organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate

Evgeny Bulatov,^{a,b} Dina Boyarskaya,^a Tatiana Chulkova^a* and Matti Haukka^b

^aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and ^bDepartment of Chemistry, University of Jyvaskyla, PO Box 35 FI-40014, Jyvaskyla, Finland Correspondence e-mail: t.chulkova@spbu.ru

Received 7 January 2014; accepted 1 February 2014

Key indicators: single-crystal X-ray study; T = 170 K; mean σ (C–C) = 0.002 Å; R factor = 0.064; wR factor = 0.204; data-to-parameter ratio = 37.4.

In the title compound, $C_{16}H_{11}NO_2 \cdot C_5H_9NO$, the dihedral angles between the maleimide and phenyl rings are 34.7 (2) and 64.8 (2)°. In the crystal, the 2,3-diphenylmaleimide and 1methylpyrrolidin-2-one molecules form centrosymmetrical dimers *via* pairs of strong N-H···O hydrogen bonds and π - π stacking interactions between the two neighboring maleimide rings [centroid-centroid distance = 3.495 (2) Å]. The dimers are further linked by weak C-H···O and C-H··· π hydrogen bonds into a three-dimensional framework.

Related literature

For general background to maleimides, see: Yeh *et al.* (2004); Billiet *et al.* (2011); Zhu *et al.* (2012); Parsons & Du Bois (2013). For the crystal structures of related compounds, see: Zhang *et al.* (2004); Mitzi & Afzali (2007).

Experimental

Crystal data $C_{16}H_{11}NO_2 \cdot C_5H_9NO$ $M_r = 348.39$ Monoclinic, $P2_1/n$ a = 13.1962 (3) Å b = 10.0002 (2) Å

b = 10.0002 (2) Ac = 13.5600 (3) Å $\beta = 100.469 (3)^{\circ}$ $V = 1759.65 (7) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 170 K $0.54 \times 0.40 \times 0.24 \text{ mm}$

22206 measured reflections

 $R_{\rm int} = 0.028$

8818 independent reflections

5708 reflections with $I > 2\sigma(I)$

Data collection

```
Agilent SuperNova (Single source
at offset, Eos) diffractometer
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2013)
T_{\rm min} = 0.815, T_{\rm max} = 1.000
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.064 & 236 \text{ parameters} \\ wR(F^2) &= 0.204 & \text{H-atom parameters constrained} \\ S &= 1.03 & \Delta\rho_{\text{max}} &= 0.63 \text{ e } \text{\AA}^{-3} \\ 8818 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.30 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg2 and Cg3 are the centroids of the C3-C8 and C10-C15 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O3^{i}$	0.88	1.95	2.7800 (15)	156
C5−H5···O1 ⁱⁱ	0.95	2.41	3.3639 (17)	179
$C21 - H21A \cdots O1^{iii}$	0.98	2.59	3.498 (2)	154
$C21 - H21B \cdots O1^{iv}$	0.98	2.73	3.436 (2)	129
$C15-H15\cdots Cg2^{v}$	0.95	2.96	3.8081 (14)	149
$C20-H20A\cdots Cg3^{iii}$	0.99	2.91	3.6508 (18)	133
	1 2	1		1 1

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *CrystalMaker* (CrystalMaker, 2011); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *SHELXLE* (Hübschle *et al.*, 2011).

The authors are obliged to the Ministry of Education and Science of the Russian Federation for the Scholarship of the President of the Russian Federation for Students and PhD Students Training Abroad (2013–2014).

Supporting information for this paper is available from the IUCr electronic archives (Reference: KQ2011).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Billiet, L., Gok, O., Dove, A. P., Sanyal, A., Nguyen, L.-T. T. & Du Prez, F. E. (2011). *Macromolecules*, 44, 7874–7878.
- CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281– 1284.
- Mitzi, D. B. & Afzali, A. (2007). Cryst. Growth Des. 7, 691-697.
- Parsons, W. H. & Du Bois, J. (2013). J. Am. Chem. Soc. 135, 10582-10585.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yeh, H.-C., Wu, W.-C., Wen, Y.-S., Dai, D.-C., Wang, J.-K. & Chen, C.-T. (2004). J. Org. Chem. 69, 6455–6462.
- Zhang, Z.-Q., Uth, S., Sandman, D. J. & Foxman, B. M. (2004). J. Phys. Org. Chem. 17, 769–776.
- Zhu, J., Waengler, C., Lennox, R. B. & Schirrmacher, R. (2012). *Langmuir*, 28, 5508–5512.

supporting information

Acta Cryst. (2014). E70, o260 [doi:10.1107/S1600536814002372]

2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate

Evgeny Bulatov, Dina Boyarskaya, Tatiana Chulkova and Matti Haukka

S1. Comment

Maleimide derivatives can be used as building blocks in the synthesis of a wide range of biologically active compounds (Parsons *et al.*, 2013), polymeric materials (Billiet *et al.*, 2011), nanoparticles (Zhu *et al.*, 2012), *etc.*

The present work describes the synthesis and crystal structure of 2,3-diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate, $C_{16}H_{11}NO_2C_5H_9NO$ (Fig. 1). The bond lengths and angles within the 2,3-diphenylmaleimide molecule (Table 1) are in a good agreement with those found in the related compounds (Zhang *et al.* (2004); Mitzi *et al.* (2007)). The dihedral angles between the maleimide and phenyl rings are 34.7 (2)° and 64.8 (2)°. In the crystal, the 2,3-diphenylmaleimide and 1-methylpyrrolidin-2-one molecules form centrosymmetrical dimeric associates *via* strong N—H···O hydrogen bonds (Table 2) and π - π stacking interactions between the two neighboring maleimide rings (the centroid-centroid distance is 3.495 (2) Å). Further the associates are linked by weak C—H···O (Table 2) and C—H··· π hydrogen bonds into three-dimensional framework (Fig. 2).

S2. Experimental

3,4-Diphenylpyrrol-2,5-diimine (0.810 mmol, 0.20 g) was hydrolyzed in 80% aqueous methanol (10 mL) for 24 h at room temperature. The yellow solid was obtained from the reaction mixture. The crystals of the title compound suitable for single crystal X-ray diffraction were obtained by recrystallization from 1-methylpyrrolidin-2-one.

S3. Refinement

Structural refinement was carried out using *SHELXTL* (Sheldrick, 2008) with the *Olex2* (Dolomanov *et al.*, 2009) and *SHELXLE* (Hübschle *et al.*, 2011) graphical user interfaces. All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, N—H = 0.88 Å and U_{iso} = 1.2-1.5 U_{eq} (parent atom).

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Crystal packing along the crystallographic a axis. All hydrogen atoms have been omitted for clarity.

2,3-Diphenylmaleimide 1-methylpyrrolidin-2-one monosolvate

Crystal data

 $C_{16}H_{11}NO_{2} \cdot C_{5}H_{9}NO$ $M_{r} = 348.39$ Monoclinic, $P2_{1}/n$ a = 13.1962 (3) Å b = 10.0002 (2) Å c = 13.5600 (3) Å $\beta = 100.469$ (3)° V = 1759.65 (7) Å³ Z = 4

Data collection

Agilent SuperNova (Single source at offset, Eos) diffractometer F(000) = 736 $D_x = 1.315 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5604 reflections $\theta = 3.7-36.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 170 KBlock, colourless $0.54 \times 0.40 \times 0.24 \text{ mm}$

Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 16.0107 pixels mm⁻¹

5708 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.028$
$\theta_{\text{max}} = 37.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
$h = -22 \rightarrow 22$
$k = -13 \rightarrow 16$
$l = -22 \rightarrow 23$
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0916P)^2 + 0.4242P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Absorption correction: *CrysAlis PRO* (Agilent, 2013); Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.06128 (8)	0.79304 (9)	0.09092 (7)	0.0333 (2)	
O2	0.16449 (8)	0.38928 (10)	-0.01022 (8)	0.0365 (2)	
N1	0.10893 (8)	0.60420 (10)	0.01257 (7)	0.0272 (2)	
H1	0.1127	0.6383	-0.0465	0.033*	
C1	0.13055 (9)	0.47257 (12)	0.04002 (9)	0.0260 (2)	
C2	0.10664 (8)	0.45632 (11)	0.14421 (8)	0.0230 (2)	
C3	0.12077 (8)	0.33036 (11)	0.20052 (9)	0.0240 (2)	
C4	0.09962 (10)	0.20708 (12)	0.15227 (10)	0.0300 (2)	
H4	0.0764	0.2042	0.0818	0.036*	
C5	0.11244 (11)	0.08926 (13)	0.20683 (12)	0.0366 (3)	
H5	0.0982	0.0059	0.1736	0.044*	
C6	0.14610 (11)	0.09271 (14)	0.31006 (12)	0.0370 (3)	
H6	0.1540	0.0118	0.3473	0.044*	
C7	0.16818 (10)	0.21392 (14)	0.35876 (11)	0.0334 (3)	
H7	0.1918	0.2160	0.4292	0.040*	
C8	0.15569 (9)	0.33222 (13)	0.30448 (9)	0.0275 (2)	
H8	0.1709	0.4152	0.3381	0.033*	
C9	0.07716 (8)	0.57673 (11)	0.17357 (8)	0.02304 (19)	
C10	0.04640 (8)	0.61711 (11)	0.26815 (8)	0.0232 (2)	
C11	-0.04123 (10)	0.56355 (15)	0.29686 (10)	0.0324 (3)	
H11	-0.0829	0.5013	0.2547	0.039*	
C12	-0.06732 (11)	0.60162 (19)	0.38744 (12)	0.0418 (3)	
H12	-0.1276	0.5662	0.4067	0.050*	

C13	-0.00602 (12)	0.69086 (17)	0.44990 (11)	0.0406 (3)
H13	-0.0241	0.7158	0.5121	0.049*
C14	0.08136 (12)	0.74379 (15)	0.42201 (10)	0.0362 (3)
H14	0.1237	0.8042	0.4653	0.043*
C15	0.10711 (10)	0.70841 (13)	0.33056 (9)	0.0290 (2)
H15	0.1661	0.7465	0.3105	0.035*
C16	0.08056 (9)	0.67456 (12)	0.09100 (9)	0.0254 (2)
O3	0.67483 (9)	0.76077 (11)	0.35649 (9)	0.0429 (3)
N2	0.65279 (9)	0.53588 (12)	0.32844 (9)	0.0348 (2)
C17	0.66039 (10)	0.66246 (14)	0.30065 (11)	0.0333 (3)
C18	0.64860 (19)	0.66600 (18)	0.18720 (12)	0.0554 (5)
H18A	0.5915	0.7263	0.1580	0.066*
H18B	0.7129	0.6983	0.1672	0.066*
C19	0.62610 (16)	0.52685 (18)	0.15209 (12)	0.0483 (4)
H19A	0.6767	0.4966	0.1112	0.058*
H19B	0.5562	0.5208	0.1109	0.058*
C20	0.63358 (14)	0.44090 (16)	0.24659 (13)	0.0447 (4)
H20A	0.5685	0.3917	0.2467	0.054*
H20B	0.6908	0.3758	0.2514	0.054*
C21	0.65804 (14)	0.4951 (2)	0.43134 (12)	0.0479 (4)
H21A	0.5906	0.4613	0.4404	0.072*
H21B	0.6773	0.5719	0.4757	0.072*
H21C	0.7098	0.4244	0.4478	0.072*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0447 (5)	0.0228 (4)	0.0320 (4)	0.0014 (4)	0.0059 (4)	0.0003 (3)
O2	0.0443 (5)	0.0350 (5)	0.0337 (5)	0.0028 (4)	0.0161 (4)	-0.0076 (4)
N1	0.0337 (5)	0.0265 (5)	0.0219 (4)	-0.0021 (4)	0.0062 (4)	-0.0016 (4)
C1	0.0263 (5)	0.0271 (5)	0.0247 (5)	-0.0012 (4)	0.0050 (4)	-0.0041 (4)
C2	0.0235 (4)	0.0221 (5)	0.0232 (4)	-0.0005 (3)	0.0039 (4)	-0.0028 (4)
C3	0.0219 (4)	0.0218 (4)	0.0283 (5)	0.0014 (4)	0.0046 (4)	-0.0026 (4)
C4	0.0304 (5)	0.0230 (5)	0.0355 (6)	0.0006 (4)	0.0028 (5)	-0.0054 (4)
C5	0.0329 (6)	0.0221 (5)	0.0536 (8)	0.0002 (4)	0.0049 (6)	-0.0022 (5)
C6	0.0316 (6)	0.0278 (6)	0.0515 (8)	0.0042 (5)	0.0074 (6)	0.0094 (6)
C7	0.0300 (5)	0.0358 (6)	0.0341 (6)	0.0071 (5)	0.0047 (5)	0.0060 (5)
C8	0.0277 (5)	0.0254 (5)	0.0292 (5)	0.0035 (4)	0.0040 (4)	-0.0002 (4)
C9	0.0242 (4)	0.0219 (4)	0.0230 (4)	-0.0008 (4)	0.0043 (4)	-0.0018 (4)
C10	0.0249 (4)	0.0219 (4)	0.0234 (4)	0.0016 (4)	0.0054 (4)	-0.0007 (4)
C11	0.0268 (5)	0.0382 (7)	0.0331 (6)	-0.0036 (5)	0.0077 (4)	-0.0008(5)
C12	0.0332 (6)	0.0589 (10)	0.0371 (7)	-0.0004 (6)	0.0163 (5)	0.0034 (7)
C13	0.0460 (8)	0.0513 (9)	0.0275 (6)	0.0078 (6)	0.0148 (6)	-0.0004 (6)
C14	0.0479 (7)	0.0354 (7)	0.0258 (5)	-0.0018 (6)	0.0083 (5)	-0.0061 (5)
C15	0.0345 (6)	0.0270 (5)	0.0264 (5)	-0.0047 (4)	0.0081 (4)	-0.0038 (4)
C16	0.0275 (5)	0.0244 (5)	0.0239 (5)	-0.0018 (4)	0.0036 (4)	-0.0020 (4)
O3	0.0568 (6)	0.0368 (5)	0.0397 (5)	-0.0118 (5)	0.0214 (5)	-0.0127 (4)
N2	0.0366 (5)	0.0342 (6)	0.0347 (6)	-0.0033 (4)	0.0091 (4)	-0.0007 (5)

supporting information

C17	0.0317 (5)	0.0324 (6)	0.0368 (6)	-0.0018 (5)	0.0085 (5)	-0.0040 (5)
C18	0.0896 (14)	0.0413 (9)	0.0326 (7)	-0.0106 (9)	0.0043 (8)	0.0021 (6)
C19	0.0630 (10)	0.0473 (9)	0.0359 (7)	-0.0088 (8)	0.0126 (7)	-0.0103 (7)
C20	0.0566 (9)	0.0310 (7)	0.0478 (8)	-0.0027 (6)	0.0134 (7)	-0.0093 (6)
C21	0.0487 (8)	0.0598 (10)	0.0359 (7)	-0.0088 (8)	0.0098 (6)	0.0105 (7)

Geometric parameters (Å, °)

01—C16	1.2118 (15)	C11—H11	0.9500	
O2—C1	1.2121 (15)	C12—C13	1.385 (2)	
N1-C16	1.3824 (15)	C12—H12	0.9500	
N1-C1	1.3835 (16)	C13—C14	1.383 (2)	
N1—H1	0.8800	C13—H13	0.9500	
C1—C2	1.5113 (16)	C14—C15	1.3898 (18)	
С2—С9	1.3476 (16)	C14—H14	0.9500	
C2—C3	1.4672 (16)	C15—H15	0.9500	
C3—C4	1.3998 (16)	O3—C17	1.2344 (17)	
C3—C8	1.4013 (17)	N2—C17	1.3296 (19)	
C4—C5	1.3851 (19)	N2	1.4433 (19)	
C4—H4	0.9500	N2—C20	1.448 (2)	
C5—C6	1.390 (2)	C17—C18	1.518 (2)	
С5—Н5	0.9500	C18—C19	1.483 (2)	
С6—С7	1.386 (2)	C18—H18A	0.9900	
С6—Н6	0.9500	C18—H18B	0.9900	
С7—С8	1.3872 (18)	C19—C20	1.531 (2)	
С7—Н7	0.9500	C19—H19A	0.9900	
С8—Н8	0.9500	C19—H19B	0.9900	
C9—C10	1.4703 (15)	C20—H20A	0.9900	
C9—C16	1.4936 (16)	C20—H20B	0.9900	
C10-C11	1.3926 (17)	C21—H21A	0.9800	
C10-C15	1.3947 (16)	C21—H21B	0.9800	
C11—C12	1.388 (2)	C21—H21C	0.9800	
C16—N1—C1	110.41 (10)	C12—C13—H13	119.9	
C16—N1—H1	124.8	C13—C14—C15	119.86 (13)	
C1—N1—H1	124.8	C13—C14—H14	120.1	
O2-C1-N1	125.57 (12)	C15—C14—H14	120.1	
O2—C1—C2	127.79 (12)	C14—C15—C10	120.10 (12)	
N1-C1-C2	106.62 (10)	C14—C15—H15	120.0	
С9—С2—С3	129.02 (11)	C10-C15-H15	120.0	
C9—C2—C1	107.49 (10)	O1—C16—N1	125.67 (12)	
C3—C2—C1	123.40 (10)	O1—C16—C9	127.31 (11)	
C4—C3—C8	118.88 (11)	N1—C16—C9	107.01 (10)	
C4—C3—C2	121.14 (11)	C17—N2—C21	123.38 (14)	
С8—С3—С2	119.97 (10)	C17—N2—C20	114.78 (13)	
C5—C4—C3	120.32 (13)	C21—N2—C20	121.78 (14)	
C5—C4—H4	119.8	O3—C17—N2	126.55 (14)	
С3—С4—Н4	119.8	O3—C17—C18	125.38 (14)	

C4—C5—C6	120.16 (13)	N2—C17—C18	108.07 (13)
С4—С5—Н5	119.9	C19—C18—C17	106.32 (14)
С6—С5—Н5	119.9	C19—C18—H18A	110.5
C7—C6—C5	120.18 (13)	C17—C18—H18A	110.5
С7—С6—Н6	119.9	C19—C18—H18B	110.5
С5—С6—Н6	119.9	C17—C18—H18B	110.5
C6—C7—C8	119.91 (13)	H18A—C18—H18B	108.7
С6—С7—Н7	120.0	C18—C19—C20	106.22 (13)
С8—С7—Н7	120.0	C18—C19—H19A	110.5
C7—C8—C3	120.54 (12)	С20—С19—Н19А	110.5
С7—С8—Н8	119.7	C18—C19—H19B	110.5
С3—С8—Н8	119.7	C20—C19—H19B	110.5
C2—C9—C10	130.04 (11)	H19A—C19—H19B	108.7
C2—C9—C16	108.31 (10)	N2-C20-C19	104.41 (13)
C10—C9—C16	121.64 (10)	N2-C20-H20A	110.9
C11—C10—C15	119.78 (11)	С19—С20—Н20А	110.9
C11—C10—C9	120.87 (11)	N2—C20—H20B	110.9
C15—C10—C9	119.33 (10)	C19—C20—H20B	110.9
C12—C11—C10	119.61 (13)	H20A—C20—H20B	108.9
C12—C11—H11	120.2	N2—C21—H21A	109.5
C10—C11—H11	120.2	N2—C21—H21B	109.5
C13—C12—C11	120.44 (13)	H21A—C21—H21B	109.5
C13—C12—H12	119.8	N2—C21—H21C	109.5
C11—C12—H12	119.8	H21A—C21—H21C	109.5
C14—C13—C12	120.19 (13)	H21B—C21—H21C	109.5
C14—C13—H13	119.9		

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C3–C8 and C10–C15 rings, respectively.

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···O3 ⁱ	0.88	1.95	2.7800 (15)	156
С5—Н5…О1 ^{іі}	0.95	2.41	3.3639 (17)	179
C21—H21A····O1 ⁱⁱⁱ	0.98	2.59	3.498 (2)	154
C21—H21 <i>B</i> ····O1 ^{iv}	0.98	2.73	3.436 (2)	129
C15—H15····Cg2 ^{v}	0.95	2.96	3.8081 (14)	149
C20—H20 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱⁱ	0.99	2.91	3.6508 (18)	133

Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) x, y-1, z; (iii) -x+1/2, y-1/2, -z+1/2; (iv) x+1/2, -y+3/2, z+1/2; (v) -x+1/2, y+1/2, -z+1/2.