	0.0574 (4)
H27	0.7128	0.5063	0.5397	0.069*
C43	0.56070 (10)	0.48410 (10)	0.73322 (19)	0.0606 (5)
H43	0.5628	0.5177	0.7922	0.073*
C31	0.82527 (10)	0.45261 (9)	0.7935 (2)	0.0595 (5)
H31	0.8274	0.4396	0.8811	0.071*
C30	0.88793 (11)	0.45130 (9)	0.7362 (3)	0.0705 (6)
H30	0.9322	0.4375	0.7856	0.085*
C28	0.82003 (12)	0.49053 (10)	0.5349 (2)	0.0696 (5)
H28	0.8183	0.5033	0.4473	0.083*
C46	0.32167 (12)	0.31212 (11)	0.2265 (2)	0.0757 (6)
H46	0.3602	0.3108	0.1784	0.091*
C29	0.88547(12)	0.47023 (10)	0.6072 (3)	0.0732 (6)
H29	0.9278	0.4693	0.5690	0.088*
C3	0.88131 (12)	0.41414 (10)	1.1674 (2)	0.0673 (5)
H3	0.8430	0.4380	1.1902	0.081*
C22	0.47585 (12)	0.20549 (11)	0.3023 (2)	0.0676 (5)
H22	0.4645	0.2230	0.2178	0.081*
C42	0.49353 (10)	0.46248 (10)	0.6692 (2)	0.0605 (5)
H42	0.4506	0.4809	0.6879	0.073*
C24	0.44245 (10)	0.14073 (12)	0.4740 (2)	0.0704 (6)
-				

H24	0.4085	0.1144	0.5042	0.084*
C10	1.07792 (10)	0.11884 (10)	1.1578 (2)	0.0666 (5)
H10	1.1154	0.0896	1.1819	0.080*
C23	0.42569 (11)	0.16797 (12)	0.3502 (2)	0.0726 (6)
H23	0.3798	0.1608	0.2983	0.087*
C37	0.74217 (11)	0.55151 (10)	0.9510 (2)	0.0651 (5)
H37	0.7642	0.5734	0.8893	0.078*
C33	0.66962 (13)	0.46571 (11)	1.0058 (2)	0.0724 (6)
H33	0.6427	0.4293	0.9814	0.087*
C4	0.94920 (14)	0.44041 (10)	1.1734 (3)	0.0803 (6)
H4	0.9574	0.4820	1.2004	0.096*
C36	0.74966 (13)	0.57282 (12)	1.0814 (2)	0.0815 (7)
H36	0.7768	0.6091	1.1066	0.098*
C5	1.00554 (13)	0.40513 (11)	1.1393 (3)	0.0801 (7)
Н5	1.0522	0.4228	1.1447	0.096*
C49	0.20642 (12)	0.31691 (12)	0.3675 (3)	0.0850 (7)
H49	0.1671	0.3186	0.4137	0.102*
C47	0.25461 (16)	0.28644 (12)	0.1733 (3)	0.0941 (8)
H47	0.2478	0.2673	0.0902	0.113*
C34	0.67742 (15)	0.48791 (15)	1.1355 (2)	0.0883 (8)
H34	0.6551	0.4664	1.1974	0.106*
C48	0.19746 (14)	0.28941 (13)	0.2448 (3)	0.0976 (9)
H48	0.1519	0.2724	0.2086	0.117*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0392 (7)	0.0522 (8)	0.0498 (8)	-0.0011 (6)	0.0035 (6)	-0.0029 (6)
0.0643 (8)	0.1061 (12)	0.0574 (8)	-0.0312 (8)	0.0041 (6)	0.0169 (8)
0.0838 (16)	0.117 (2)	0.0560 (12)	0.0424 (15)	-0.0093 (11)	-0.0196 (14)
0.0454 (7)	0.0602 (9)	0.0582 (9)	-0.0063 (6)	0.0029 (6)	-0.0003 (7)
0.0470 (7)	0.0417 (7)	0.0671 (9)	0.0048 (6)	-0.0129 (6)	-0.0055 (7)
0.0627 (8)	0.0956 (12)	0.0762 (10)	0.0009 (8)	0.0177 (7)	0.0033 (8)
0.0485 (8)	0.0746 (10)	0.0523 (8)	-0.0128 (7)	0.0052 (6)	-0.0119 (7)
0.0364 (7)	0.0464 (8)	0.0484 (8)	0.0006 (6)	0.0043 (6)	-0.0021 (7)
0.0415 (8)	0.0411 (8)	0.0505 (9)	0.0025 (6)	-0.0017 (6)	-0.0028 (7)
0.0411 (8)	0.0505 (9)	0.0462 (8)	-0.0019 (6)	0.0054 (6)	-0.0053 (7)
0.0381 (7)	0.0426 (8)	0.0556 (9)	0.0010 (6)	0.0006 (6)	0.0021 (7)
0.0412 (8)	0.0530 (9)	0.0507 (9)	-0.0044 (7)	0.0079 (7)	-0.0017 (7)
0.0483 (8)	0.0418 (8)	0.0469 (8)	-0.0017 (6)	-0.0012 (7)	-0.0014 (7)
0.0509 (9)	0.0603 (10)	0.0511 (9)	0.0002 (8)	0.0010 (7)	-0.0055 (8)
0.0487 (9)	0.0498 (10)	0.0647 (11)	-0.0001 (7)	-0.0010 (8)	-0.0008 (8)
0.0522 (9)	0.0434 (9)	0.0548 (10)	0.0044 (7)	-0.0051 (7)	0.0049 (7)
0.0464 (9)	0.0543 (10)	0.0596 (10)	0.0001 (7)	0.0067 (7)	-0.0062 (8)
0.0464 (8)	0.0418 (8)	0.0571 (10)	-0.0062 (7)	0.0046 (7)	-0.0027 (7)
0.0530 (9)	0.0629 (11)	0.0530 (10)	0.0075 (8)	0.0001 (8)	-0.0029 (8)
0.0464 (9)	0.0667 (11)	0.0500 (9)	-0.0082 (8)	0.0074 (7)	-0.0037 (8)
0.0576 (10)	0.0627 (11)	0.0527 (10)	-0.0075 (8)	0.0055 (8)	0.0019 (8)
	U^{11} 0.0392 (7) 0.0643 (8) 0.0838 (16) 0.0454 (7) 0.0470 (7) 0.0627 (8) 0.0485 (8) 0.0364 (7) 0.0415 (8) 0.0411 (8) 0.0381 (7) 0.0412 (8) 0.0483 (8) 0.0509 (9) 0.0487 (9) 0.0464 (9) 0.0464 (9) 0.0464 (9) 0.0576 (10)	U^{11} U^{22} 0.0392 (7) 0.0522 (8) 0.0643 (8) 0.1061 (12) 0.0838 (16) 0.117 (2) 0.0454 (7) 0.0602 (9) 0.0470 (7) 0.0417 (7) 0.0627 (8) 0.0956 (12) 0.0485 (8) 0.0746 (10) 0.0364 (7) 0.0464 (8) 0.0415 (8) 0.0411 (8) 0.0415 (8) 0.0411 (8) 0.0415 (8) 0.0411 (8) 0.0411 (8) 0.0505 (9) 0.0381 (7) 0.0426 (8) 0.0412 (8) 0.0530 (9) 0.0483 (8) 0.0418 (8) 0.0509 (9) 0.0603 (10) 0.0487 (9) 0.0498 (10) 0.0522 (9) 0.0434 (9) 0.0464 (8) 0.0418 (8) 0.0530 (9) 0.0629 (11) 0.0464 (9) 0.0667 (11) 0.0576 (10) 0.0627 (11)	U^{11} U^{22} U^{33} $0.0392 (7)$ $0.0522 (8)$ $0.0498 (8)$ $0.0643 (8)$ $0.1061 (12)$ $0.0574 (8)$ $0.0838 (16)$ $0.117 (2)$ $0.0560 (12)$ $0.0454 (7)$ $0.0602 (9)$ $0.0582 (9)$ $0.0470 (7)$ $0.0417 (7)$ $0.0671 (9)$ $0.0627 (8)$ $0.0956 (12)$ $0.0762 (10)$ $0.0485 (8)$ $0.0746 (10)$ $0.0523 (8)$ $0.0364 (7)$ $0.0464 (8)$ $0.0484 (8)$ $0.0415 (8)$ $0.0411 (8)$ $0.0505 (9)$ $0.0411 (8)$ $0.0505 (9)$ $0.0462 (8)$ $0.0381 (7)$ $0.0426 (8)$ $0.0556 (9)$ $0.0483 (8)$ $0.0418 (8)$ $0.0469 (8)$ $0.0509 (9)$ $0.0603 (10)$ $0.0511 (9)$ $0.0487 (9)$ $0.0434 (9)$ $0.0548 (10)$ $0.0464 (8)$ $0.0418 (8)$ $0.0571 (10)$ $0.0530 (9)$ $0.0629 (11)$ $0.0530 (10)$ $0.0464 (9)$ $0.0667 (11)$ $0.0500 (9)$ $0.0464 (9)$ $0.0667 (11)$ $0.0527 (10)$	U^{11} U^{22} U^{33} U^{12} $0.0392 (7)$ $0.0522 (8)$ $0.0498 (8)$ $-0.0011 (6)$ $0.0643 (8)$ $0.1061 (12)$ $0.0574 (8)$ $-0.0312 (8)$ $0.0838 (16)$ $0.117 (2)$ $0.0560 (12)$ $0.0424 (15)$ $0.0454 (7)$ $0.0602 (9)$ $0.0582 (9)$ $-0.0063 (6)$ $0.0470 (7)$ $0.0417 (7)$ $0.0671 (9)$ $0.0048 (6)$ $0.0627 (8)$ $0.0956 (12)$ $0.0762 (10)$ $0.0009 (8)$ $0.0485 (8)$ $0.0746 (10)$ $0.0523 (8)$ $-0.0128 (7)$ $0.0364 (7)$ $0.0464 (8)$ $0.0484 (8)$ $0.0006 (6)$ $0.0415 (8)$ $0.0411 (8)$ $0.0505 (9)$ $0.0025 (6)$ $0.0411 (8)$ $0.0505 (9)$ $0.0462 (8)$ $-0.0019 (6)$ $0.0381 (7)$ $0.0426 (8)$ $0.0556 (9)$ $0.0010 (6)$ $0.0483 (8)$ $0.0418 (8)$ $0.0469 (8)$ $-0.0017 (6)$ $0.0509 (9)$ $0.0603 (10)$ $0.0511 (9)$ $0.0002 (8)$ $0.0487 (9)$ $0.0434 (9)$ $0.0548 (10)$ $0.0044 (7)$ $0.0464 (9)$ $0.0543 (10)$ $0.0576 (10)$ $0.0001 (7)$ $0.0464 (9)$ $0.0667 (11)$ $0.0500 (9)$ $-0.0082 (8)$ $0.0464 (9)$ $0.0667 (11)$ $0.0527 (10)$ $-0.0075 (8)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0392(7)$ $0.0522(8)$ $0.0498(8)$ $-0.0011(6)$ $0.0035(6)$ $0.0643(8)$ $0.1061(12)$ $0.0574(8)$ $-0.0312(8)$ $0.0041(6)$ $0.0838(16)$ $0.117(2)$ $0.0560(12)$ $0.0424(15)$ $-0.0093(11)$ $0.0454(7)$ $0.0602(9)$ $0.0582(9)$ $-0.0063(6)$ $0.0029(6)$ $0.0470(7)$ $0.0417(7)$ $0.0671(9)$ $0.0048(6)$ $-0.0129(6)$ $0.0627(8)$ $0.0956(12)$ $0.0762(10)$ $0.0009(8)$ $0.0177(7)$ $0.0485(8)$ $0.0746(10)$ $0.0523(8)$ $-0.0128(7)$ $0.0052(6)$ $0.0364(7)$ $0.0464(8)$ $0.0484(8)$ $0.0006(6)$ $0.0043(6)$ $0.0411(8)$ $0.0505(9)$ $0.0025(6)$ $-0.0017(6)$ $0.0411(8)$ $0.0505(9)$ $0.0010(6)$ $0.0006(6)$ $0.0412(8)$ $0.0530(9)$ $0.0507(9)$ $-0.0044(7)$ $0.0079(7)$ $0.0483(8)$ $0.0418(8)$ $0.0469(8)$ $-0.0017(6)$ $-0.0012(7)$ $0.0487(9)$ $0.0603(10)$ $0.0511(9)$ $0.0002(8)$ $0.0010(7)$ $0.0487(9)$ $0.0434(9)$ $0.0548(10)$ $0.0044(7)$ $-0.0051(7)$ $0.0464(9)$ $0.0543(10)$ $0.0596(10)$ $0.0001(7)$ $-0.0051(7)$ $0.0464(9)$ $0.0627(11)$ $0.0530(10)$ $0.0075(8)$ $0.0001(8)$ $0.0530(9)$ $0.0629(11)$ $0.0530(10)$ $0.0075(8)$ $0.0001(8)$ $0.0576(10)$ $0.0627(11)$ $0.0527(10)$ $-0.0075(8)$ $0.0055(8)$

supporting information

C17	0.0459 (8)	0.0429 (8)	0.0511 (9)	-0.0043 (7)	0.0052 (7)	0.0030 (7)
C40	0.0517 (9)	0.0536 (10)	0.0576 (10)	-0.0033 (7)	0.0046 (8)	-0.0090 (8)
C38	0.0467 (9)	0.0546 (10)	0.0509 (9)	-0.0070 (7)	0.0045 (7)	-0.0031 (7)
C18	0.0498 (9)	0.0407 (8)	0.0507 (9)	0.0024 (7)	-0.0009 (7)	0.0056 (7)
C12	0.0527 (9)	0.0535 (10)	0.0501 (9)	0.0021 (7)	0.0032 (7)	0.0005 (8)
C2	0.0507 (9)	0.0490 (9)	0.0596 (10)	0.0017 (7)	0.0057 (7)	-0.0010 (8)
C11	0.0525 (10)	0.0597 (11)	0.0734 (12)	0.0094 (8)	0.0130 (9)	-0.0049 (9)
C14	0.0529 (9)	0.0380 (8)	0.0637 (10)	-0.0046 (7)	-0.0048 (8)	0.0051 (7)
C6	0.0512 (10)	0.0577 (11)	0.0738 (12)	-0.0053 (8)	0.0085 (9)	-0.0066 (9)
C44	0.0460 (9)	0.0674 (12)	0.0600 (11)	-0.0042 (8)	0.0076 (8)	-0.0023 (9)
C41	0.0450 (8)	0.0571 (10)	0.0537 (9)	-0.0073 (7)	0.0047 (7)	-0.0001 (8)
C50	0.0475 (9)	0.0579 (11)	0.0757 (13)	-0.0002 (8)	0.0039 (8)	0.0104 (10)
C9	0.0566 (10)	0.0810 (14)	0.0599 (11)	0.0139 (10)	-0.0090 (9)	0.0049 (10)
C27	0.0554 (10)	0.0523 (10)	0.0636 (11)	-0.0042 (8)	0.0074 (8)	0.0057 (8)
C43	0.0554 (10)	0.0631 (11)	0.0630 (11)	-0.0019 (8)	0.0092 (8)	-0.0172 (9)
C31	0.0565 (10)	0.0492 (10)	0.0684 (11)	-0.0023 (8)	-0.0019 (9)	0.0008 (8)
C30	0.0488 (10)	0.0493 (10)	0.1082 (18)	0.0018 (8)	-0.0011 (10)	-0.0123 (11)
C28	0.0740 (13)	0.0618 (12)	0.0772 (13)	-0.0143 (10)	0.0252 (11)	0.0013 (10)
C46	0.0661 (12)	0.0793 (14)	0.0757 (14)	0.0055 (10)	-0.0050 (10)	-0.0161 (12)
C29	0.0601 (12)	0.0543 (11)	0.1110 (19)	-0.0119 (9)	0.0310 (12)	-0.0178 (12)
C3	0.0758 (13)	0.0549 (11)	0.0682 (12)	0.0126 (9)	0.0038 (10)	-0.0106 (9)
C22	0.0696 (12)	0.0754 (13)	0.0517 (10)	-0.0030 (10)	-0.0071 (9)	0.0001 (9)
C42	0.0463 (9)	0.0679 (12)	0.0672 (11)	0.0000 (8)	0.0097 (8)	-0.0129 (9)
C24	0.0500 (10)	0.0926 (16)	0.0674 (13)	-0.0241 (10)	0.0064 (9)	-0.0085 (11)
C10	0.0463 (9)	0.0671 (12)	0.0825 (14)	0.0162 (8)	0.0002 (9)	0.0043 (11)
C23	0.0538 (10)	0.0930 (16)	0.0644 (12)	-0.0107 (10)	-0.0088 (9)	-0.0120 (11)
C37	0.0570 (10)	0.0642 (12)	0.0691 (12)	-0.0007 (9)	-0.0039 (9)	-0.0094 (10)
C33	0.0802 (14)	0.0755 (14)	0.0623 (12)	-0.0020 (11)	0.0149 (10)	0.0035 (10)
C4	0.0904 (16)	0.0478 (11)	0.0958 (17)	-0.0088 (11)	-0.0037 (13)	-0.0152 (11)
C36	0.0690 (13)	0.0803 (15)	0.0833 (16)	0.0147 (11)	-0.0211 (12)	-0.0294 (13)
C5	0.0685 (13)	0.0657 (13)	0.1025 (17)	-0.0241 (11)	0.0046 (12)	-0.0100 (12)
C49	0.0499 (11)	0.0879 (17)	0.113 (2)	-0.0064 (11)	0.0006 (12)	0.0179 (15)
C47	0.0868 (17)	0.0775 (16)	0.1023 (19)	0.0035 (13)	-0.0287 (15)	-0.0260 (14)
C34	0.0930 (17)	0.114 (2)	0.0592 (13)	0.0266 (16)	0.0154 (12)	0.0115 (14)
C48	0.0638 (14)	0.0815 (16)	0.132 (2)	-0.0167 (12)	-0.0281 (15)	0.0068 (16)

Geometric parameters (Å, °)

N2—C19	1.283 (2)	C18—H18	0.9300
N2—C16	1.4173 (19)	C12—C11	1.382 (2)
O1—C25	1.355 (2)	C12—H12	0.9300
01—H1	0.8200	C2—C3	1.385 (3)
C35—C34	1.366 (4)	C2—H2A	0.9300
C35—C36	1.368 (4)	C11—C10	1.376 (3)
С35—Н35	0.9300	C11—H11	0.9300
N4—C44	1.279 (2)	C14—H14	0.9300
N4—C41	1.415 (2)	C6—C5	1.384 (3)
N1—C13	1.4115 (19)	С6—Н6	0.9300

supporting information

N1—C1	1.421 (2)	C44—H44	0.9300
N1—C7	1.427 (2)	C41—C42	1.384 (3)
O2—C50	1.342 (2)	C50—C49	1.390 (3)
O2—H2	0.8200	C9—C10	1.371 (3)
N3—C38	1.415 (2)	С9—Н9	0.9300
N3—C26	1.418 (2)	C27—C28	1.377 (3)
N3—C32	1.424 (2)	C27—H27	0.9300
C16—C17	1.387 (2)	C43—C42	1.376 (3)
C16—C15	1.388 (2)	C43—H43	0.9300
C13—C18	1.389 (2)	$C_{31} - C_{30}$	1.380 (3)
C13—C14	1 393 (2)	C31—H31	0.9300
C_{20} C_{21}	1.393(2)	C_{30} C_{29}	1.371(3)
C_{20} C_{21}	1 399 (2)	C_{30} H_{30}	0.9300
C_{20} C_{23}	1.599(2) 1 447(2)	C_{28} C_{29}	1.371(3)
$C_{20} = C_{12}$	1.447(2) 1 380(2)	C28—H28	0.9300
C7 - C8	1.380(2) 1 383(2)	$C_{20} = 1120$ $C_{46} = C_{47}$	1.374(3)
$C_1 = C_0$	0.0300	$C_{46} = H_{46}$	0.9300
C_{1}	1.391(2)	C_{40}	0.9300
C1 = C0	1.301(2) 1.385(2)	C_{29} C_{4}	0.9300
$C_1 - C_2$	1.303(2)	$C_3 = U_4$	1.301(3)
C_{32} C_{33}	1.378(3) 1.280(2)	C3—H3	0.9300
C_{32}	1.380(3)	C22—C23	1.372(3)
C45 - C46	1.400 (3)	C22—H22	0.9300
C45—C50	1.402 (3)	C42—H42	0.9300
C45—C44	1.450 (2)	C24—C23	1.377 (3)
C15—C14	1.377 (2)	C24—H24	0.9300
C15—H15	0.9300	С10—Н10	0.9300
C39—C40	1.381 (2)	C23—H23	0.9300
C39—C38	1.392 (2)	C37—C36	1.391 (3)
С39—Н39	0.9300	С37—Н37	0.9300
C26—C27	1.381 (2)	C33—C34	1.390 (3)
C26—C31	1.394 (2)	С33—Н33	0.9300
C8—C9	1.385 (3)	C4—C5	1.372 (3)
С8—Н8	0.9300	C4—H4	0.9300
C25—C24	1.387 (2)	С36—Н36	0.9300
C21—C22	1.369 (3)	С5—Н5	0.9300
C21—H21	0.9300	C49—C48	1.367 (4)
C17—C18	1.379 (2)	C49—H49	0.9300
С17—Н17	0.9300	C47—C48	1.380 (4)
C40—C41	1.391 (3)	C47—H47	0.9300
C40—H40	0.9300	C34—H34	0.9300
C38—C43	1.392 (3)	C48—H48	0.9300
C19—N2—C16	121.25 (14)	С1—С6—Н6	120.0
С25—О1—Н1	109.5	С5—С6—Н6	120.0
C34—C35—C36	119.5 (2)	N4—C44—C45	121.68 (17)
С34—С35—Н35	120.2	N4—C44—H44	119.2
С36—С35—Н35	120.2	C45—C44—H44	119.2
C44—N4—C41	121.57 (16)	C42—C41—C40	118.26 (15)

a		ALL ALL 31	
C13—N1—C1	120.37 (13)	C42—C41—N4	118.07 (16)
C13—N1—C7	119.58 (13)	C40—C41—N4	123.53 (16)
C1—N1—C7	119.90 (13)	O2—C50—C49	119.3 (2)
С50—О2—Н2	109.5	O2—C50—C45	121.35 (16)
C38—N3—C26	120.95 (14)	C49—C50—C45	119.3 (2)
C38—N3—C32	120.38 (14)	C10—C9—C8	120.57 (18)
C26—N3—C32	118.64 (13)	С10—С9—Н9	119.7
C17—C16—C15	118.26 (14)	С8—С9—Н9	119.7
C17—C16—N2	117.98 (14)	C28—C27—C26	119.87 (18)
C15—C16—N2	123.72 (14)	С28—С27—Н27	120.1
C18—C13—C14	118.24 (14)	С26—С27—Н27	120.1
C18—C13—N1	120.63 (14)	C42—C43—C38	120.32 (17)
C14—C13—N1	121.13 (15)	C42—C43—H43	119.8
C21—C20—C25	118.23 (15)	C38—C43—H43	119.8
C21—C20—C19	120.08 (15)	C30—C31—C26	119.92 (19)
C25—C20—C19	121.68 (15)	С30—С31—Н31	120.0
С12—С7—С8	119.53 (15)	C26—C31—H31	120.0
C12—C7—N1	120.49 (15)	C29—C30—C31	120.57 (19)
C8—C7—N1	119.98 (16)	С29—С30—Н30	119.7
N2—C19—C20	122.16 (15)	С31—С30—Н30	119.7
N2—C19—H19	118.9	C29—C28—C27	121.1 (2)
С20—С19—Н19	118.9	С29—С28—Н28	119.5
C6—C1—C2	118.92 (16)	С27—С28—Н28	119.5
C6-C1-N1	120.64 (16)	C47—C46—C45	120.9 (2)
$C_2 - C_1 - N_1$	120.44 (15)	C47—C46—H46	119.6
$C_{33} = C_{32} = C_{37}$	119 53 (19)	C45—C46—H46	119.6
$C_{33} = C_{32} = N_3$	121 15 (18)	C_{30} C_{29} C_{28}	119 42 (19)
C_{37} C_{32} N ₃	119 32 (18)	C_{30} C_{29} H_{29}	120.3
$C_{46} - C_{45} - C_{50}$	119.02 (18)	C_{28} C_{29} H_{29}	120.3
$C_{46} = C_{45} = C_{36}$	119.56 (18)	$C_{20} = C_{20} = C_{20}$	120.3 120.7(2)
$C_{10} = C_{13} = C_{14}$	121 42 (17)	C4—C3—H3	110.6
C_{14} C_{15} C_{16}	121.42(17) 120.70(15)	$C_{1}^{2} = C_{2}^{3} = H_{2}^{3}$	119.0
C14 - C15 - C10	120.79 (15)	$C_2 = C_3 = 115$	119.0
$C_{14} = C_{15} = H_{15}$	119.0	$C_{21} = C_{22} = C_{23}$	119.31 (19)
$C_{10} = C_{13} = H_{13}$	119.0	$C_{21} = C_{22} = H_{22}$	120.3
C40 - C39 - C38	120.99 (10)	$C_{23} = C_{22} = H_{22}$	120.3
$C_{40} = C_{59} = H_{59}$	119.5	$C_{43} = C_{42} = C_{41}$	121.01 (17)
С38—С39—Н39	119.5	C43 - C42 - H42	119.2
$C_2/-C_26-C_31$	119.14 (17)	C41 - C42 - H42	119.2
$C_2/-C_{26}-N_3$	120.91 (15)	$C_{23} = C_{24} = C_{25}$	120.10 (18)
$C_{31} = C_{26} = N_{3}$	119.94 (16)	C23—C24—H24	119.9
C7—C8—C9	119.82 (18)	C25—C24—H24	119.9
С/—С8—Н8	120.1	C9—C10—C11	119.59 (17)
C9—C8—H8	120.1	С9—С10—Н10	120.2
01	118.70 (17)	C11—C10—H10	120.2
O1—C25—C20	121.50 (15)	C22—C23—C24	120.84 (18)
C24—C25—C20	119.80 (17)	С22—С23—Н23	119.6
C22—C21—C20	121.70 (18)	C24—C23—H23	119.6
C22—C21—H21	119.2	C32—C37—C36	119.8 (2)

C20—C21—H21	119.2	С32—С37—Н37	120.1
C18—C17—C16	121.19 (15)	С36—С37—Н37	120.1
C18—C17—H17	119.4	C32—C33—C34	119.9 (2)
C16—C17—H17	119.4	С32—С33—Н33	120.1
C39—C40—C41	120.48 (17)	С34—С33—Н33	120.1
С39—С40—Н40	119.8	C3—C4—C5	119.5 (2)
C41—C40—H40	119.8	C3—C4—H4	120.2
C43—C38—C39	118.32 (15)	C5—C4—H4	120.2
C43—C38—N3	120.70 (16)	C35—C36—C37	120.6 (2)
C39—C38—N3	120.98 (16)	С35—С36—Н36	119.7
C17—C18—C13	120.57 (15)	С37—С36—Н36	119.7
C17—C18—H18	119.7	C4-C5-C6	120.6 (2)
C13—C18—H18	119.7	C4—C5—H5	1197
C7-C12-C11	120.09(17)	C6-C5-H5	119.7
C7-C12-H12	120.0	$C_{48} - C_{49} - C_{50}$	120.3(2)
$C_{11} - C_{12} - H_{12}$	120.0	C48 - C49 - H49	119.9
C_{3} C_{2} C_{1}	120.0 120.12(17)	C_{50} C_{49} H_{49}	119.9
$C_3 - C_2 - H_2 \Delta$	110.0	$C_{46} - C_{47} - C_{48}$	119.9 119.2(2)
C1 - C2 - H2A	110.0	$C_{46} - C_{47} - C_{48}$	119.2 (2)
C10-C11-C12	120.39 (18)	$C_{48} = C_{47} = H_{47}$	120.4
C10-C11-H11	110.8	C_{35} C_{34} C_{33}	120.4
C_{12} C_{11} H_{11}	119.8	$C_{35} = C_{34} = H_{34}$	110.7
C12 - C14 - C13	120.93 (15)	C33_C34_H34	119.7
$C_{15} = C_{14} = C_{15}$	110 5	$C_{33} = C_{34} = 1134$	119.7 121.4(2)
$C_{13} = C_{14} = H_{14}$	119.5	$C_{49} = C_{48} = C_{47}$	121.4(2)
$C_{13} - C_{14} - H_{14}$	119.3	C47 = C48 = H48	119.3
0-0-05	120.00 (19)	C47-C40-1148	119.3
C19—N2—C16—C17	-153.60 (16)	N1-C13-C14-C15	-179.37 (16)
C19—N2—C16—C15	28.7 (2)	C2-C1-C6-C5	-0.3 (3)
C1—N1—C13—C18	-144.94 (17)	N1-C1-C6-C5	-179.68 (19)
C7—N1—C13—C18	39.5 (2)	C41—N4—C44—C45	176.17 (17)
C1—N1—C13—C14	34.5 (3)	C46—C45—C44—N4	179.45 (19)
C7—N1—C13—C14	-141.05 (17)	C50—C45—C44—N4	-1.4 (3)
C13—N1—C7—C12	44.6 (2)	C39—C40—C41—C42	0.5 (3)
C1—N1—C7—C12	-130.95 (18)	C39—C40—C41—N4	-175.25 (17)
C13—N1—C7—C8	-135.76 (18)	C44—N4—C41—C42	154.47 (19)
C1—N1—C7—C8	48.6 (2)	C44—N4—C41—C40	-29.8 (3)
C16—N2—C19—C20	-175.25 (15)	C46—C45—C50—O2	178.58 (19)
C21—C20—C19—N2	178.81 (17)	C44—C45—C50—O2	-0.6 (3)
C25—C20—C19—N2	0.3 (3)	C46—C45—C50—C49	-0.4(3)
C13—N1—C1—C6	-137.97 (18)	C44—C45—C50—C49	-179.59 (19)
C7—N1—C1—C6	37.6 (2)	C7—C8—C9—C10	-0.6 (3)
C13—N1—C1—C2	42.6 (2)	C31—C26—C27—C28	0.0 (3)
C7—N1—C1—C2	-141.80 (17)	N3—C26—C27—C28	178.53 (17)
C38—N3—C32—C33	44.7 (3)	C39—C38—C43—C42	1.7 (3)
C26—N3—C32—C33	-133.12 (19)	N3—C38—C43—C42	-177.35 (18)
C38—N3—C32—C37	-135.65 (19)	C27—C26—C31—C30	0.1 (3)
C26—N3—C32—C37	46.5 (2)	N3—C26—C31—C30	-178.45 (16)
	× /		

C17—C16—C15—C14	1.6 (3)	C26—C31—C30—C29	-0.1 (3)
N2-C16-C15-C14	179.25 (16)	C26—C27—C28—C29	-0.1 (3)
C38—N3—C26—C27	43.8 (2)	C50—C45—C46—C47	-0.4 (3)
C32—N3—C26—C27	-138.44 (18)	C44—C45—C46—C47	178.8 (2)
C38—N3—C26—C31	-137.73 (18)	C31—C30—C29—C28	0.0 (3)
C32—N3—C26—C31	40.1 (2)	C27—C28—C29—C30	0.1 (3)
C12—C7—C8—C9	1.4 (3)	C1—C2—C3—C4	-1.4 (3)
N1—C7—C8—C9	-178.22 (18)	C20—C21—C22—C23	-0.2 (3)
C21—C20—C25—O1	179.59 (18)	C38—C43—C42—C41	-2.1 (3)
C19—C20—C25—O1	-1.8 (3)	C40—C41—C42—C43	0.9 (3)
C21—C20—C25—C24	-0.6 (3)	N4—C41—C42—C43	176.91 (18)
C19—C20—C25—C24	177.94 (18)	O1—C25—C24—C23	178.9 (2)
C25—C20—C21—C22	1.2 (3)	C20—C25—C24—C23	-0.8 (3)
C19—C20—C21—C22	-177.42 (18)	C8—C9—C10—C11	-0.6 (3)
C15—C16—C17—C18	-0.8 (2)	C12-C11-C10-C9	0.9 (3)
N2-C16-C17-C18	-178.64 (15)	C21—C22—C23—C24	-1.3 (3)
C38—C39—C40—C41	-0.8 (3)	C25—C24—C23—C22	1.8 (4)
C40—C39—C38—C43	-0.3 (3)	C33—C32—C37—C36	-0.1 (3)
C40—C39—C38—N3	178.76 (17)	N3—C32—C37—C36	-179.76 (18)
C26—N3—C38—C43	-148.57 (18)	C37—C32—C33—C34	0.4 (3)
C32—N3—C38—C43	33.7 (3)	N3—C32—C33—C34	-179.92 (19)
C26—N3—C38—C39	32.4 (3)	C2—C3—C4—C5	0.2 (4)
C32—N3—C38—C39	-145.35 (18)	C34—C35—C36—C37	-0.3 (3)
C16—C17—C18—C13	-0.3 (3)	C32—C37—C36—C35	0.0 (3)
C14—C13—C18—C17	0.6 (3)	C3—C4—C5—C6	1.1 (4)
N1—C13—C18—C17	-179.89 (16)	C1—C6—C5—C4	-1.0 (4)
C8—C7—C12—C11	-1.0 (3)	O2—C50—C49—C48	-178.2 (2)
N1—C7—C12—C11	178.60 (16)	C45—C50—C49—C48	0.8 (3)
C6—C1—C2—C3	1.5 (3)	C45—C46—C47—C48	0.9 (4)
N1—C1—C2—C3	-179.12 (17)	C36—C35—C34—C33	0.6 (4)
C7—C12—C11—C10	-0.2 (3)	C32—C33—C34—C35	-0.7 (4)
C16—C15—C14—C13	-1.2 (3)	C50—C49—C48—C47	-0.3 (4)
C18—C13—C14—C15	0.1 (3)	C46—C47—C48—C49	-0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N2	0.82	1.88	2.609 (2)	147
O2—H2…N4	0.82	1.86	2.590 (2)	148