Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

9-(4-Bromophenyl)-9H-carbazole

Paul Kautny, ${ }^{\text {a }}$ Thomas Kader, ${ }^{\text {a }}$ Berthold Stöger ${ }^{\text {b }}$ * and Johannes Fröhlich ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute for Applied Synthetic Chemistry, Division Organic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria, and ${ }^{\mathbf{b}}$ Institute for Chemical Technologies and Analytics, Division Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria Correspondence e-mail: bstoeger@mail.tuwien.ac.at

Received 22 January 2014; accepted 18 February 2014

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.031 ; w R$ factor $=0.047$; data-to-parameter ratio $=27.9$.

In the title molecule, $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}$, the 4-bromophenyl ring is inclined to the mean plane of the carbazole moiety (r.m.s. devation $=0.027 \AA$) by $49.87(5)^{\circ}$. In the crystal, molecules stack along [001] and are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions forming a corrugated two-dimensional network lying parallel to (100).

Related literature

For isostructural crystal structures, see: Saha \& Samanta (1999); Chen et al. (2005). For related carbazole-based crystal structures, see: Kim et al. (2011); Liu et al. (2010); Wu et al. (2007); Chen et al. (2012). For a chemically related nonisostructural compound, see: Xie et al. (2012). For applications of arylamines as functional materials, see: Shirota \& Kageyama (2007); Tao et al. (2011); Yook \& Lee (2012); Kautny et al. (2014). For isostructurality, see: Kálmán et al. (1999). For merotypism and its application to organic compounds, see: Ferraris et al. (2004); Stöger et al. (2012). For the synthesis of the title compound, see: Xu et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}$
Monoclinic, $P 2_{1} / c$
$M_{r}=322.2$
$b=20.1179$ (7) \AA
$c=8.6346$ (3) A
$\beta=108.5322$ (14) ${ }^{\circ}$
$V=1385.76(8) \AA^{3}$
$Z=4$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2013)
$T_{\text {min }}=0.16, T_{\text {max }}=0.29$

Refinement

$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.031$
$w R(F)=0.047$
$S=1.69$
5056 reflections

Mo $K \alpha$ radiation
$\mu=2.95 \mathrm{~mm}^{-}$
$T=100 \mathrm{~K}$
$0.75 \times 0.55 \times 0.42 \mathrm{~mm}$

53140 measured reflections 5056 independent reflections 4340 reflections with $I>3 \sigma(I)$ $R_{\text {int }}=0.035$

181 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}_{\mathrm{A}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Table 1

Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).
$C g 1, C g 3$ and $C g 4$ are the centroids of the $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 18, \mathrm{C} 7-\mathrm{C} 12$ and C13-C18 rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H1C3 $\cdots C g 3^{\mathrm{i}}$	0.96	2.57	$3.3237(14)$	135
C5-H1C5 $\cdots \mathrm{Cg} 4^{\text {ii }}$	0.96	2.96	$3.7527(15)$	141
C14-H1C14 $\cdots \mathrm{Cg} 1^{\text {iii }}$	0.96	2.79	$3.5367(14)$	135
Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x, y, z-1$; (iii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$				

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINTPlus (Bruker, 2013); data reduction: SAINT-Plus; program(s) used to solve structure: SUPERFLIP (Palatinus \& Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The X-ray centre (XRC) of the Vienna University of Technology is acknowledged for providing access to the singlecrystal diffractometer and for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: KJ2237).

References

Bruker (2013). SAINT-Plus, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, S., Chen, N., Yan, Y.-L., Liu, T., Yu, Y., Li, Y., Liu, H., Zhao, Y.-S. \& Li, Y. (2012). Chem. Commun. 48, 9011-9013.

Chen, L.-Q., Yang, C.-L., Meng, X.-G. \& Qin, J.-G. (2005). Acta Cryst. E61, o3073-o3075.
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Ferraris, G., Makovicky, E. \& Merlino, S. (2004). Crystallography of Modular Materials, Vol. 15, IUCr Monographs on Crystallography. Oxford University Press.
Kálmán, A., Párkányi, L. \& Argay, G. (1999). Chem. Commun. pp. 605-606.
Kautny, P., Lumpi, D., Wang, Y., Tissot, A., Bintinger, J., Horkel, E., Stöger, B., Hametner, C., Hagemann, H., Ma, D. \& Fröhlich, J. (2014). J. Mater. Chem. C. Accepted. doi:10.1039/C3TC32338B.

Kim, B.-S., Kim, S.-H., Shinya, M. \& Son, Y. A. (2011). Z. Kristallogr. New Cryst. Struct. 226, 177.
Liu, R., Zhu, H., Chang, J., Xiao, Q., Li, Y. \& Chen, H. (2010). J. Lumin. 130, 1183-1188.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.

organic compounds

Petříček, V., Dušek, M. \& Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
Saha, S. \& Samanta, A. (1999). Acta Cryst. C55, 1299-1300.
Shirota, Y. \& Kageyama, H. (2007). Chem. Rev. 107, 953-1010.
Stöger, B., Kautny, P., Lumpi, D., Zobetz, E. \& Fröhlich, J. (2012). Acta Cryst. B68, 667-676.
Tao, Y., Yang, C. \& Qin, J. (2011). Chem. Soc. Rev. 40, 2943-2970.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wu, J.-Y., Pan, Y.-L., Zhang, X.-J., Sun, T., Tian, Y.-P., Yang, J.-X. \& Chen, Z.-N. (2007). Inorg. Chim. Acta, 360, 2083-2091.

Xie, Y.-Z., Jin, J.-Y. \& Qu, X.-C. (2012). Acta Cryst. E68, o1199.
Xu, H., Yin, K. \& Huang, W. (2007). Chem. Eur. J. 13, 10281-10293.
Yook, K. S. \& Lee, J. Y. (2012). Adv. Mater. 24, 3169-3190.

supporting information

Acta Cryst. (2014). E70, o330-o331 [doi:10.1107/S1600536814003705]
9-(4-Bromophenyl)-9H-carbazole

Paul Kautny, Thomas Kader, Berthold Stöger and Johannes Fröhlich

S1. Comment

Arylamines are widely used as electron donors in functional organic materials (Shirota \& Kageyama, 2007; Tao et al., 2011; Yook \& Lee, 2012). In our recent work we investigated the effect of increasingly planarized triarylamine donors (from N, N-diphenylbenzenamine to 9-phenyl-9H-carbazole and indolo[3,2,1-jk]carbazole) on material properties of bipolar compounds (Kautny et al., 2014). Thus, the title compound 9-(4-bromophenyl)-9H-carbazole (I) was synthesized as a key intermediate towards materials incorporating 9-phenyl-9 H -carbazole donor subunits.
(I) crystallizes in the space group $P 2_{1} / c$ with one molecule (Fig. 1) in the asymmetric unit. The molecules are arranged in distinct crystallo-chemical layers parallel to (010). The layers contact via the carbazoles (Fig. 2 (a,b)). The contacting carbazoles are strongly inclined to each other [angle between least squares (l.s.) plane 59.08°], thus $\pi-\pi$ interactions can be ruled out. The phenyl rings inside the layers are related by inversion and therefore coplanar. Nevertheless, the rings do not overlap, excluding π - π interactions (Fig. 2(b)).

Two structures that can be considered as isostructural (Kálmán et al., 1999) with (I) have been described, viz. the analogues with Br substituted by the pseudo-halogenide CN (Saha and Samanta, 1999) or by a NO_{2} group (Chen et al., 2005). A second polymorph of the CN analogue is structurally unrelated (Xie et al., 2012). In all three isostructural crystals the benzene ring is strongly inclined with respect to the carbazole moiety [angles between 1.s. planes of both aromatic systems: (I): $\left.49.87(5)^{\circ} ; \mathrm{CN}: 47.89(6)^{\circ} ; \mathrm{NO}_{2}: 53.08(6)^{\circ}\right]$. The inclination of the carbazole and phenyl moieties is of particular interest, since it determines the overall degree of conjugation and therefore greatly influences the electrochemical and photo-physical properties of bipolar materials (Tao et al., 2011).
Several structures with distinctly more bulky substituents on the para-position of the phenyl ring have been described which nevertheless feature a virtually identical arrangement of the carbazole rings as observed in (I). Thus, it is useful to ,,slice" the crystal structure of (I) into two kinds of slabs parallel to (010) which do not correspond to layers in the crystallo-chemical sense as depicted in Fig. 1. The slabs designated as A are made up of the carbazole rings of two adjacent crystallo-chemical layers (Fig. 3(a)), whereas the B slabs are composed of the 4-bromophenyl moieties (Fig. $3(b)$). The A and B slabs feature $p 1(c) 1$ (the parentheses mark the direction missing translational symmetry) and $p \overline{1}$ layer symmetry, respectively. Examples of structures which feature isostructural A slabs and structurally unrelated B slabs are 2-(4-(9H-carbazol-9-yl)benzylidene)indan-1-one (Fig. 4(a)) (Kim et al., 2011), 9-(4-((4-methylphenyl)-ethynyl)phenyl)-9H-carbazole (Fig. 4(b)) and the isostructural 4-bromophenyl analogue (Fig. 4(c)) (Liu et al., 2010), the mono-toluene solvate of 3-(4-(9H-carbazol-9-yl)phenyl)acrylic acid (Fig. 4(d)) (Wu et al., 2007) and 9-(4-(2-(4-(2,1,3-benzothiadiazol-4-ylethynyl)phenyl)vinyl)phenyl)-9H-carbazole (Fig. 4(e)) (Chen, et al., 2012). The crystal structure of the latter is depicted in Fig. 5 and a comparison of the A slabs to those in (I) is given in Fig. 3(c). Despite being structurally unrelated, the B slabs in all these structures feature, like the corresponding slab in (I), $p \overline{1}$ symmetry. Therefore, these structures possess likewise overall $P 2_{1} / c$ space group symmetry. In the crystal chemistry of inorganic compounds, the A and B slabs are called modules and the structures given above can be considered as members of a
merotypic series (Ferraris et al., 2004). Whereas describing crystal structures of organic molecules in terms of modular materials is uncommon, we have recently applied these concepts to the solvatomorphs of a carbazole based organic molecule related to (I) (Stöger et al., 2012).

S2. Experimental

The synthesis of (I) was performed according to the procedure described by Xu et al. (2007). A fused silica ampoule was charged with $9 H$-carbazole ($5.35 \mathrm{~g}, 32.0 \mathrm{mmol}, 1.00 \mathrm{eq}.), 1,4$-dibromobenzene ($9.06 \mathrm{~g}, 38.4 \mathrm{mmol}, 1.20 \mathrm{eq}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($400 \mathrm{mg}, 1.6 \mathrm{mmol}, 0.05 \mathrm{eq}$.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.42 \mathrm{~g}, 32.0 \mathrm{mmol}, 1.00 \mathrm{eq}$.) The sealed ampoule was heated to $250^{\circ} \mathrm{C}$ for 68 h . After cooling, the tube was carefully opened with a diamond blade, releasing a small amount of gas. The solid residue was partitioned between toluene and water and the aqueous phase was extracted with toluene. The combined organic layers were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification was performed by column chromatography (light petroleum:DCM 75:25) yielding 9-(4-bromo-phenyl)-9H-carbazole ($4.22 \mathrm{~g}, 13.1 \mathrm{mmol}, 41 \%$) as white solid. Large single crystals of (I) were grown by slow evaporation of a CDCl_{3} solution.

S3. Refinement

The structure was refined against F values using the Jana2006 software package (Petrríček et al., 2006). The non-H atoms were located in the electron density map obtained by charge-flipping implemented in SUPERFLIP (Palatinus \& Chapuis, 2007) and refined with anisotropic displacement parameters. The H atoms were placed at calculated positions and refined as riding on the parent C atoms.

Figure 1
The molecular structure of (I). C, N and Br are represented by grey, blue and green ellipsoids drawn at the 75% probability levels, H atoms by white spheres of arbitrary radius.

Figure 2
Crystal structure of (I) viewed down (a) [100] and (b) [001]. C, N and Br atoms are represented by spheres of arbitrary radius. H atoms were omitted for clarity. Colour codes as in Fig. 1. The position of the crystallo-chemical layers is indicated to the left, the position of the A and B slabs to the right

Figure 3
The (a) A and (b) B slabs of (I) composed of $9 H$-carbazol-9-yl and 4-bromophenyl fragments, respectively projected on (001). (c) The A slabs in 9-(4-(2-(4-(2,1,3-benzothiadiazol-4-ylethynyl)phenyl)vinyl)phenyl)-9H-carbazole (coordinates from Chen, et al., (2012)). Colour codes as in Fig. 1.

(a)

(b)

(c)

(d)

(e)

Figure 4
4-(9H-carbazol-9-yl)-phenyl derivatives crystallizing with A slabs isotypic to (I).

Figure 5
The crystal structure of 9-(4-(2-(4-(2,1,3-benzothiadiazol-4-ylethynyl)phenyl)vinyl)phenyl)-9H-carbazole. S atoms are yellow, other colour codes as in Fig. 1.

9-(4-Bromophenyl)-9H-carbazole

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{BrN}$
$M_{r}=322.2$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ycb
$a=8.4137$ (3) Å
$b=20.1179(7) \AA$
$c=8.6346$ (3) \AA
$\beta=108.5322(14)^{\circ}$
$V=1385.76(8) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=648 \\
& D_{\mathrm{x}}=1.544 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25237 \text { reflections } \\
& \theta=2.5-32.5^{\circ} \\
& \mu=2.95 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Block, clear colourless } \\
& 0.75 \times 0.55 \times 0.42 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: X-ray tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\text {min }}=0.16, T_{\text {max }}=0.29$

53140 measured reflections
5056 independent reflections
4340 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=32.8^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-12 \rightarrow 12$
$k=-30 \rightarrow 30$
$l=-13 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
Weighting scheme based on measured s.u.'s $w=$
$1 /\left(\sigma^{2}(F)+0.0004 F^{2}\right)$
$(\Delta / \sigma)_{\max }=0.026$
$\Delta \rho_{\text {max }}=0.47 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \AA^{-3}$

Refinement
Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.047$
$S=1.69$
5056 reflections
181 parameters
0 restraints
48 constraints
Primary atom site location: iterative
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.84651(2)$	$-0.036314(8)$	$-0.405902(18)$	$0.02427(6)$
N 1	$0.51185(14)$	$0.12342(5)$	$0.00001(13)$	$0.0116(3)$
C1	$0.58687(16)$	$0.08548(6)$	$-0.09658(15)$	$0.0111(3)$
C2	$0.69269(18)$	$0.03277(6)$	$-0.02622(17)$	$0.0133(4)$
C3	$0.77018(17)$	$-0.00373(6)$	$-0.11813(17)$	$0.0139(4)$
C4	$0.73532(17)$	$0.01171(7)$	$-0.28261(16)$	$0.0139(4)$
C5	$0.62817(17)$	$0.06309(7)$	$-0.35594(16)$	$0.0148(4)$
C6	$0.55565(17)$	$0.10094(7)$	$-0.26077(15)$	$0.0135(3)$
C7	$0.34167(16)$	$0.13791(6)$	$-0.03947(16)$	$0.0118(3)$
C8	$0.21016(17)$	$0.12051(7)$	$-0.17824(16)$	$0.0147(4)$
C9	$0.04953(18)$	$0.13772(7)$	$-0.18154(18)$	$0.0174(4)$
C10	$0.01993(18)$	$0.17175(7)$	$-0.05191(19)$	$0.0190(4)$
C11	$0.15091(18)$	$0.18942(7)$	$0.08536(18)$	$0.0172(4)$
C12	$0.31464(17)$	$0.17212(6)$	$0.09265(16)$	$0.0127(4)$
C13	$0.47576(17)$	$0.17913(6)$	$0.21673(16)$	$0.0122(3)$
C14	$0.52962(19)$	$0.20908(6)$	$0.37103(17)$	$0.0164(4)$
C15	$0.6979(2)$	$0.20772(7)$	$0.46009(17)$	$0.0186(4)$
C16	$0.81376(18)$	$0.17722(7)$	$0.39656(17)$	$0.0168(4)$
C17	$0.76424(17)$	$0.14676(6)$	$0.24474(16)$	$0.0143(4)$
C18	$0.59415(16)$	$0.14789(6)$	$0.15611(15)$	$0.0116(3)$
H1c2	0.712034	0.021682	0.086423	0.016^{*}
H1c3	0.846464	-0.038992	-0.069149	0.0167^{*}
H1c5	0.604265	0.072462	-0.470097	0.0178^{*}
H1c6	0.484129	0.13771	-0.308549	0.0162^{*}
H1c8	0.229898	0.097553	-0.267885	0.0176^{*}
H1c9	-0.043798	0.125999	-0.275106	0.0208^{*}

H1c10	-0.092883	0.182992	-0.058358	0.0228^{*}
H1c11	0.130161	0.212998	0.17367	0.0206^{*}
H1c14	0.450589	0.230279	0.414296	0.0197^{*}
H1c15	0.735971	0.227799	0.566404	0.0223^{*}
H1c16	0.930439	0.177463	0.459918	0.0202^{*}
H1c17	0.844122	0.125706	0.202336	0.0172^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.02113(9)$	$0.03450(10)$	$0.02083(9)$	$0.00656(6)$	$0.01183(6)$	$-0.00729(6)$
N 1	$0.0095(5)$	$0.0143(5)$	$0.0113(4)$	$0.0012(4)$	$0.0040(4)$	$-0.0020(4)$
C1	$0.0106(5)$	$0.0134(5)$	$0.0109(5)$	$-0.0005(4)$	$0.0055(4)$	$-0.0013(4)$
C2	$0.0139(6)$	$0.0133(5)$	$0.0145(6)$	$-0.0009(4)$	$0.0069(5)$	$0.0000(4)$
C3	$0.0127(6)$	$0.0132(5)$	$0.0174(6)$	$0.0004(4)$	$0.0071(5)$	$-0.0009(4)$
C4	$0.0121(5)$	$0.0173(6)$	$0.0148(5)$	$-0.0017(5)$	$0.0079(5)$	$-0.0046(5)$
C5	$0.0147(6)$	$0.0199(6)$	$0.0116(5)$	$-0.0005(5)$	$0.0066(5)$	$-0.0015(5)$
C6	$0.0125(5)$	$0.0166(6)$	$0.0120(5)$	$0.0007(4)$	$0.0047(4)$	$0.0003(4)$
C7	$0.0105(5)$	$0.0114(5)$	$0.0147(5)$	$0.0016(4)$	$0.0059(4)$	$0.0011(4)$
C8	$0.0128(6)$	$0.0167(6)$	$0.0145(5)$	$0.0000(4)$	$0.0042(4)$	$0.0010(4)$
C9	$0.0126(6)$	$0.0192(6)$	$0.0192(6)$	$0.0008(5)$	$0.0034(5)$	$0.0048(5)$
C10	$0.0130(6)$	$0.0174(6)$	$0.0286(7)$	$0.0043(5)$	$0.0094(5)$	$0.0044(5)$
C11	$0.0167(6)$	$0.0140(6)$	$0.0249(7)$	$0.0037(5)$	$0.0123(5)$	$0.0008(5)$
C12	$0.0134(5)$	$0.0105(5)$	$0.0161(6)$	$0.0016(4)$	$0.0073(5)$	$0.0008(4)$
C13	$0.0157(6)$	$0.0091(5)$	$0.0135(5)$	$0.0001(4)$	$0.0071(4)$	$-0.0005(4)$
C14	$0.0222(7)$	$0.0117(5)$	$0.0172(6)$	$0.0004(5)$	$0.0090(5)$	$-0.0034(4)$
C15	$0.0260(7)$	$0.0148(6)$	$0.0140(6)$	$-0.0028(5)$	$0.0051(5)$	$-0.0039(5)$
C16	$0.0181(6)$	$0.0151(6)$	$0.0158(6)$	$-0.0031(5)$	$0.0033(5)$	$-0.0003(5)$
C17	$0.0139(6)$	$0.0147(5)$	$0.0144(5)$	$0.0000(4)$	$0.0046(5)$	$-0.0003(4)$
C18	$0.0133(5)$	$0.0109(5)$	$0.0113(5)$	$-0.0007(4)$	$0.0051(4)$	$-0.0011(4)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 4$	$1.8909(15)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.400(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4182(19)$	$\mathrm{C} 9-\mathrm{H} 1 \mathrm{c} 9$	0.96
$\mathrm{~N} 1-\mathrm{C} 7$	$1.3932(17)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.3840(18)$
$\mathrm{N} 1-\mathrm{C} 18$	$1.3947(15)$	$\mathrm{C} 10-\mathrm{H} 1 \mathrm{c} 10$	0.96
$\mathrm{C} 1-\mathrm{C} 2$	$1.3937(17)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.403(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.3925(18)$	$\mathrm{C} 11-\mathrm{H} 1 \mathrm{c} 11$	0.96
$\mathrm{C} 2-\mathrm{C} 3$	$1.387(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.4430(17)$
$\mathrm{C} 2-\mathrm{H} 1 \mathrm{c} 2$	0.96	$\mathrm{C} 13-\mathrm{C} 14$	$1.3999(18)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.3910(19)$	$\mathrm{C} 13-\mathrm{C} 18$	$1.412(2)$
$\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$	0.96	$\mathrm{C} 14-\mathrm{C} 15$	$1.380(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.3853(18)$	$\mathrm{C} 14-\mathrm{H} 1 \mathrm{c} 14$	0.96
$\mathrm{C} 5-\mathrm{C} 6$	$1.395(2)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.403(2)$
$\mathrm{C} 5-\mathrm{H} 1 \mathrm{c} 5$	0.96	$\mathrm{C} 15-\mathrm{H} 1 \mathrm{c} 15$	0.96
$\mathrm{C} 6-\mathrm{H} 1 \mathrm{c} 6$	0.96	$\mathrm{C} 16-\mathrm{C} 17$	$1.3858(19)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.3928(16)$	$\mathrm{C} 16-\mathrm{H} 1 \mathrm{c} 16$	0.96

$\mathrm{C} 7-\mathrm{C} 12$	$1.411(2)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.387(2)$
$\mathrm{C} 8-\mathrm{H} 1 \mathrm{c} 8$	0.96
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$125.70(10)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 18$	$125.54(11)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 18$	$108.58(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$119.68(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$120.22(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$120.10(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.32(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1 \mathrm{c} 2$	119.84
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 1 \mathrm{c} 2$	119.84
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$118.76(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$	120.62
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$	120.62
$\mathrm{Br} 1-\mathrm{C} 4-\mathrm{C} 3$	$118.63(10)$
$\mathrm{Br} 1-\mathrm{C} 4-\mathrm{C} 5$	$119.37(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.92(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$118.75(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 1 \mathrm{c} 5$	120.62
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 1 \mathrm{c} 5$	120.63
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.10(12)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 1 \mathrm{c} 6$	119.95
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 1 \mathrm{c} 6$	119.95
$\mathrm{~N} 1-\mathrm{C} 7-\mathrm{C} 8$	$129.17(13)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$	$108.74(10)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$122.00(13)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$117.23(13)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 1 \mathrm{c} 8$	121.39
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 1 \mathrm{c} 8$	121.39
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	119.15
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 1 \mathrm{c} 9$	

$\mathrm{C} 17-\mathrm{C} 18$	$1.3922(18)$
$\mathrm{C} 17-\mathrm{H} 1 \mathrm{c} 17$	0.96

$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 1 \mathrm{c} 9$	119.15
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$120.97(14)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 1 \mathrm{c} 10$	119.51
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 1 \mathrm{c} 10$	119.51
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$118.56(14)$

120.72

C 12 - C 11 - $\mathrm{H} 1 \mathrm{c} 11 \quad 120.72$
C7-C12-C11 119.54 (11)
C7-C12-C13 107.05 (12)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13 \quad 133.35$ (13)
C12-C13-C14 133.82 (14)
C12-C13-C18 106.75 (11)
C14-C13-C18 119.43 (12)
C13-C14-C15 119.10 (15)
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{H} 1 \mathrm{c} 14 \quad 120.45$
$\mathrm{C} 15-\mathrm{C} 14-\mathrm{H} 1 \mathrm{c} 14 \quad 120.45$
C14-C15-C16 120.54 (13)
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{H} 1 \mathrm{c} 15 \quad 119.73$
$\mathrm{C} 16-\mathrm{C} 15-\mathrm{H} 1 \mathrm{c} 15 \quad 119.73$
C15-C16-C17 121.73 (12)
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{H} 1 \mathrm{c} 16 \quad 119.13$
$\mathrm{C} 17-\mathrm{C} 16-\mathrm{H} 1 \mathrm{c} 16 \quad 119.13$
C16-C17-C18 117.40 (14)
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{H} 1 \mathrm{c} 17 \quad 121.3$
C18-C17-H1c17 121.3
N1—C18-C13 108.87 (11)
$\mathrm{N} 1-\mathrm{C} 18-\mathrm{C} 17 \quad 129.30$ (14)
$\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 17 \quad 121.78$ (12)

Hydrogen-bond geometry ($A,{ }^{o}$)
$C g 1, C g 3$ and $C g 4$ are the centroids of the $\mathrm{N} 1 / \mathrm{C} 7 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{C} 18, \mathrm{C} 7-\mathrm{C} 12$ and $\mathrm{C} 13-\mathrm{C} 18$ rings, respectively.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 1 \mathrm{C} 3 \cdots \mathrm{Cg} 3^{\mathrm{i}}$	0.96	2.57	$3.3237(14)$	135
$\mathrm{C} 5 — \mathrm{H} 1 \mathrm{C} 5 \cdots \mathrm{Cg} 4^{\mathrm{iii}}$	0.96	2.96	$3.7527(15)$	141
$\mathrm{C} 14 — \mathrm{H} 1 \mathrm{C} 14 \cdots C g 1^{\mathrm{iii}}$	0.96	2.79	$3.5367(14)$	135

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $x, y, z-1$; (iii) $x,-y+1 / 2, z+1 / 2$.

