

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1,3-Benzodioxol-5-yl)-1H-benzimidazole

Nadir Ghichi, Mohamed Amine Benaouida, Ali Benosmane,* Ali Benboudiaf and Hocine Merazig

Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Algeria Correspondence e-mail: king.ali@hotmail.fr

Received 25 November 2013; accepted 11 January 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.088; data-to-parameter ratio = 12.3.

The asymmetric unit of the title compound, $C_{14}H_{10}N_2O_2$, contains two independent molecules. In each molecule, the benzodioxole ring system displays an envelope conformation, with the methylene C atom located at the flap deviating by 0.081 (2) and 0.230 (2) Å from the mean plane formed by the other atoms. The dihedral angles between the benzoimidazole ring system (all atoms) and the benzodioxole benzene ring are 15.35 (6) and 10.99 (7) $^{\circ}$. In the crystal, molecules are linked by N-H···N hydrogen bonds into chains running along the [101].

Related literature

For the biological activity of imidazole derivatives and their use as inhibitors of neurodegenerative disorders and as antitumor drugs, see: Park et al. (1977). For related imidazole compounds, see: Andreani et al. (2005); Xu et al. (2010).

Experimental

Crystal data $C_{14}H_{10}N_2O_2$ $M_r = 238.24$

Monoclinic, $P2_1/n$ a = 8.7454 (7) Å

organic compounds

3422 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $R_{\rm int} = 0.018$

325 parameters

 $\Delta \rho_{\rm max} = 0.19$ e Å

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

b = 15.2824 (11) Å Mo $K\alpha$ radiation c = 16.9487 (13) Å $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KV = 2263.9 (3) Å³ $0.03 \times 0.02 \times 0.01 \text{ mm}$

Data collection

 $\beta = 91.974 \ (5)^{\circ}$

Z = 8

Nonius KappaCCD diffractometer 13101 measured reflections 4003 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.088$ S = 1.024003 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot N4^{i}$	0.86	1.93	2.7761 (15)	168
$N3-H3N\cdots N2$	0.86	1.96	2.8053 (16)	168
	1 . 1	1		

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: KappaCCD Server Software (Nonius, 1999); cell refinement: KappaCCD Server Software; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

We thank all researchers of the CHEMS Research Unit, University of Constantine 1, Algeria, for their valuable assistance and the MESRS (Algeria) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5756).

References

- Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Garaliene, V., Welsh, W., Arora, S., Farruggia, G. & Masotti, L. (2005). J. Med. Chem. 48, 5604-5607.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Nonius (1999). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, PArt A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Park, S. W., Reid, W. & Schuckmann, W. (1977). Liebigs Ann. Chem. pp. 106-115.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, H., Zhang, Y., Huang, J.-Q. & Chen, W.-Z. (2010). Org. Lett. 12, 3704-3707.

supporting information

Acta Cryst. (2014). E70, o157 [doi:10.1107/S1600536814000737]

2-(1,3-Benzodioxol-5-yl)-1H-benzimidazole

Nadir Ghichi, Mohamed Amine Benaouida, Ali Benosmane, Ali Benboudiaf and Hocine Merazig

S1. Comment

Owing to the promising biological activities as inhibitors of neurodegenerative disorders and antitumor drugs (Park *et al.*, 1977), most of these investigations were carried out with imidazole (Andreani *et al.*, 2005; Xu *et al.*, 2010).

A view of the molecular structure of (I) with numbering Scheme is Shown in Fig1. In the crystal, intermolecular N—H···N hydrogen bond Fig2, link the molecules into chains running along the [101] direction.

S2. Experimental

A mixture of 1,2-diaminebenzene (2.3 g) and benzo[d][1,3]dioxole-5-carbaldehyde (0.02 mole) in ethanol (60 ml) was refluxed for 6 h. The yellow crystals obtained are filter and rinsed by a mixture of water ice ethanol, the recrystalization is done in excess of chloroform in 15 days.

S3. Refinement

The H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Partial view along the *b* axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1 for details).

2-(1,3-Benzodioxol-5-yl)-1H-benzimidazole

Crystal data

```
C<sub>14</sub>H<sub>10</sub>N<sub>2</sub>O<sub>2</sub>

M_r = 238.24

Monoclinic, P2_1/n

Hall symbol: -P 2yn

a = 8.7454 (7) Å

b = 15.2824 (11) Å

c = 16.9487 (13) Å

\beta = 91.974 (5)°

V = 2263.9 (3) Å<sup>3</sup>

Z = 8
```

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube F(000) = 992 $D_x = 1.398 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5620 reflections $\theta = 2.5-25.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.03 \times 0.02 \times 0.01 \text{ mm}$

Graphite monochromator CCD rotation images, thick slices scans 13101 measured reflections

4003 independent reflections	$h = -10 \rightarrow 10$
3422 reflections with $I > 2\sigma(I)$	$k = -18 \rightarrow 18$
$R_{\rm int} = 0.018$	$l = -18 \rightarrow 20$
$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.088$	neighbouring sites
S = 1.02	H-atom parameters constrained
4003 reflections	$w = 1/[\sigma^2(F_0^2) + (0.0405P)^2 + 0.8431P]$
325 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

0

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.16720 (13)	0.28274 (7)	0.48294 (6)	0.0245 (3)	
H1N	0.1584	0.2651	0.4348	0.029*	
N2	0.27132 (13)	0.34182 (7)	0.59250 (6)	0.0248 (3)	
N3	0.46175 (13)	0.33066 (7)	0.72874 (7)	0.0268 (3)	
H3N	0.4134	0.3292	0.6837	0.032*	
N4	0.59892 (13)	0.28499 (7)	0.83388 (6)	0.0251 (3)	
01	0.83709 (13)	0.38755 (9)	0.37149 (7)	0.0532 (3)	
O2	0.79659 (12)	0.45860 (7)	0.48949 (7)	0.0413 (3)	
O3	0.51495 (14)	-0.07450 (7)	0.63889 (7)	0.0452 (3)	
O4	0.36723 (14)	0.03150 (7)	0.57597 (6)	0.0439 (3)	
C1	0.43467 (16)	0.33554 (9)	0.47685 (8)	0.0248 (3)	
C2	0.46177 (17)	0.29304 (10)	0.40626 (9)	0.0330 (3)	
H2	0.3889	0.2543	0.3855	0.040*	
C3	0.59527 (18)	0.30704 (11)	0.36603 (9)	0.0405 (4)	
H3	0.6133	0.2787	0.3187	0.049*	
C4	0.69848 (17)	0.36405 (10)	0.39901 (9)	0.0342 (4)	
C5	0.89677 (19)	0.45149 (10)	0.42461 (11)	0.0414 (4)	
H5A	0.9041	0.5075	0.3980	0.050*	
H5B	0.9984	0.4346	0.4437	0.050*	
C6	0.67386 (16)	0.40628 (9)	0.46969 (9)	0.0290 (3)	
C7	0.54339 (15)	0.39333 (9)	0.51010 (8)	0.0260 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H7	0.5273	0.4217	0.5577	0.031*
C8	0.29278 (15)	0.32083 (8)	0.51781 (7)	0.0219 (3)
C9	0.12289 (16)	0.31528 (9)	0.60706 (8)	0.0250 (3)
C10	0.03920 (17)	0.32189 (9)	0.67524 (8)	0.0316 (3)
H10	0.0810	0.3474	0.7209	0.038*
C11	-0.10750(18)	0.28935 (10)	0.67265 (9)	0.0380(4)
H11	-0.1653	0.2928	0.7176	0.046*
C12	-0.17177(18)	0.25144 (10)	0.60455 (10)	0.0374 (4)
H12	-0.2712	0.2299	0.6052	0.045*
C13	-0.09151 (16)	0.24510 (9)	0.53635 (9)	0.0308 (3)
H13	-0.1348	0.2202	0.4908	0.037*
C14	0.05686 (15)	0.27748 (8)	0.53860 (8)	0.0242 (3)
C15	0.53562 (15)	0.17347 (9)	0.73203 (8)	0.0239 (3)
C16	0.63003 (16)	0.11017 (9)	0.76669 (9)	0.0301 (3)
H16	0.6944	0.1257	0.8092	0.036*
C17	0.63104 (18)	0.02407 (10)	0.73960 (10)	0.0365 (4)
H17	0.6943	-0.0181	0.7631	0.044*
C18	0.53483 (17)	0.00446 (9)	0.67688 (9)	0.0329 (3)
C19	0.3884 (2)	-0.06069 (11)	0.58423 (10)	0.0455 (4)
H19A	0.4097	-0.0866	0.5335	0.055*
H19B	0.2967	-0.0875	0.6039	0.055*
C20	0.44481 (17)	0.06728 (10)	0.64038 (8)	0.0304 (3)
C21	0.44051 (17)	0.15187 (9)	0.66618 (8)	0.0293 (3)
H21	0.3776	0.1933	0.6414	0.035*
C22	0.53328 (15)	0.26200 (9)	0.76528 (7)	0.0227 (3)
C23	0.48053 (16)	0.40285 (9)	0.77669 (8)	0.0272 (3)
C24	0.43107 (19)	0.48911 (10)	0.76926 (9)	0.0371 (4)
H24	0.3734	0.5080	0.7254	0.045*
C25	0.4717 (2)	0.54506 (10)	0.83015 (10)	0.0415 (4)
H25	0.4415	0.6033	0.8271	0.050*
C26	0.5574 (2)	0.51643 (10)	0.89636 (9)	0.0395 (4)
H26	0.5823	0.5561	0.9364	0.047*
C27	0.60577 (18)	0.43110 (10)	0.90375 (9)	0.0339 (3)
H27	0.6622	0.4124	0.9481	0.041*
C28	0.56718 (16)	0.37349 (9)	0.84232 (8)	0.0256 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0275 (6)	0.0278 (6)	0.0181 (5)	-0.0007 (5)	-0.0025 (5)	-0.0013 (4)
N2	0.0284 (6)	0.0265 (6)	0.0194 (6)	0.0001 (5)	-0.0019 (5)	0.0003 (4)
N3	0.0318 (7)	0.0279 (6)	0.0203 (6)	0.0001 (5)	-0.0069(5)	0.0008 (5)
N4	0.0279 (6)	0.0270 (6)	0.0203 (6)	0.0001 (5)	-0.0022 (5)	0.0006 (5)
01	0.0384 (7)	0.0707 (9)	0.0516 (7)	-0.0127 (6)	0.0180 (6)	-0.0126 (6)
O2	0.0320 (6)	0.0425 (6)	0.0496 (7)	-0.0109 (5)	0.0057 (5)	-0.0056 (5)
O3	0.0553 (7)	0.0301 (6)	0.0501 (7)	-0.0003(5)	0.0000 (6)	-0.0116 (5)
O4	0.0605 (8)	0.0354 (6)	0.0348 (6)	-0.0073 (5)	-0.0099(5)	-0.0088 (5)
C1	0.0265 (7)	0.0248 (7)	0.0228 (7)	0.0036 (5)	-0.0038 (6)	0.0024 (5)

supporting information

C2	0.0298 (8)	0.0402 (9)	0.0288 (8)	-0.0007 (6)	-0.0008 (6)	-0.0069 (6)
C3	0.0381 (9)	0.0535 (10)	0.0303 (8)	-0.0005 (8)	0.0063 (7)	-0.0128 (7)
C4	0.0285 (8)	0.0408 (9)	0.0335 (8)	0.0036 (6)	0.0077 (7)	0.0021 (7)
C5	0.0340 (8)	0.0338 (8)	0.0573 (11)	-0.0026 (7)	0.0140 (8)	0.0051 (7)
C6	0.0269 (7)	0.0246 (7)	0.0353 (8)	-0.0002 (6)	-0.0024 (6)	0.0032 (6)
C7	0.0282 (7)	0.0255 (7)	0.0242 (7)	0.0020 (6)	0.0001 (6)	0.0003 (5)
C8	0.0260 (7)	0.0199 (6)	0.0194 (7)	0.0018 (5)	-0.0033 (5)	0.0019 (5)
C9	0.0281 (7)	0.0229 (7)	0.0240 (7)	0.0031 (5)	-0.0007 (6)	0.0049 (5)
C10	0.0403 (9)	0.0314 (8)	0.0233 (7)	0.0018 (6)	0.0029 (6)	0.0024 (6)
C11	0.0394 (9)	0.0394 (9)	0.0359 (9)	0.0033 (7)	0.0115 (7)	0.0090 (7)
C12	0.0283 (8)	0.0397 (9)	0.0446 (9)	-0.0017 (7)	0.0041 (7)	0.0129 (7)
C13	0.0288 (8)	0.0306 (8)	0.0326 (8)	-0.0028 (6)	-0.0041 (6)	0.0058 (6)
C14	0.0270 (7)	0.0220 (7)	0.0235 (7)	0.0020 (5)	-0.0012 (6)	0.0050 (5)
C15	0.0227 (7)	0.0277 (7)	0.0216 (7)	-0.0025 (5)	0.0041 (5)	0.0006 (5)
C16	0.0279 (7)	0.0321 (8)	0.0300 (8)	0.0015 (6)	-0.0016 (6)	-0.0029 (6)
C17	0.0366 (8)	0.0306 (8)	0.0421 (9)	0.0084 (6)	-0.0011 (7)	-0.0016 (7)
C18	0.0375 (8)	0.0276 (8)	0.0342 (8)	-0.0019 (6)	0.0079 (7)	-0.0050 (6)
C19	0.0595 (11)	0.0351 (9)	0.0415 (10)	-0.0096 (8)	-0.0008 (8)	-0.0115 (7)
C20	0.0344 (8)	0.0337 (8)	0.0232 (7)	-0.0068 (6)	0.0011 (6)	-0.0035 (6)
C21	0.0349 (8)	0.0283 (7)	0.0246 (7)	-0.0012 (6)	-0.0022 (6)	0.0020 (6)
C22	0.0222 (7)	0.0271 (7)	0.0188 (7)	-0.0010 (5)	0.0018 (5)	0.0019 (5)
C23	0.0302 (8)	0.0277 (7)	0.0236 (7)	-0.0012 (6)	-0.0009 (6)	0.0009 (6)
C24	0.0443 (9)	0.0301 (8)	0.0362 (9)	0.0030 (7)	-0.0072 (7)	0.0037 (6)
C25	0.0521 (10)	0.0268 (8)	0.0456 (10)	0.0031 (7)	-0.0006 (8)	-0.0020 (7)
C26	0.0526 (10)	0.0322 (8)	0.0337 (9)	-0.0036 (7)	0.0001 (8)	-0.0085 (6)
C27	0.0411 (9)	0.0364 (8)	0.0239 (7)	-0.0030 (7)	-0.0043 (6)	-0.0027 (6)
C28	0.0282 (7)	0.0267 (7)	0.0218 (7)	-0.0021 (6)	0.0009 (6)	0.0005 (5)

Geometric parameters (Å, °)

N1—C8	1.3599 (17)	C9—C14	1.4025 (19)
N1—C14	1.3749 (17)	C10—C11	1.375 (2)
N1—H1N	0.8600	C10—H10	0.9300
N2—C8	1.3256 (17)	C11—C12	1.393 (2)
N2—C9	1.3902 (18)	C11—H11	0.9300
N3—C22	1.3599 (17)	C12—C13	1.376 (2)
N3—C23	1.3768 (18)	C12—H12	0.9300
N3—H3N	0.8600	C13—C14	1.388 (2)
N4—C22	1.3261 (17)	С13—Н13	0.9300
N4—C28	1.3890 (18)	C15—C16	1.389 (2)
O1—C4	1.3619 (18)	C15—C21	1.4080 (19)
O1—C5	1.416 (2)	C15—C22	1.4660 (19)
O2—C6	1.3709 (17)	C16—C17	1.394 (2)
O2—C5	1.4335 (19)	C16—H16	0.9300
O3—C18	1.3760 (18)	C17—C18	1.366 (2)
O3—C19	1.434 (2)	C17—H17	0.9300
O4—C20	1.3784 (17)	C18—C20	1.375 (2)
O4—C19	1.427 (2)	C19—H19A	0.9700

C1—C2	1.389 (2)	C19—H19B	0.9700
C1—C7	1.4017 (19)	C20—C21	1.366 (2)
C1—C8	1.4600 (19)	C21—H21	0.9300
C2—C3	1.389 (2)	C23—C24	1.392 (2)
C2—H2	0.9300	C23—C28	1.3981 (19)
C3—C4	1 361 (2)	C_{24} C_{25}	1 377 (2)
C3—H3	0.9300	C_{24} H24	0.9300
C4-C6	1.384(2)	C_{25}	1.398(2)
C_{5} H5A	0.9700	C25 H25	0.0300
C5 H5P	0.9700	C25—1125	0.9300
	0.9700 1 2652 (10)	C_{20}	1.373(2)
	1.3032 (19)	C20—H20	0.9300
C/=H/	0.9300	$C_{27} = C_{28}$	1.396 (2)
C9—C10	1.3926 (19)	C2/—H2/	0.9300
C8—N1—C14	107.59 (11)	C12—C13—C14	117.08 (14)
C8—N1—H1N	126.2	С12—С13—Н13	121.5
C14—N1—H1N	126.2	C14—C13—H13	121.5
C8—N2—C9	105.23 (11)	N1—C14—C13	132.81 (13)
C22—N3—C23	107.80 (11)	N1—C14—C9	105.36 (12)
C22—N3—H3N	126.1	C13—C14—C9	121.83 (13)
C_{23} N3 H3N	126.1	C16—C15—C21	119.89 (13)
C22—N4—C28	105.45 (11)	C16-C15-C22	119.74 (12)
C4-01-C5	106.09 (12)	$C_{21} - C_{15} - C_{22}$	120.35(12)
$C_{6} - O_{2} - C_{5}$	105.09(12)	C_{15} C_{16} C_{17}	120.93(12) 121.91(14)
C_{18} C_{19} C_{19}	103.20(12) 104.80(12)	C_{15} C_{16} H_{16}	110.0
$C_{10} = 0.04 = 0.04$	104.00(12) 104.78(12)	C17 C16 H16	119.0
$C_{20} = 04 = C_{13}$	104.70(12) 120.50(12)	C19 C17 C16	119.0
$C_2 = C_1 = C_1$	120.30(13) 120.70(12)	$C_{18} = C_{17} = U_{17}$	110.92 (14)
$C_2 - C_1 - C_8$	120.70 (13)	C16_C17_H17	121.5
C/-CI-C8	118.80 (12)	C16—C1/—H1/	121.5
	121.48 (14)	C17 - C18 - C20	121.65 (14)
C3—C2—H2	119.3	C17—C18—O3	128.39 (14)
C1—C2—H2	119.3	C20—C18—O3	109.91 (13)
C4—C3—C2	117.00 (14)	O4—C19—O3	107.66 (12)
С4—С3—Н3	121.5	O4—C19—H19A	110.2
С2—С3—Н3	121.5	O3—C19—H19A	110.2
C3—C4—O1	127.87 (14)	O4—C19—H19B	110.2
C3—C4—C6	122.23 (14)	O3—C19—H19B	110.2
O1—C4—C6	109.90 (14)	H19A—C19—H19B	108.5
O1—C5—O2	108.56 (12)	C21—C20—C18	122.58 (14)
O1—C5—H5A	110.0	C21—C20—O4	127.65 (14)
O2—C5—H5A	110.0	C18—C20—O4	109.76 (13)
O1—C5—H5B	110.0	C20—C21—C15	116.98 (13)
O2—C5—H5B	110.0	C20—C21—H21	121.5
H5A—C5—H5B	108.4	C15—C21—H21	121.5
C7—C6—O2	128.50 (13)	N4—C22—N3	111.92 (12)
C7—C6—C4	121.62 (13)	N4—C22—C15	124.77 (12)
02	109.87 (13)	N3-C22-C15	123.32(12)
C6—C7—C1	117.17 (13)	N3-C23-C24	132.47 (13)
			()

С6—С7—Н7	121.4	N3—C23—C28	105.24 (12)
С1—С7—Н7	121.4	C24—C23—C28	122.30 (13)
N2—C8—N1	112.32 (12)	C25—C24—C23	116.66 (14)
N2-C8-C1	124.57 (12)	C25—C24—H24	121.7
N1—C8—C1	123.11 (11)	C23—C24—H24	121.7
N2-C9-C10	130.30 (13)	C24—C25—C26	121.64 (15)
N2-C9-C14	109.49 (12)	С24—С25—Н25	119.2
C10—C9—C14	120.21 (13)	С26—С25—Н25	119.2
C11—C10—C9	117.62 (14)	C27—C26—C25	121.64 (14)
C11—C10—H10	121.2	С27—С26—Н26	119.2
С9—С10—Н10	121.2	С25—С26—Н26	119.2
C10—C11—C12	121.76 (14)	C26—C27—C28	117.67 (14)
C10—C11—H11	119.1	С26—С27—Н27	121.2
C12—C11—H11	119.1	С28—С27—Н27	121.2
C13—C12—C11	121.50 (14)	N4—C28—C27	130.30 (13)
C13—C12—H12	119.3	N4—C28—C23	109.59 (12)
C11—C12—H12	119.3	C27—C28—C23	120.09 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ···N4 ⁱ	0.86	1.93	2.7761 (15)	168
N3—H3 <i>N</i> ···N2	0.86	1.96	2.8053 (16)	168

Symmetry code: (i) x-1/2, -y+1/2, z-1/2.