Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5-Phenyl-1,2,5-dithiazepane

Lauren A. Mitchell, Michelle L. Mejía, Seyma Gören Keskin and Bradley J. Holliday*

Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin, Texas 78712, USA
Correspondence e-mail: bholliday@cm.utexas.edu
Received 23 September 2013; accepted 29 January 2014

Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.024 ; w R$ factor $=0.064 ;$ data-to-parameter ratio $=14.9$.

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NS}_{2}$, the seven-membered ring adopts a chair conformation. The $\mathrm{S}-\mathrm{S}$ bond length is $2.0406(5) \AA$ and the $\mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{C}$ torsion angle is $-83.89(7)^{\circ}$. The amine group is $s p^{2}$-hybridized. In the crystal, molecules are linked into chains along [001] by weak intermolecular S . . S contacts of 3.5246 (5) A.

Related literature

For properties of disulfide compounds, see: Pazderlová et al. (2012). For similar compounds, see: Roze et al. (2006); Bulavin (1971). For related structures, see: Pickardt et al. (2006); Capasso et al. (1977). For standard bond lengths, see: Allen et al. (1987). For previous reports of S. . S interactions, see: Chen et al. (2009); Reinheimer et al. (2009). For the calculation of the functionality of the amine group in terms of hybridization, see: Allen et al. (1995). For the synthesis, see: Elderfield et al. (1958).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NS}_{2}$
$M_{r}=211.33$

$$
\begin{aligned}
& \text { Monoclinic, } P 2_{\downarrow} / c \\
& a=9.5760(2) \mathrm{A}
\end{aligned}
$$

$$
\begin{aligned}
& b=12.2310(3) \AA \\
& c=9.9811(2) \AA \\
& \beta=120.392(2)^{\circ} \\
& V=1008.38(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Nonius Kappa CCD diffractometer Absorption correction: multi-scan (DENZO and SCALEPACK;
Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.856, T_{\text {max }}=1$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.03$
1763 reflections

Mo $K \alpha$ radiation
$\mu=0.48 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
$0.50 \times 0.30 \times 0.20 \mathrm{~mm}$

3055 measured reflections 1763 independent reflections 1675 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.012$

> 118 parameters
> H -atom parameters constrained
> $\Delta \rho_{\max }=0.25 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999) within WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

The Welch Foundation (grant No. F-1631) and the National Science Foundation (grant No. CHE-0847763) are acknowledged for financial support of this research.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5658).

References

Allen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. \& Schwalbe, C. H. (1995). Acta Cryst. B51, 1068-1081.

Allen, F. H., Kennard, O. \& Watson, D. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bulavin, L. G. (1971). Zh. Org. Khim. 7, 2604-2610.
Capasso, S., Mattia, C., Mazzarella, L. \& Puliti, R. (1977). Acta Cryst. B33, 2080-2083.
Chen, H.-F., Fang, Q., Yu, W.-T., Batsanov, A. S. \& Howard, J. A. K. (2009). Acta Cryst. C65, o198-o201.
Elderfield, R. C., Covey, I. S., Geiduschek, J. B., Meyer, W. L., Ross, A. B. \& Ross, J. H. (1958). J. Org. Chem. 23, 1749-1753.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Nonius (1998). KappaCCD Software. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pazderlová, M., Bednárová, L., Dlouhá, H., Flegel, M., Lebl, M., Hlaváček, J., Setnička, V., Urbanová, M., Hynie, S., Klenerová, V., Baumruk, V. \& Maloň, P. (2012). Biopolymers, 97, 923-932.

Pickardt, J., von Chrzanowski, L. \& Borowski, M. (2006). Acta Cryst. E62, o3401-o3402.
Reinheimer, E. W., Fourmigué, M. \& Dunbar, K. R. (2009). J. Chem. Crystallogr. 39, 723-729.
Roze, M., Kirichenko, N. \& Neilands, O. (2006). Latv. Kim. Z. 4, 351-355.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o285 [doi:10.1107/S1600536814002207]

5-Phenyl-1,2,5-dithiazepane

Lauren A. Mitchell, Michelle L. Mejía, Seyma Gören Keskin and Bradley J. Holliday

S1. Comment

Cyclic disulfides are of special interest because they are often a key component in many biologically relevant peptides (Pazderlová et al., 2012). Because of this disulfide compounds are regularly found to have pharmacological activities. Herein is described the crystallographic properties of a 7-membered cyclic disulfide compound. The molecular structure of the title compound can be seen in Fig. 1.
The $\mathrm{S}-\mathrm{S}$ bond distance is 2.0406 (5) \AA. This value is comparable to other disulfide compounds. The mean average bond length for $\mathrm{C} — \mathrm{~S}-\mathrm{S}-\mathrm{C}$ bonds from 99 samples, reported by (Allen et al., 1987) is $2.048 \AA$. The torsion in the C-S $— \mathrm{~S}-\mathrm{C}$ bonds is $-83.89(7)^{\circ}$, this compares similarly to the $\mathrm{C}-\mathrm{S}-\mathrm{S}-\mathrm{C}$ torsion in the 7 -membered ring disulfide 1,2,4,6-tetrathiacycloheptane reported in (Pickardt et al., 2006), which has a C-S—S—C torsion of -89.4 (2) .

The seven-membered ring adopts a chair conformation, as it does in the cyclic disulfide compound reported by Pickardt et al. (2006). The dominant intermolecular interactions are between $\mathrm{S} 1 \cdots \mathrm{~S} 2$ of symmetry-related molecules. The contacts have a distance of 3.5246 (5) \AA, this compares similarly to $S \cdots$ interactions observed perviously by Chen et al. (2009) and Reinheimer et al. (2009) which are 3.396 (1) - 3.470 (1) \AA and 3.580 (4) \AA respectively.

The pyramidality of the amine functionality, measured by $\chi \mathrm{n}$, the angle between the $\mathrm{C} 1-\mathrm{N} 1$ vector and the $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{C} 9$ plane, described by Allen et al. (1995), is $7.26(15)^{\circ}$, indicating that the hybridization of the nitrogen atoms is mainly $s p^{2}$ $\left(s p^{2} \chi_{\mathrm{n}} \simeq 0^{\circ}, s p^{3} \chi_{\mathrm{n}} \simeq 60^{\circ}\right)$.

S2. Experimental

The title compound was prepared from N, N-bis(2-chloroethyl)aniline which had been prepared following literature methods reported by Elderfield et al. (1958). $\mathrm{NaSH} \cdot \mathrm{H}_{2} \mathrm{O}(1.08 \mathrm{~g}, 14.78 \mathrm{mmol})$ was stirred in ethanol (20 ml) under an argon atmosphere for 1 hr . N, N-bis(2-chloroethyl)aniline ($0.5124 \mathrm{~g}, 2.35 \mathrm{mmol}$) was dissolved in ethanol (10 ml) under argon and then transferred into the $\mathrm{NaSH} \cdot \mathrm{H}_{2} \mathrm{O}$ solution via cannula. The reaction mixture was then heated to reflux for 24 hrs. The solvent volume was reduced by half in vacuo before degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ were added to the reaction flask and the product was extracted under argon. The organic phase was then transferred via cannula into a flask containing MgSO_{4}. The product was isolated by filtration and removal of the solvent under vacuum. The X-ray quality crystals were obtained from a saturated dichloromethane solution of the title compound upon standing at 263 K for several days. Yield $=83 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~m}, 4 \mathrm{H})$.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
Molecular structure of title compound. Ellipsoids are drawn at the 50\% probability level.

Figure 2
Part of the crystal structure viewed along the a axis. Interactions are shown between S 1 and S 2 of molecules related by the crystallographic c-glide.

5-Phenyl-1,2,5-dithiazepane

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NS}_{2}$
$M_{r}=211.33$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=9.5760(2) \AA$
$b=12.2310(3) \AA$
$c=9.9811$ (2) \AA
$\beta=120.392$ (2) ${ }^{\circ}$
$V=1008.38(4) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=448 \\
& D_{\mathrm{x}}=1.392 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71070 \AA \\
& \text { Cell parameters from } 1974 \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=0.48 \mathrm{~mm}^{-1} \\
& T=153 \mathrm{~K} \\
& \text { Block, white } \\
& 0.50 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius Kappa CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.856, T_{\text {max }}=1$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.03$
1763 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 3055 measured reflections
> 1763 independent reflections
> 1675 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.012$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=4.1^{\circ}$
> $h=-11 \rightarrow 11$
> $k=-12 \rightarrow 14$
> $l=-11 \rightarrow 11$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0266 P)^{2}+0.5691 P\right]\) where \(P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.002\)
\(\Delta \rho_{\text {max }}=0.25\) e \(^{-3}\)
\(\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \Sigma\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt)etc.and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$1.04272(4)$	$0.28440(3)$	$0.62971(4)$	$0.02268(12)$
S2	$1.07376(4)$	$0.34787(3)$	$0.83210(4)$	$0.02409(12)$
N1	$0.74239(13)$	$0.43703(9)$	$0.57782(13)$	$0.0190(3)$
C1	$0.65295(16)$	$0.42454(11)$	$0.65031(15)$	$0.0187(3)$
C2	$0.66903(17)$	$0.49796(12)$	$0.76593(16)$	$0.0218(3)$
H2	0.7434	0.5548	0.7965	0.026^{*}
C3	$0.57560(17)$	$0.48654(13)$	$0.83458(16)$	$0.0261(3)$
H3	0.5882	0.5360	0.9107	0.031^{*}
C4	$0.46349(18)$	$0.40283(13)$	$0.79229(17)$	$0.0282(3)$
H4	0.4006	0.3960	0.8386	0.034^{*}
C5	$0.44731(17)$	$0.32959(13)$	$0.67931(17)$	$0.0261(3)$
H5	0.3723	0.2732	0.6495	0.031^{*}
C6	$0.54029(17)$	$0.33875(12)$	$0.61020(16)$	$0.0223(3)$
H6	0.5285	0.2877	0.5362	0.027^{*}
C7	$0.72559(17)$	$0.36111(11)$	$0.45867(16)$	$0.0217(3)$

H7A	0.7562	0.3982	0.3915	0.026^{*}
H7B	0.6125	0.3407	0.3958	0.026^{*}
C8	$0.82641(17)$	$0.25754(11)$	$0.52070(17)$	$0.0224(3)$
H8A	0.8026	0.2096	0.4342	0.027^{*}
H8B	0.7956	0.2197	0.5873	0.027^{*}
C9	$0.87194(17)$	$0.51649(11)$	$0.63274(17)$	$0.0231(3)$
H9A	0.8296	0.5868	0.6406	0.028^{*}
H9B	0.9037	0.5236	0.5550	0.028^{*}
C10	$1.02434(18)$	$0.49172(12)$	$0.78971(17)$	$0.0259(3)$
H10A	1.0103	0.5229	0.8715	0.031^{*}
H10B	1.1157	0.5283	0.7926	0.031^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0207(2)$	$0.0222(2)$	$0.0268(2)$	$0.00209(13)$	$0.01317(16)$	$0.00058(13)$
S2	$0.0215(2)$	$0.0287(2)$	$0.0192(2)$	$-0.00065(14)$	$0.00822(15)$	$0.00285(13)$
N1	$0.0195(6)$	$0.0174(6)$	$0.0198(6)$	$-0.0004(4)$	$0.0097(5)$	$-0.0012(4)$
C1	$0.0171(7)$	$0.0180(7)$	$0.0177(6)$	$0.0048(5)$	$0.0062(5)$	$0.0045(5)$
C2	$0.0202(7)$	$0.0199(7)$	$0.0222(7)$	$0.0019(5)$	$0.0085(6)$	$0.0003(5)$
C3	$0.0253(7)$	$0.0307(8)$	$0.0217(7)$	$0.0072(6)$	$0.0115(6)$	$0.0004(6)$
C4	$0.0225(7)$	$0.0376(8)$	$0.0274(7)$	$0.0064(6)$	$0.0148(6)$	$0.0083(7)$
C5	$0.0178(7)$	$0.0270(8)$	$0.0296(8)$	$0.0004(6)$	$0.0090(6)$	$0.0063(6)$
C6	$0.0196(7)$	$0.0209(7)$	$0.0219(7)$	$0.0010(5)$	$0.0072(6)$	$0.0000(5)$
C7	$0.0223(7)$	$0.0235(7)$	$0.0180(7)$	$0.0018(6)$	$0.0091(6)$	$-0.0007(5)$
C8	$0.0215(7)$	$0.0206(7)$	$0.0242(7)$	$-0.0005(6)$	$0.0109(6)$	$-0.0044(6)$
C9	$0.0280(7)$	$0.0183(7)$	$0.0275(7)$	$-0.0024(6)$	$0.0173(6)$	$0.0002(6)$
C10	$0.0241(7)$	$0.0238(7)$	$0.0291(8)$	$-0.0048(6)$	$0.0130(6)$	$-0.0069(6)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C8	1.8171 (14)	C5-C6	1.379 (2)
S1-S2	2.0406 (5)	C5-H5	0.9300
S2-C10	1.8155 (15)	C6-H6	0.9300
N1-C1	1.3811 (18)	C7-C8	1.5216 (19)
N1-C7	1.4523 (18)	C7-H7A	0.9700
N1-C9	1.4478 (18)	C7-H7B	0.9700
C1-C2	1.408 (2)	C8-H8A	0.9700
C1-C6	1.410 (2)	C8-H8B	0.9700
C2-C3	1.382 (2)	C9-C10	1.537 (2)
C2-H2	0.9300	C9-H9A	0.9700
C3-C4	1.386 (2)	C9-H9B	0.9700
C3-H3	0.9300	C10-H10A	0.9700
C4-C5	1.386 (2)	C10-H10B	0.9700
C4-H4	0.9300		
C8-S1-S2	102.27 (5)	N1-C7-H7A	108.6
C10-S2-S1	104.34 (5)	C8-C7-H7A	108.6

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	121.14 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	121.04 (11)
C7-N1-C9	117.26 (11)
N1-C1-C2	121.28 (12)
N1-C1-C6	121.45 (12)
C2-C1-C6	117.26 (13)
C3-C2-C1	120.81 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6
C2-C3-C4	121.32 (14)
C2-C3-H3	119.3
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.3
C5-C4-C3	118.41 (14)
C5-C4-H4	120.8
C3-C4-H4	120.8
C6-C5-C4	121.30 (14)
C6-C5-H5	119.3
C4-C5-H5	119.3
C5-C6-C1	120.88 (14)
C5-C6-H6	119.6
C1-C6-H6	119.6
N1-C7-C8	114.49 (11)
C8-S1-S2-C10	-83.89 (7)
C7-N1-C1-C2	179.96 (12)
C9-N1-C1-C2	8.78 (19)
C7-N1-C1-C6	-0.92 (19)
C9-N1-C1-C6	-172.10 (12)
N1-C1-C2-C3	178.13 (12)
C6-C1-C2-C3	-1.0 (2)
C1-C2-C3-C4	0.0 (2)
C2-C3-C4-C5	0.4 (2)
C3-C4-C5-C6	0.2 (2)
C4-C5-C6-C1	-1.3 (2)

N1-C7-H7B	108.6
C8-C7-H7B	108.6
H7A-C7-H7B	107.6
C7-C8-S1	112.92 (10)
C7-C8-H8A	109.0
S1-C8-H8A	109.0
C7-C8-H8B	109.0
S1-C8-H8B	109.0
H8A-C8-H8B	107.8
N1-C9-C10	116.32 (11)
N1-C9-H9A	108.2
C10-C9-H9A	108.2
N1-C9-H9B	108.2
C10-C9-H9B	108.2
H9A-C9-H9B	107.4
C9-C10-S2	115.45 (10)
C9-C10-H10A	108.4
S2-C10-H10A	108.4
C9-C10-H10B	108.4
S2-C10-H10B	108.4
H10A-C10-H10B	107.5
N1-C1-C6-C5	-177.53 (12)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	1.6 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	-83.69 (15)
C9-N1-C7-C8	87.82 (15)
N1-C7-C8-S1	-62.44 (14)
S2-S1-C8-C7	73.74 (10)
C1-N1-C9-C10	69.91 (16)
C7-N1-C9-C10	-101.60 (14)
N1-C9-C10-S2	32.78 (16)
S1-S2-C10-C9	44.11 (12)

