

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fluoren-9-one oxime

Bernhard Bugenhagen,^a Yosef Al Jasem,^b Mariam Al-Azani^c and Thies Thiemann^c*

^aInstitute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany, ^bDepartment of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and ^cDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates

Correspondence e-mail: thies@uaeu.ac.ae

Received 13 January 2014; accepted 5 February 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.075; data-to-parameter ratio = 13.9.

In the title molecule, $C_{13}H_9NO$, the fluorene system and the oxime group non-H atoms are essentially coplanar, with a maximum deviation from the fluorene mean plane of 0.079 (2) Å for the oxime O atom. A short intramolecular $C-H\cdots O$ generates an S(6) ring. In the crystal, molecules related by a twofold screw axis are connected by $O-H\cdots N$ hydrogen bonds, forming [100] chains Within these chains, molecules related by a unit translation along [100] show $\pi-\pi$ stacking interactions between their fluorene ring systems with an interplanar distance of 3.347 (2) Å. The dihedral angle between the fluorene units of adjacent molecules along the helix is 88.40 (2)°. There is a short $C-H\cdots\pi$ contact between the fluorene groups belonging to neighbouring chains.

Related literature

For the original procedure for the preparation of the title compound, see: Moore & Huntress (1927). For the use of the title compound as a starting material for the synthesis of bioactive compounds, see: Amlaiky *et al.* (1983); Ni *et al.* (2009); Rad *et al.* (2012).

Experimental

Crystal data C₁₃H₉NO

 $M_r = 195.21$

Data collection

V = 940.96 (3) Å³

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013) $T_{min} = 0.890, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.075$	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
S = 1.05	Absolute structure: Flack para-
1942 reflections	meter determined using 735
140 parameters	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
H atoms treated by a mixture of	(Parsons et al., 2013)
independent and constrained	Absolute structure parameter:
refinement	0.16 (13)

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2-C7 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C12-H12\cdots O1$ $O1-H1\cdots N1^{i}$ $C5-H5\cdots Cg1^{ii}$	0.95 0.98 (3) 0.95	2.38 1.80 (3) 3.08	2.898 (2) 2.7758 (18) 3.873	114 169 (3) 142
Summer and as (i)		- + 1. (3) 1		

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *OLEX2* (Dolomanov *et al.*, 2009); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON*.

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2601).

References

Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Amlaiky, N., Leclerc, G., Decker, N. & Schwartz, J. (1983). Eur. J. Med. Chem. 18, 437–439.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Moore, F. J. & Huntress, E. H. (1927). J. Am. Chem. Soc. 49, 2618-, 2624.
- Ni, S., Yuan, Y., Huang, J., Mao, X., Lu, M., Zhu, J., Shen, X., Pei, J., Lai, L.,
- Jiang, H. & Li, J. (2009). J. Med. Chem. 52, 5295-5298.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.
- Rad, M. N. S., Behrouz, S., Karimitabar, F. & Khalafi-Nezhad, A. (2012). *Helv. Chim. Acta*, **95**, 491–501.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Z = 4

Cu $K\alpha$ radiation

 $0.16 \times 0.13 \times 0.13 \text{ mm}$

7588 measured reflections

1942 independent reflections

1865 reflections with $I > 2\sigma(I)$

 $\mu = 0.70 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.029$

supporting information

Acta Cryst. (2014). E70, o265 [doi:10.1107/S1600536814002669]

Fluoren-9-one oxime

Bernhard Bugenhagen, Yosef Al Jasem, Mariam Al-Azani and Thies Thiemann

S1. Comment

The title compound, which was prepared according to a known procedure (Moore & Huntress, 1927) has found extensive use as a starting material for preparation of medicinal active compounds such as novel cyclophilin A inhibitors (Ni *et al.*, 2009), novel analogs of beta-adrenoceptor antagonists (Rad *et al.*, 2012) and beta-blocker (Amlaiky *et al.*, 1983).

The ring atoms, N and O atoms in the title compound molecule, are essentially coplanar with a maximum deviation of 0.079 (2) Å for the O atom from the averaged ring plane (13 carbon atoms). The molecule in the crystal exhibits a C12—H12…O1 intramolecular interaction (Table 1), (Figure 1). The molecules related by a twofold screw axis are connected by O1—H1…N1 hydrogen bonds (Table 1) within a helical bonding network extending along the *a* axis (Figure 2). Within one helical bonding network, the neighboring molecules related by a unit translation along [100] show π – π stacking interactions between their fluorene ring systems with the interplanar distance of 3.347 (2) Å (Figure 2). The neighboring helical bonding networks in parallel alignment are linked to each other by C5—H5… π (*Cg*1) (Table 1) close contact between their fluorene groups (Figure 3). The dihedral angle between the fluorene units of adjacent molecules along the helix is 88.40 (2)°.

S2. Experimental

To a solution of fluoren-9-one (1.8 g, 10 mmol) in EtOH (47 ml) was given a solution of hydroxylamine hydrochloride (NH₂OH HCl, 2.75 g, 39.6 mmol) in water (7 ml), and the resulting mixture was stirred at 70 °C for 5 h. Thereafter, the reaction mixture was cooled and given into water (150 ml). The colorless precipitate was extracted with CH₂Cl₂ (2 × 75 ml). The organic phase was dried over anhydrous MgSO₄ and concentrated *in vacuo* to give fluoren-9-one oxime (1.79 g, 92%) as a colorless solid, mp. 471 – 472 K; v_{max} (KBr/cm⁻¹) 3500 – 2800 (bs, OH), 1604 (w), 1602, 1450, 1405, 1317, 1156, 1089, 998, 937, 780, 732, 640; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.28 – 7.47 (4*H*, m), 7.62 (1*H*, d, ³*J* = 7.6 Hz), 7.66 (1*H*, d, ³*J* = 7.2 Hz), 7.77 (1*H*, d, ³*J* = 7.2 Hz), 8.42 (1*H*, d, ³*J* = 7.6 Hz); $\delta_{\rm C}$ (100.5 MHz, CDCl₃) 119.8 (CH), 119.9 (CH), 121.7 (CH), 128.0 (CH), 128.4 (CH), 129.7 (CH), 130.2 (CH), 130.3 (C_{quat}), 131.3 (CH), 135.1 (C_{quat}), 140.5 (C_{quat}), 141.4 (C_{quat}), 153.6 (C_{quat}). Single crystals were obtained from cold CH₂Cl₂.

S3. Refinement

All carbon-bound hydrogen atoms, except the H of the OH group which was freely refined, were placed in calculated positions with C—H distance of 0.95 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Figure 1

A view of the title molecule with displacement ellipsoids shown at the 50% probability level, showing the intramolecular contact within the molecule.

Figure 2

Intermolecular interactions between molecules of the title compound, including the π - π stacking interactions (represented by arrows in yellow). [Symmetry codes: i: 1 + x,y,z; ii: 1/2 + x, 1.5 - y, 1 - z; iii: -1/2 + x, 1.5 - y, 1 - z; iv: x, y, z; v: -1/2 + x, 1/2 - y, 1 - z; vi: x, -1 + y, z]

Figure 3

The crystal packing diagram showing the O—H···N close contacts (colored in green) between adjacent molecules in each helical bonding network, C—H··· π intermolecular interaction between molecules within different helices (colored in blue) and π - π stacking interactions (arrows in yellow).

Fluoren-9-one oxime

Crystal data $C_{13}H_9NO$ $M_r = 195.21$ Orthorhombic, $P2_12_12_1$ a = 4.8009 (1) Å b = 12.2309 (2) Å c = 16.0247 (3) Å V = 940.96 (3) Å³ Z = 4

F(000) = 408

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer Radiation source: SuperNova (Cu) X-ray Source $D_x = 1.378 \text{ Mg m}^{-3}$ Melting point = 471–472 K Cu $K\alpha$ radiation, $\lambda = 1.5418 \text{ Å}$ Cell parameters from 3850 reflections $\theta = 4.5-76.1^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.16 \times 0.13 \times 0.13 \text{ mm}$

Mirror monochromator Detector resolution: 10.4127 pixels mm⁻¹ ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.029$
(CrysAlis PRO; Agilent, 2013)	$\theta_{\rm max} = 76.3^{\circ}, \ \theta_{\rm min} = 4.6^{\circ}$
$T_{\min} = 0.890, \ T_{\max} = 1.000$	$h = -6 \rightarrow 5$
7588 measured reflections	$k = -14 \rightarrow 15$
1942 independent reflections	$l = -19 \rightarrow 20$
1865 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0384P)^2 + 0.1723P]$
$wR(F^2) = 0.075$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
1942 reflections	$\Delta ho_{ m max} = 0.13 \ { m e} \ { m \AA}^{-3}$
140 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	Absolute structure: Flack parameter determined
Primary atom site location: structure-invariant	using 735 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons
direct methods	<i>et al.</i> , 2013)
Hydrogen site location: difference Fourier map	Absolute structure parameter: 0.16 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and iso	otropic or o	equivalent isotropic	displacement	parameters ($(Å^2)$)
---------------------------------------	--------------	----------------------	--------------	--------------	---------	---

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5506 (4)	0.58330 (13)	0.40422 (10)	0.0189 (4)
C10	0.8197 (4)	0.44386 (15)	0.17647 (10)	0.0251 (4)
C11	0.9543 (4)	0.53953 (15)	0.20052 (10)	0.0242 (4)
C12	0.8830 (4)	0.59306 (14)	0.27456 (10)	0.0219 (4)
C13	0.6741 (4)	0.54803 (13)	0.32367 (10)	0.0196 (3)
C2	0.3367 (4)	0.50126 (13)	0.42679 (10)	0.0194 (3)
C3	0.1613 (4)	0.49391 (13)	0.49503 (10)	0.0209 (3)
C4	-0.0178 (4)	0.40413 (13)	0.50050 (11)	0.0228 (4)
C5	-0.0177 (4)	0.32387 (14)	0.43891 (11)	0.0246 (4)
C6	0.1590 (4)	0.33133 (14)	0.37017 (11)	0.0235 (4)
C7	0.3353 (4)	0.42037 (13)	0.36414 (10)	0.0195 (3)
C8	0.5403 (4)	0.45037 (13)	0.30001 (10)	0.0198 (4)
С9	0.6112 (4)	0.39797 (14)	0.22607 (11)	0.0239 (4)
H1	0.898 (6)	0.773 (2)	0.4668 (17)	0.068 (9)*
H10	0.8703	0.4093	0.1256	0.030*
H11	1.0969	0.5689	0.1661	0.029*
H12	0.9750	0.6584	0.2908	0.026*
Н3	0.1626	0.5485	0.5372	0.025*
H4	-0.1408	0.3978	0.5467	0.027*
Н5	-0.1399	0.2631	0.4438	0.029*
H6	0.1583	0.2764	0.3283	0.028*
H9	0.5200	0.3325	0.2097	0.029*

supporting information

N1	0.6059 (3)	0.66488 (11)	0.45230 (8)	0.0202 (3)
01	0.8178 (3)	0.73127 (10)	0.42014 (7)	0.0233 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0217 (9)	0.0194 (8)	0.0158 (7)	0.0029 (6)	-0.0016 (6)	0.0013 (6)
C10	0.0300 (10)	0.0290 (8)	0.0164 (7)	0.0078 (8)	-0.0003 (7)	-0.0031 (7)
C11	0.0257 (9)	0.0289 (9)	0.0179 (8)	0.0060 (7)	0.0018 (7)	0.0038 (7)
C12	0.0266 (9)	0.0206 (7)	0.0186 (8)	0.0025 (7)	-0.0013 (7)	0.0015 (6)
C13	0.0228 (9)	0.0204 (7)	0.0155 (7)	0.0050 (7)	-0.0024 (7)	-0.0007 (6)
C2	0.0216 (8)	0.0185 (7)	0.0181 (8)	0.0028 (7)	-0.0048 (7)	0.0005 (6)
C3	0.0233 (8)	0.0219 (7)	0.0174 (7)	0.0043 (7)	-0.0018 (7)	0.0005 (6)
C4	0.0223 (8)	0.0248 (8)	0.0214 (8)	0.0028 (6)	0.0007 (8)	0.0042 (7)
C5	0.0259 (9)	0.0210 (8)	0.0268 (9)	-0.0024 (7)	-0.0015 (7)	0.0030 (7)
C6	0.0277 (10)	0.0200 (7)	0.0228 (8)	0.0012 (7)	-0.0040 (7)	-0.0025 (6)
C7	0.0209 (8)	0.0200 (7)	0.0177 (7)	0.0037 (6)	-0.0021 (6)	-0.0002 (6)
C8	0.0212 (9)	0.0202 (7)	0.0181 (8)	0.0034 (7)	-0.0032 (7)	-0.0001 (6)
С9	0.0287 (10)	0.0220 (8)	0.0209 (8)	0.0030 (7)	-0.0039 (7)	-0.0034 (6)
N1	0.0236 (8)	0.0184 (6)	0.0185 (7)	0.0010 (6)	-0.0008 (6)	0.0014 (5)
01	0.0283 (6)	0.0217 (5)	0.0198 (6)	-0.0058 (5)	0.0010 (5)	-0.0023 (4)

Geometric parameters (Å, °)

C1—C13	1.484 (2)	C4—H4	0.9500
C1—C2	1.481 (2)	C5—C6	1.393 (2)
C10-C11	1.391 (3)	С5—Н5	0.9500
C10—H10	0.9500	C6—C7	1.383 (2)
C11—C12	1.398 (2)	С6—Н6	0.9500
C11—H11	0.9500	С7—С8	1.469 (2)
C12—C13	1.389 (2)	C8—C13	1.408 (2)
С12—Н12	0.9500	C8—C9	1.389 (2)
C2—C7	1.410 (2)	C9—C10	1.396 (3)
C2—C3	1.383 (2)	С9—Н9	0.9500
C3—C4	1.397 (2)	N1—C1	1.288 (2)
С3—Н3	0.9500	O1—H1	0.98 (3)
C4—C5	1.392 (2)	01—N1	1.4000 (19)
N1-01-H1	107.7 (17)	C6—C7—C2	120.39 (16)
C1-N1-01	112.25 (13)	C6—C7—C8	130.96 (16)
N1-C1-C2	121.43 (15)	C9—C8—C7	130.19 (16)
N1-C1-C13	131.53 (16)	C9—C8—C13	120.61 (16)
C2-C1-C13	107.00 (14)	C13—C8—C7	109.20 (14)
C3—C2—C1	131.26 (15)	С8—С9—Н9	120.8
С3—С2—С7	120.97 (15)	C8—C9—C10	118.41 (16)
C7—C2—C1	107.75 (14)	С10—С9—Н9	120.8
С2—С3—Н3	120.8	C9—C10—H10	119.6
C2—C3—C4	118.38 (15)	C11—C10—C9	120.89 (16)

С4—С3—Н3	120.8	C11—C10—H10	119.6
C3—C4—H4	119.7	C10-C11-H11	119.5
C5—C4—C3	120.63 (16)	C10-C11-C12	121.04 (17)
C5—C4—H4	119.7	C12—C11—H11	119.5
С4—С5—Н5	119.5	C11—C12—H12	120.9
C4—C5—C6	120.97 (17)	C13—C12—C11	118.17 (17)
С6—С5—Н5	119.5	C13—C12—H12	120.9
С5—С6—Н6	120.7	C8—C13—C1	107.38 (15)
C7—C6—C5	118.66 (16)	C12—C13—C1	131.75 (16)
С7—С6—Н6	120.7	C12—C13—C8	120.87 (15)
C2—C7—C8	108.64 (14)		
O1—N1—C1—C2	178.85 (14)	C5—C6—C7—C2	0.5 (3)
O1—N1—C1—C13	1.2 (2)	C5—C6—C7—C8	-179.68 (17)
N1—C1—C2—C3	1.5 (3)	C6—C7—C8—C9	1.3 (3)
N1-C1-C2-C7	-177.14 (15)	C6—C7—C8—C13	-178.35 (18)
N1-C1-C13-C8	177.82 (17)	C7—C2—C3—C4	0.0 (2)
N1-C1-C13-C12	-1.4 (3)	C7—C8—C9—C10	-178.93 (17)
C1—C2—C3—C4	-178.52 (16)	C7—C8—C13—C1	-0.88 (18)
C1—C2—C7—C6	178.38 (15)	C7—C8—C13—C12	178.46 (15)
C1—C2—C7—C8	-1.52 (18)	C8—C9—C10—C11	0.3 (3)
C2-C1-C13-C8	-0.04 (18)	C9—C8—C13—C1	179.46 (15)
C2-C1-C13-C12	-179.28 (17)	C9—C8—C13—C12	-1.2 (2)
C2—C3—C4—C5	0.4 (2)	C9-C10-C11-C12	-0.6 (3)
C2—C7—C8—C9	-178.86 (18)	C10-C11-C12-C13	0.1 (3)
C2—C7—C8—C13	1.53 (18)	C11—C12—C13—C1	179.97 (17)
C3—C2—C7—C6	-0.5 (2)	C11—C12—C13—C8	0.8 (2)
C3—C2—C7—C8	179.64 (15)	C13—C1—C2—C3	179.66 (16)
C3—C4—C5—C6	-0.4 (3)	C13—C1—C2—C7	0.98 (18)
C4—C5—C6—C7	0.0 (3)	C13—C8—C9—C10	0.6 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С12—Н12…О1	0.95	2.38	2.898 (2)	114
O1—H1···N1 ⁱ	0.98 (3)	1.80 (3)	2.7758 (18)	169 (3)
C5—H5····Cg1 ⁱⁱ	0.95	3.08	3.873	142

Symmetry codes: (i) x+1/2, -y+3/2, -z+1; (ii) x-1/2, -y+1/2, -z+1.