organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Benzyl-6-benzylsulfanyl-9H-purin-2amine

Maywan Hariono,^a Habibah A. Wahab,^{a,b}‡Mei Lan Tan,^b Mohd Mustagim Rosli^c and Ibrahim Abdul Razak^{c*}§

^aPharmaceutical Design and Simulation (PhDs) Laboratory, School of Pharmaceutical Sciences Universiti Sains Malaysia 11800 Minden Pulau Pinang Malaysia ^bMalaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science Technology and Inovation, 11700 Halaman Bukit Gambir, Pulau Pinang, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia

Correspondence e-mail: arazaki@usm.my

Received 19 December 2013; accepted 28 January 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.137; data-to-parameter ratio = 21.2.

In the title compound, $C_{19}H_{17}N_5S$, the dihedral angles between the purine ring system (r.m.s. deviation = 0.009 Å) and the S-bound and methylene-bound phenyl rings are 74.67 (8) and 71.28 (7)°, respectively. In the crystal, inversion dimers linked by pairs of N-H···N hydrogen bonds generate $R_2^2(8)$ loops. C-H···N interactions link the dimers into (100) sheets.

Related literature

For background to the biological activity of thiopurine derivatives, see: Hadda et al. (2009); Nguyen et al. (2009). For further synthetic details, see: Banh et al. (2011); Salvatore et al. (2002, 2005).

NH

Crystal data

C19H17N5S $V = 1625.31 (14) \text{ Å}^3$ $M_r = 347.44$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 16.7346 (7) Å $\mu = 0.21 \text{ mm}^-$ T = 100 Kb = 5.5511 (3) Å c = 20.4817 (10) Å $0.69 \times 0.19 \times 0.14~\mathrm{mm}$ $\beta = 121.325(3)^{\circ}$

Data collection

Bruker SMART APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.868, \ T_{\max} = 0.972$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.137$	independent and constrained
S = 1.06	refinement
4956 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
234 parameters	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N5 - H1N5 \cdot \cdot \cdot N3^{i}$	0.91 (3)	2.14 (3)	3.040 (3)	173 (2)
$C7 - H7B \cdot \cdot \cdot N3^{ii}$	0.99	2.57	3.548 (2)	172
$C8 - H8A \cdots N2^{iii}$	0.95	2.39	3.274 (2)	155
Symmetry codes:	(i) $-x + 1$, -	-y + 1, -z; (i	ii) $-x + 1, -y$	+2, -z; (iii)

 $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

MH and HAW acknowledge the Malaysian Ministry of Science, Technology and Innovations (MOSTI) for funding the synthetic chemistry work under 304/PFARMASI/650600/ I121. MH thanks Universiti Sains Malaysia for the award of a postgraduate fellowship

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7176).

References

- Banh, T. N., Kode, N. R. & Phadtare, S. (2011). Lett. Drug. Des. Discov. 8, 709-716.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hadda, V., Pandey, B. D., Gupta, R. & Goel, A. (2009). JPGM, 55, 139-140. Nguyen, T., Vacek, P. M., O'Neill, P., Colletti, R. B. & Finette, B. A. (2009). Cancer Res. 69, 7004-7012.
- Salvatore, R. N., Nagle, A. S. & Jung, K. W. (2002). J. Org. Chem. 67, 674-683. Salvatore, R. N., Smith, R. A., Nischwitz, A. K. & Gavin, T. (2005).
- Tetrahedron Lett. 46, 8931-8935.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

16728 measured reflections

 $R_{\rm int} = 0.048$

4956 independent reflections 3416 reflections with $I > 2\sigma(I)$

[‡] Additional correspondence author, e-mail: habibahw@usm.my. § Thomson Reuters ResearcherID: A-5599-2009.

supporting information

Acta Cryst. (2014). E70, o288 [doi:10.1107/S1600536814001986]

9-Benzyl-6-benzylsulfanyl-9H-purin-2-amine

Maywan Hariono, Habibah A. Wahab, Mei Lan Tan, Mohd Mustaqim Rosli and Ibrahim Abdul Razak

S1. Introduction

Thiopurine and its analogues possess a broad pharmacological activity for example as a cytotoxic agent (Nguyen *et al.*, 2009) and in the treatment of lupus nephritis (Hadda *et al.*, 2009). As part of our studies in this area, we report the synthesis and structure of the title compound.

S2. Experimental

The method to synthesize the title compound was modified from a few papers (Banh *et al.*, 2011; Salvatore *et al.*, 2002; Salvatore *et al.*, 2005). 2-amino-9H-purine-6-thiol (0.598 mmol) was mixed with cesium carbonate (0.598 mmol) in 3.5 ml of dimethylformamide and then stirred vigorously for 15 minutes. Another mixture containing benzyl bromide (1.315 mmol), tetrabutylammonium iodide (0.598 mmol) in 3.5 ml of DMF was added to the first mixture and the stirring was continued at room temperature for six hours. The reaction progress was monitored by TLC using *n*-hexane:ethyl acetate (0.5:3.5) as a solvent. After the product being formed, the reaction mixture was diluted with 70 mL of water and then extracted using 3×70 ml of ethyl acetate. The organic phase was collected, washed with 3×70 ml of water and then dried over anhydrous magnesium sulfate. This organic phase was then evaporated *in vacuo* and the crude product was recrystallized from a hot methanol to afford the title compound as colourless blocks.

S2.1. Refinement

N bound H atoms were located from difference Fourier maps and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with with C-H = 0.95-0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

S3. Results and discussion

The purin ring is almost planar with the maximum deviation of 0.014 (2)Å at atom C11. It makes a dihedral angle of 71.28 and 74.67 (8)° with the two benzene rings, C1—C6 and C14—C19, respectively and these two benzene rings make a dihedral angle of 76.04)10)° with each other (Fig. 1).

In the crytsal structure, two dimers involving N5—H1N5 \cdots N3ⁱ and C7—H7B \cdots N3ⁱⁱ are observed. These two dimers formed stacked molecules down the *b*-axis. Intermolecular interactions of C8—H8A \cdots N2ⁱⁱⁱ further expand the molecules into infinite layers parallel to the *bc*-plane (Fig. 2).

Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids.

Figure 2

The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

9-Benzyl-6-benzylsulfanyl-9H-purin-2-amine

Crystal data

C₁₉H₁₇N₅S $M_r = 347.44$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.7346 (7) Å b = 5.5511 (3) Å c = 20.4817 (10) Å $\beta = 121.325$ (3)° V = 1625.31 (14) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator F(000) = 728 $D_x = 1.420 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3425 reflections $\theta = 2.3-30.0^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.69 \times 0.19 \times 0.14 \text{ mm}$

 φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.868, T_{\max} = 0.972$

16728 measured reflections
4956 independent reflections
3416 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.048$

Re

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
4956 reflections	and constrained refinement
234 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.4349P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.33 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\theta_{\rm max} = 30.6^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$

 $h = -23 \rightarrow 23$ $k = -7 \rightarrow 7$ $l = -25 \rightarrow 29$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S 1	0.24764 (3)	0.72454 (8)	0.12637 (3)	0.01824 (13)	
N1	0.52964 (10)	1.0733 (3)	0.14394 (8)	0.0147 (3)	
N2	0.42255 (10)	1.0996 (3)	0.17932 (8)	0.0169 (3)	
N3	0.47003 (10)	0.7208 (3)	0.06126 (8)	0.0148 (3)	
N4	0.32973 (10)	0.5624 (3)	0.05291 (8)	0.0151 (3)	
N5	0.39014 (11)	0.3896 (3)	-0.01293 (9)	0.0183 (3)	
C1	0.70179 (12)	0.7950 (3)	0.20967 (10)	0.0170 (4)	
H1A	0.6619	0.7724	0.2293	0.020*	
C2	0.77591 (13)	0.6376 (3)	0.23027 (10)	0.0200 (4)	
H2A	0.7865	0.5080	0.2642	0.024*	
C3	0.83454 (13)	0.6682 (4)	0.20170 (10)	0.0211 (4)	
H3A	0.8838	0.5570	0.2147	0.025*	
C4	0.82082 (13)	0.8621 (3)	0.15408 (10)	0.0210 (4)	
H4A	0.8617	0.8863	0.1355	0.025*	
C5	0.74731 (12)	1.0206 (3)	0.13374 (10)	0.0190 (4)	
H5A	0.7385	1.1538	0.1016	0.023*	
C6	0.68604 (12)	0.9858 (3)	0.16023 (9)	0.0154 (3)	
C7	0.60378 (12)	1.1554 (3)	0.13203 (10)	0.0176 (4)	
H7A	0.6271	1.3124	0.1581	0.021*	
H7B	0.5767	1.1826	0.0767	0.021*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.49754 (13)	1.1938 (3)	0.18504 (10)	0.0165 (4)
H8A	0.5274	1.3330	0.2149	0.020*
C9	0.46824 (11)	0.8869 (3)	0.10795 (9)	0.0133 (3)
C10	0.39805 (12)	0.5647 (3)	0.03571 (9)	0.0144 (3)
C11	0.33280 (12)	0.7292 (3)	0.10083 (9)	0.0138 (3)
C12	0.40253 (12)	0.9046 (3)	0.13023 (9)	0.0141 (3)
C13	0.19169 (13)	0.4383 (3)	0.08654 (10)	0.0186 (4)
H13A	0.2409	0.3215	0.0950	0.022*
H13B	0.1636	0.3806	0.1160	0.022*
C14	0.11669 (12)	0.4322 (3)	0.00268 (10)	0.0166 (4)
C15	0.10259 (13)	0.6128 (3)	-0.04927 (10)	0.0198 (4)
H15A	0.1421	0.7504	-0.0327	0.024*
C16	0.03108 (13)	0.5934 (3)	-0.12532 (11)	0.0221 (4)
H16A	0.0219	0.7190	-0.1601	0.027*
C17	-0.02712 (13)	0.3932 (3)	-0.15127 (11)	0.0217 (4)
H17A	-0.0761	0.3812	-0.2033	0.026*
C18	-0.01235 (13)	0.2113 (3)	-0.09980 (11)	0.0217 (4)
H18A	-0.0512	0.0726	-0.1168	0.026*
C19	0.05850 (13)	0.2296 (3)	-0.02383 (11)	0.0196 (4)
H19A	0.0677	0.1032	0.0107	0.023*
H1N5	0.4310 (15)	0.370 (4)	-0.0289 (12)	0.030 (6)*
H2N5	0.3390 (15)	0.304 (4)	-0.0358 (12)	0.024 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0183 (2)	0.0203 (2)	0.0209 (2)	-0.00120 (18)	0.0136 (2)	-0.00239 (18)
N1	0.0136 (7)	0.0158 (7)	0.0139 (7)	-0.0025 (6)	0.0066 (6)	-0.0020 (6)
N2	0.0205 (8)	0.0153 (7)	0.0157 (7)	0.0009 (6)	0.0100 (6)	-0.0001 (6)
N3	0.0160 (7)	0.0152 (7)	0.0150 (7)	-0.0017 (6)	0.0095 (6)	-0.0013 (6)
N4	0.0148 (7)	0.0163 (7)	0.0158 (7)	0.0013 (6)	0.0090 (6)	-0.0001 (6)
N5	0.0161 (8)	0.0203 (8)	0.0209 (8)	-0.0053 (7)	0.0113 (7)	-0.0083 (6)
C1	0.0161 (9)	0.0189 (9)	0.0148 (8)	-0.0039 (7)	0.0072 (7)	-0.0020 (7)
C2	0.0188 (9)	0.0186 (9)	0.0177 (9)	-0.0028 (7)	0.0061 (7)	-0.0005 (7)
C3	0.0174 (9)	0.0218 (9)	0.0200 (9)	0.0004 (7)	0.0067 (8)	-0.0035 (7)
C4	0.0183 (9)	0.0238 (10)	0.0231 (9)	-0.0039 (8)	0.0121 (8)	-0.0046 (8)
C5	0.0203 (9)	0.0188 (9)	0.0176 (8)	-0.0052 (7)	0.0097 (8)	-0.0025 (7)
C6	0.0151 (9)	0.0153 (8)	0.0140 (8)	-0.0039 (7)	0.0062 (7)	-0.0047 (6)
C7	0.0180 (9)	0.0156 (8)	0.0214 (9)	-0.0016 (7)	0.0117 (8)	0.0005 (7)
C8	0.0214 (9)	0.0140 (8)	0.0140 (8)	-0.0004 (7)	0.0092 (7)	-0.0013 (6)
C9	0.0140 (8)	0.0134 (8)	0.0107 (7)	0.0003 (6)	0.0051 (6)	0.0004 (6)
C10	0.0148 (8)	0.0141 (8)	0.0142 (8)	0.0004 (7)	0.0074 (7)	0.0006 (6)
C11	0.0134 (8)	0.0149 (8)	0.0129 (8)	0.0017 (6)	0.0066 (7)	0.0026 (6)
C12	0.0165 (8)	0.0131 (8)	0.0139 (8)	0.0007 (7)	0.0088 (7)	0.0002 (6)
C13	0.0196 (9)	0.0171 (9)	0.0222 (9)	-0.0022 (7)	0.0129 (8)	0.0012 (7)
C14	0.0133 (8)	0.0187 (9)	0.0196 (8)	-0.0001 (7)	0.0099 (7)	-0.0001 (7)
C15	0.0189 (9)	0.0178 (9)	0.0241 (9)	0.0003 (7)	0.0122 (8)	0.0008 (7)
C16	0.0227 (10)	0.0212 (9)	0.0225 (9)	0.0048 (8)	0.0118 (8)	0.0056 (8)

supporting information

C17	0.0168 (9)	0.0252 (10)	0.0194 (9)	0.0033 (8)	0.0068 (7)	0.0007 (8)
C18	0.0180 (9)	0.0203 (9)	0.0268 (10)	-0.0015 (7)	0.0117 (8)	-0.0013 (8)
C19	0.0184 (9)	0.0187 (9)	0.0235 (9)	0.0003 (7)	0.0122 (8)	0.0017 (7)

Geometric parameters (Å, °)

S1—C11	1.7551 (17)	C5—C6	1.400 (2)	
S1—C13	1.8091 (18)	C5—H5A	0.9500	
N1—C9	1.372 (2)	C6—C7	1.513 (2)	
N1—C8	1.384 (2)	C7—H7A	0.9900	
N1—C7	1.456 (2)	С7—Н7В	0.9900	
N2—C8	1.307 (2)	C8—H8A	0.9500	
N2-C12	1.395 (2)	C9—C12	1.396 (2)	
N3—C9	1.340 (2)	C11—C12	1.393 (2)	
N3—C10	1.349 (2)	C13—C14	1.512 (2)	
N4—C11	1.331 (2)	C13—H13A	0.9900	
N4—C10	1.360 (2)	C13—H13B	0.9900	
N5—C10	1.348 (2)	C14—C15	1.390 (2)	
N5—H1N5	0.90 (2)	C14—C19	1.399 (2)	
N5—H2N5	0.87 (2)	C15—C16	1.390 (3)	
C1—C2	1.392 (2)	C15—H15A	0.9500	
C1—C6	1.392 (2)	C16—C17	1.388 (3)	
C1—H1A	0.9500	C16—H16A	0.9500	
C2—C3	1.390 (3)	C17—C18	1.386 (3)	
C2—H2A	0.9500	C17—H17A	0.9500	
C3—C4	1.389 (3)	C18—C19	1.385 (3)	
С3—НЗА	0.9500	C18—H18A	0.9500	
C4—C5	1.388 (3)	C19—H19A	0.9500	
C4—H4A	0.9500			
C11_\$1_C13	100 87 (8)	N3N1	127 88 (15)	
C_{0} N1 C_{8}	100.37(3) 105.78(14)	$N_3 = C_2 = N_1$	126.53 (15)	
C9-N1-C7	105.78 (14)	$N_{1} = C_{2} = C_{12}$	105.59(14)	
$C_{N1} = C_{7}$	127.00(14) 125.79(14)	N5-C10-N3	118 33 (15)	
$C_8 N_2 C_{12}$	123.77(14) 103 57 (14)	$N_{5} = C_{10} = N_{5}$	114.32 (15)	
$C_{0} = N_{2} = C_{12}$	103.37(14) 111.85(14)	N3-C10-N4	127.34(15)	
C_{11} N/ C_{10}	117.03(14) 117.08(14)	$N_{4} = C_{10} = N_{4}$	127.54(15) 120.50(15)	
C10 N5 H1N5	117.98(14) 123.6(14)	N4 = C11 = C12	120.50(15) 118.92(13)	
C10 N5 H2N5	123.0(14) 118 7 (14)	$C_{12} C_{11} S_{1}$	120.58(13)	
H1N5 N5 H2N5	110.7(14) 117.1(10)	C12 - C11 - S1 C11 - C12 - N2	120.38(13) 133.42(15)	
$C_{2} C_{1} C_{6}$	117.1(19) 120.00(16)	C11 - C12 - C0	115 76 (15)	
$C_2 = C_1 = C_0$	120.00 (10)	$N_2 C_{12} C_{9}$	110.81(15)	
$C_2 = C_1 = H_1 \Lambda$	120.0	$N_2 = C_{12} = C_{3}$	117.40(13)	
$C_0 = C_1 = HIA$	120.0	C14 - C13 - S1	107.0	
$C_3 = C_2 = C_1$	120.38 (17)	C14 - C13 - H13A S1 C12 H12A	107.9	
$C_3 = C_2 = H_2 A$	117.7	$C_{14} C_{12} = C_{13} C_{13} C_{14} C_{12} C_{12} C_{12} C_{12} C_{12} C_{13} C_{13} C_{14} C_{12} C_{14} C_{14} C_{15} C_{15$	107.9	
$C_1 = C_2 = \Pi_2 A$	117.7	C_{14} C_{13} $-\Pi_{13}D$ S1 C_{13} $U_{12}D$	107.9	
$C_{4} = C_{3} = C_{4}$	117.00 (10)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7	
Сч—Сэ—пэА	120.2	піза—сіз—пізв	107.2	

С2—С3—НЗА	120.2	C15—C14—C19	118.40 (17)
C5—C4—C3	119.92 (17)	C15—C14—C13	124.32 (16)
C5—C4—H4A	120.0	C19—C14—C13	117.28 (16)
C3—C4—H4A	120.0	C16—C15—C14	120.45 (17)
C4—C5—C6	120.63 (17)	C16—C15—H15A	119.8
C4—C5—H5A	119.7	C14—C15—H15A	119.8
С6—С5—Н5А	119.7	C17—C16—C15	120.97 (17)
C1—C6—C5	119.13 (16)	C17—C16—H16A	119.5
C1—C6—C7	122.79 (15)	C15—C16—H16A	119.5
C5—C6—C7	118.07 (15)	C18—C17—C16	118.67 (17)
N1—C7—C6	115.28 (14)	C18—C17—H17A	120.7
N1—C7—H7A	108.5	C16—C17—H17A	120.7
С6—С7—Н7А	108.5	C19—C18—C17	120.73 (18)
N1-C7-H7B	108.5	C19—C18—H18A	119.6
C6—C7—H7B	108.5	C17—C18—H18A	119.6
H7A - C7 - H7B	107.5	C18 - C19 - C14	120.75(17)
N2-C8-N1	114 24 (15)	C18 - C19 - H19A	119.6
$N2 C8 H8\Delta$	1229 (13)	C_{14} C_{19} H_{19A}	119.6
N1 C8 H8A	122.9		119.0
NI-Co-110A	122.9		
C6-C1-C2-C3	-0.2 (3)	C10—N4—C11—C12	2.0 (2)
C1—C2—C3—C4	2.1 (3)	C10-N4-C11-S1	-178.00 (12)
C2—C3—C4—C5	-1.6 (3)	C13—S1—C11—N4	9.65 (15)
C3—C4—C5—C6	-0.6 (3)	C13—S1—C11—C12	-170.34 (14)
C2—C1—C6—C5	-2.0(2)	N4—C11—C12—N2	178.87 (17)
C2—C1—C6—C7	176.53 (16)	S1—C11—C12—N2	-1.1 (3)
C4—C5—C6—C1	2.4 (2)	N4—C11—C12—C9	-1.9(2)
C4—C5—C6—C7	-176.18(16)	S1-C11-C12-C9	178.12 (12)
C9-N1-C7-C6	-699(2)	C8-N2-C12-C11	179 67 (19)
C8 - N1 - C7 - C6	12146(18)	C8 - N2 - C12 - C9	0.37 (18)
C1 - C6 - C7 - N1	-147(2)	$N_3 - C_9 - C_{12} - C_{11}$	0.5(3)
C_{5} C_{6} C_{7} N_{1}	163 78 (15)	N1 - C9 - C12 - C11	-17930(14)
$C_{12} = N_{2} = C_{8} = N_{1}$	-0.76(19)	N_{3} C9 C12 N2	179 94 (15)
$C_{12} = N_2 = C_0 = N_1$	0.87(19)	N1 - C9 - C12 - N2	0.13(18)
C7 N1 C8 N2	171.58(15)	$C_{11} = C_{12} = C_{12} = C_{12}$	-83.26(14)
$C_{10} N_{12} C_{0} N_{12}$	-170.61(16)	S1 C13 C14 C15	15.20(14)
$C_{10} = N_{3} = C_{9} = N_{1}$	1/9.01(10)	S1 - C13 - C14 - C13	-165.00(13)
$C_{10} = N_{3} = C_{7} = C_{12}$	0.0(2)	S1 - C13 - C14 - C15	103.09(13)
C_{8} N1 C0 N2	1/9.03(17)	C12 - C14 - C15 - C16	1.2(3)
C^{2} N1 C0 C12	9.2 (5)	C13 - C14 - C13 - C10	-1/9.23(10)
C8 - N1 - C9 - C12	-0.55(17)		-0.6(3)
C_{1} N_{1} C_{10} N_{2}	-1/1.03(16)	C10 - C10 - C17 - C18	-0.3(3)
C9—N3—C10—N5	1/8.94 (15)	C10 - C1 / - C18 - C19	0.6 (3)
C9—N3—C10—N4	-0.5 (2)	C17—C18—C19—C14	0.0 (3)
C11—N4—C10—N5	1/9.75 (15)	C15—C14—C19—C18	-0.9 (3)
C11—N4—C10—N3	-0.8 (3)	C13—C14—C19—C18	179.50 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
N5—H1 <i>N</i> 5····N3 ⁱ	0.91 (3)	2.14 (3)	3.040 (3)	173 (2)	
C7—H7 <i>B</i> ···N3 ⁱⁱ	0.99	2.57	3.548 (2)	172	
C8—H8A····N2 ⁱⁱⁱ	0.95	2.39	3.274 (2)	155	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+2, -*z*; (iii) -*x*+1, *y*+1/2, -*z*+1/2.