organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[2-(3,4-Dimethoxyphenyl)ethyl](3-{*N*-[2-(3,4-dimethoxyphenyl)ethyl]carbamoyl}propyl)azanium chloride dihydrate

Abdusalom Sh. Saidov* and Kambarali K. Turgunov

S. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan Correspondence e-mail: a-saidov85@mail.ru

Received 23 January 2014; accepted 28 January 2014

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.131; data-to-parameter ratio = 14.3.

The asymmetric unit of the title hydrated salt, $C_{24}H_{35}N_2O_5^+ \cdot Cl^- \cdot 2H_2O$, contains one organic cation that has its protonation site at the amine function, one chloride anion and two lattice water molecules. In the crystal, one pair of lattice water molecules and two chloride anions form a fourmembered centrosymmetric hydrogen-bond cycle. In addition, $O-H\cdots O$, $N-H\cdots O$ and $N-H\cdots Cl$ hydrogen bonds involving the N-H groups, the water molecules and the C=O group are observed. As a result, a hydrogen-bonded layer parallel to (100) is formed. The thickness of such a layer corresponds to the length of the *a* axis [21.977 (3) Å].

Related literature

For standard bond lengths, see: Allen *et al.* (1987). For the synthesis of related compounds, see: Bentley (2006); Saidov *et al.* (2013). For the crystal structure of a related compound, see: Peters *et al.* (1994).

 $\beta = 93.490 \ (9)^{\circ}$

V = 2742.2 (5) Å³

$M_r = 503.02$	
Monoclinic, $P2_1/c$	
a = 21.977 (3) Å	

Data collection

Oxford Diffraction Xcalibur Ruby
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.599, \ T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ H atoms $wR(F^2) = 0.131$ indepeS = 0.97refiner4860 reflections $\Delta \rho_{max} =$ 339 parameters $\Delta \rho_{min} =$

3012 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$

11225 measured reflections 4860 independent reflections

T = 295 K

 $0.60 \times 0.40 \times 0.35 \text{ mm}$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots Cl1^{i}$ $O2W - H1W2 \cdots O3$ $N2 - H2 \cdots Cl1$ $O2W - H2W2 \cdots O1W^{ii}$ $N2 - H3 \cdots O2W^{iii}$ $O1W - HW1 - Cl1^{i}$	0.87 (2) 0.95 (5) 0.92 (3) 0.80 (4) 0.99 (2) 0.87 (5)	2.44 (2) 1.75 (5) 2.22 (3) 1.97 (4) 1.72 (2) 2.21 (5)	3.300 (2) 2.704 (3) 3.127 (2) 2.767 (4) 2.709 (3) 2.177 (2)	173 (2) 179 (6) 169 (3) 171 (4) 177 (2)
$O1W - H1W1 \cdots Cl1^{4}$ $O1W - H2W1 \cdots Cl1$	0.87(5) 0.91(4)	2.31 (5) 2.31 (4)	3.177 (3) 3.194 (4)	177 (6) 164 (3)
Symmetry codes: (i) -x + 1, -y + 2, -z + 1.	-x + 1, -y -	+1, -z +1;	(ii) $x, -y +$	$\frac{3}{2}, z + \frac{1}{2};$ (iii)

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F7–T185).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM2799).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bentley, K. W. (2006). Nat. Prod. Rep. 23, 444-463.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.

Peters, K., Peters, E.-M., Schnering, H. G., Bringmann, G. & Gassen, M. (1994). Z. Kristallogr. 209, 667–668.

Saidov, A. Sh., Alimova, M., Levkovich, M. G. & Vinogradova, V. I. (2013). *Chem. Nat. Compd*, 49, 302–304.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o232 [doi:10.1107/S1600536814001998]

[2-(3,4-Dimethoxyphenyl)ethyl](3-{*N*-[2-(3,4-dimethoxyphenyl)ethyl]carbamoyl}propyl)azanium chloride dihydrate

Abdusalom Sh. Saidov and Kambarali K. Turgunov

S1. Comment

The title compound, $C_{24}H_{35}N_2O_5^+Cl^+(H_2O)_2$, was isolated as an intermediate product in the synthesis of isoquinoline alkaloid analogues (Saidov *et al.*, 2013). Similar compounds have been synthesized (Bentley, 2006), or their structures characterized (Peters *et al.*, 1994).

A perspective view of the moleculular entities of the title compound, showing the atomic numbering scheme, is given in Fig. 1. Bond lengths and angles are in normal ranges (Allen *et al.*, 1987). The organic molecule contains two N atoms, amidic and aminic. The N atom on an amide is usually less nucleophilic than the N atom of an amine, due to the resonance stabilization of the N atom lone-pair provided by the amide carbonyl group. Therefore, in the cation the protonization of the amino N atom is observed.

In the crystal structure, two chloride anion and one lattice water molecule form a centrosymmetric four-membered hydrogen-bonding cycle (Fig. 2). The protonated organic molecules are bridged by N—H…Cl and C=O…H—O(w) hydrogen bonds (Table 1). As a result, hydrogen-bonded layers parallel to (100) are formed that have a thickness corresponding to the length of the *a* axis.

S2. Experimental

To a solution of 2.0 g. (0.004 mol) *N*,*N*-(3,4-dimethoxyphenyl ethyl)succindiamide in 30 ml absolute benzene was added 6.7 g (0.04 mol) POCl₃. The reaction mixture was boiled for 2 h. Benzene and excess POCl₃ were then removed under reduced pressure, and the residue was dissolved in 30 ml methanol. To the received solution was added 3.8 g (0.1 mol) NaBH₄ at 273-278 K under ice cooling. Then methanol was removed, the residue dissolved in water and extracted with chloroform. From the chloroformic layer were obtained three componds with R_f 0.9, 0.5 and 0.2 (title compound) (chloroform:methanol=8:1). The compounds were isolated by column chromatography (silica gel); 0.075 g of the title compound were obtained with a m.p. 406-408 K. IR (KBr, *v*, cm⁻¹): 3434, 3258, 2940, 1651, 1590, 1519. Crystals suitable for X-ray diffraction analysis were obtained from a chloroform—methanol (8:1) mixture by slow evaporation.

S3. Refinement

Carbon-bound H atoms were placed geometrically and treated as riding on their parent atoms, with C—H distances of 0.93 Å (aromatic), 0.97 Å (methylen), 0.96 Å (methyl) and were refined with $U_{iso}(H)=1.2Ueq(C)$ for aromatic and methylen H atoms, $U_{iso}(H)=1.5Ueq(C)$ for methyl H atoms. N-bound H atoms and water H atoms involved in the intermolecular hydrogen bonding were found by difference Fourier synthesis and refined isotropically [N1–H1=0.86 (2) Å, N2–H2 0.92 (3) Å, N2–H3 0.99 (3) Å, O1W–H1W1= 0.86 (5) Å, O1W–H2W1= 0.91 (5) Å, O2W–H1W2= 0.96 (4) Å, O2W–H2W2= 0.80 (4) Å].

The molecular entities of the title compound with displacement ellipsoids drawn at the 50% probability level.

The crystal packing of the title compound showing hydrogen bonds (dashed lines)

[2-(3,4-Dimethoxyphenyl)ethyl](3-{*N*-[2-(3,4-dimethoxyphenyl)ethyl]carbamoyl}propyl)azanium chloride dihydrate

F(000) = 1080

 $\theta = 3.6 - 67.2^{\circ}$

 $\mu = 1.59 \text{ mm}^{-1}$

Prism, colourless

 $0.60 \times 0.40 \times 0.35$ mm

T = 295 K

 $D_{\rm x} = 1.218 {\rm Mg} {\rm m}^{-3}$

Melting point: 406(2) K

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 3039 reflections

Crystal	data
Ciybiai	uuuu

 $C_{24}H_{35}N_2O_5^{+}\cdot Cl^{-}\cdot 2H_2O$ $M_r = 503.02$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 21.977 (3) Å b = 12.2295 (10) Å c = 10.2217 (9) Å $\beta = 93.490$ (9)° V = 2742.2 (5) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby 11225 measured reflections diffractometer 4860 independent reflections Radiation source: Enhance (Cu) X-ray Source 3012 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.035$ Detector resolution: 10.2576 pixels mm⁻¹ $\theta_{\rm max} = 67.3^\circ, \ \theta_{\rm min} = 4.0^\circ$ $h = -25 \rightarrow 26$ ω scans Absorption correction: multi-scan $k = -14 \rightarrow 12$ (CrysAlis PRO; Oxford Diffraction, 2009) $l = -12 \rightarrow 12$ $T_{\rm min} = 0.599, T_{\rm max} = 1.000$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.131$	neighbouring sites
S = 0.97	H atoms treated by a mixture of independent
4860 reflections	and constrained refinement
339 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0748P)^2]$
0 restraints	where $P = (F_0^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.20 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.60316 (3)	0.54002 (5)	0.43730 (7)	0.0681 (2)

supporting information

01	0.04553 (8)	0.60760 (16)	-0.00797(18)	0.0712 (5)
O2	0.04433 (7)	0.62103 (15)	0.24413 (18)	0.0680 (5)
03	0.35306 (8)	0.87255 (13)	0.4546 (2)	0.0689 (5)
04	0.83315 (9)	1.01542 (13)	0.90785 (19)	0.0709 (5)
05	0.89012 (7)	0.84794 (15)	1.01019 (17)	0.0636 (5)
N1	0.33989(9)	0 69124 (17)	0.4423(2)	0.0553(5)
N2	0.59396 (8)	0.76971(17)	0.5691 (2)	0.0460 (5)
C1	0.21020(10)	0.58872(18)	0.2146(2)	0.0503 (6)
C2	0.21020(10) 0.21035(11)	0.5805(2)	0.0803(2)	0.0584(6)
H2A	0.2469	0.5712	0.0405	0.070*
C3	0.210° 0.15577(12)	0.5712 0.5863 (2)	0.0102 0.0040(2)	0.0605 (6)
НЗА	0.1565	0.5803	-0.0866	0.073*
C4	0.10113 (11)	0.60055 (19)	0.0000	0.0520 (6)
C5	0.10050 (10)	0.60831(18)	0.0590(2) 0.1960(2)	0.0320(0)
C6	0.15446(10)	0.60051(10)	0.1700(2) 0.2707(2)	0.0504 (6)
Н6А	0.1538	0.6056	0.2707(2)	0.061*
C7	0.1338 0.04354(15)	0.5862 (3)	-0.1458(3)	0.001
	0.04334 (13)	0.5802 (5)	-0.1807	0.121*
п/А Ц7р	0.0020	0.5880	-0.1609	0.131*
	0.0000	0.5155	-0.1008	0.131*
	0.0007	0.0408	-0.1885	0.131°
	0.03998 (14)	0.0039 (3)	0.3813 (3)	0.0794 (9)
HðA	-0.0021	0.6062	0.4014	0.119*
НбВ	0.0611	0.0041	0.4279	0.119*
H&C	0.0581	0.5372	0.4072	0.119*
C9	0.26858 (11)	0.58427 (19)	0.3007 (3)	0.0574 (6)
H9A	0.3003	0.5506	0.2525	0.069*
H9B	0.2623	0.5393	0.3768	0.069*
C10	0.28909 (10)	0.69740 (19)	0.3453 (3)	0.0557 (6)
H10A	0.3011	0.7391	0.2704	0.067*
H10B	0.2554	0.7352	0.3824	0.067*
C11	0.36817 (10)	0.77996 (19)	0.4917 (2)	0.0503 (6)
C12	0.42055 (10)	0.76099 (19)	0.5905 (3)	0.0514 (6)
H12A	0.4174	0.6882	0.6273	0.062*
H12B	0.4185	0.8134	0.6613	0.062*
C13	0.48157 (10)	0.7724 (2)	0.5283 (2)	0.0544 (6)
H13A	0.4860	0.7135	0.4661	0.065*
H13B	0.4824	0.8410	0.4808	0.065*
C14	0.53415 (10)	0.7694 (2)	0.6305 (2)	0.0519 (6)
H14A	0.5319	0.8324	0.6876	0.062*
H14B	0.5311	0.7041	0.6836	0.062*
C15	0.64681 (10)	0.7750 (2)	0.6672 (2)	0.0548 (6)
H15A	0.6467	0.7105	0.7225	0.066*
H15B	0.6425	0.8385	0.7226	0.066*
C16	0.70733 (10)	0.7816 (2)	0.6030 (3)	0.0602 (7)
H16A	0.7139	0.7152	0.5539	0.072*
H16B	0.7068	0.8428	0.5426	0.072*
C17	0.75800 (10)	0.7962 (2)	0.7074 (2)	0.0518 (6)
C18	0.77208 (10)	0.9006 (2)	0.7562 (2)	0.0516 (6)

H18A	0.7513	0.9609	0.7205	0.062*
C19	0.81614 (10)	0.91564 (18)	0.8559 (2)	0.0502 (6)
C20	0.84737 (10)	0.82529 (19)	0.9117 (2)	0.0491 (6)
C21	0.83303 (11)	0.72290 (19)	0.8639 (3)	0.0604 (7)
H21A	0.8532	0.6621	0.8999	0.072*
C22	0.78904 (11)	0.7091 (2)	0.7631 (3)	0.0621 (7)
H22A	0.7803	0.6390	0.7321	0.074*
C23	0.79880 (15)	1.1081 (2)	0.8642 (3)	0.0781 (9)
H23A	0.8149	1.1723	0.9079	0.117*
H23B	0.7570	1.0984	0.8838	0.117*
H23C	0.8013	1.1163	0.7713	0.117*
C24	0.91979 (13)	0.7568 (2)	1.0737 (3)	0.0776 (9)
H24A	0.9487	0.7826	1.1408	0.116*
H24B	0.9406	0.7150	1.0106	0.116*
H24C	0.8900	0.7116	1.1123	0.116*
O1W	0.46801 (16)	0.5117 (2)	0.3085 (3)	0.0915 (7)
O2W	0.40073 (12)	1.04928 (17)	0.5826 (3)	0.0892 (8)
H1W2	0.3843 (19)	0.987 (4)	0.537 (4)	0.159 (17)*
H2W2	0.4236 (18)	1.034 (3)	0.644 (4)	0.116 (15)*
H1W1	0.448 (2)	0.495 (4)	0.376 (5)	0.16 (2)*
H2W1	0.509 (2)	0.513 (4)	0.330 (4)	0.16 (2)*
H1	0.3518 (11)	0.629 (2)	0.476 (2)	0.058 (7)*
H2	0.5971 (11)	0.707 (2)	0.520 (3)	0.071 (8)*
H3	0.5953 (10)	0.834 (2)	0.511 (2)	0.062 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0868 (5)	0.0462 (3)	0.0703 (4)	0.0017 (3)	-0.0030 (3)	0.0004 (3)
01	0.0576 (11)	0.0906 (14)	0.0628 (11)	-0.0020 (10)	-0.0185 (9)	0.0016 (10)
O2	0.0452 (10)	0.0919 (14)	0.0668 (12)	0.0045 (9)	0.0015 (8)	-0.0032 (10)
03	0.0586 (11)	0.0429 (10)	0.1020 (15)	0.0001 (8)	-0.0209 (10)	0.0039 (9)
O4	0.0856 (13)	0.0493 (10)	0.0745 (12)	0.0019 (9)	-0.0230 (10)	-0.0066 (9)
05	0.0515 (10)	0.0699 (11)	0.0673 (11)	-0.0008 (8)	-0.0153 (8)	0.0052 (9)
N1	0.0438 (11)	0.0415 (11)	0.0781 (15)	-0.0004 (9)	-0.0155 (10)	0.0037 (11)
N2	0.0391 (11)	0.0452 (11)	0.0529 (12)	-0.0006 (8)	-0.0044 (9)	-0.0062 (10)
C1	0.0465 (13)	0.0435 (12)	0.0599 (15)	0.0000 (10)	-0.0047 (11)	-0.0039 (11)
C2	0.0507 (14)	0.0662 (16)	0.0585 (16)	-0.0026 (12)	0.0052 (12)	-0.0041 (13)
C3	0.0652 (17)	0.0707 (16)	0.0451 (14)	-0.0081 (14)	-0.0002 (12)	-0.0010 (12)
C4	0.0505 (14)	0.0507 (14)	0.0535 (15)	-0.0061 (11)	-0.0074 (11)	0.0030 (11)
C5	0.0455 (13)	0.0496 (13)	0.0537 (14)	0.0012 (10)	-0.0018 (11)	-0.0045 (11)
C6	0.0498 (13)	0.0551 (14)	0.0456 (13)	-0.0004 (11)	-0.0031 (11)	-0.0037 (11)
C7	0.092 (2)	0.104 (2)	0.0616 (19)	-0.0084 (19)	-0.0325 (17)	-0.0010 (17)
C8	0.0722 (19)	0.095 (2)	0.072 (2)	0.0049 (16)	0.0203 (15)	0.0011 (17)
C9	0.0493 (14)	0.0501 (13)	0.0713 (17)	0.0025 (11)	-0.0085 (12)	-0.0103 (13)
C10	0.0440 (13)	0.0493 (14)	0.0720 (17)	-0.0024 (11)	-0.0109 (12)	0.0022 (12)
C11	0.0389 (12)	0.0466 (14)	0.0648 (16)	-0.0013 (10)	-0.0008 (11)	0.0000 (11)
C12	0.0421 (13)	0.0456 (13)	0.0652 (16)	-0.0010 (10)	-0.0056 (11)	-0.0037 (11)

supporting information

C13	0.0417 (13)	0.0599 (15)	0.0606 (15)	0.0026 (11)	-0.0051 (11)	-0.0062 (12)
C14	0.0386 (12)	0.0548 (14)	0.0615 (15)	0.0028 (10)	-0.0023 (11)	-0.0094 (11)
C15	0.0411 (13)	0.0677 (16)	0.0540 (14)	-0.0034 (11)	-0.0093 (11)	-0.0035 (12)
C16	0.0453 (14)	0.0749 (18)	0.0596 (15)	-0.0038 (12)	-0.0036 (12)	-0.0055 (13)
C17	0.0370 (12)	0.0616 (15)	0.0564 (15)	-0.0028 (11)	-0.0010 (11)	-0.0014 (12)
C18	0.0451 (13)	0.0548 (14)	0.0541 (14)	0.0052 (11)	-0.0032 (11)	0.0044 (11)
C19	0.0481 (13)	0.0471 (13)	0.0549 (14)	-0.0011 (11)	0.0006 (11)	0.0005 (11)
C20	0.0364 (12)	0.0562 (14)	0.0544 (14)	-0.0015 (10)	-0.0005 (11)	0.0044 (11)
C21	0.0458 (14)	0.0509 (15)	0.0831 (19)	0.0057 (11)	-0.0064 (13)	0.0089 (13)
C22	0.0499 (14)	0.0490 (14)	0.086 (2)	-0.0052 (12)	-0.0043 (14)	-0.0047 (13)
C23	0.122 (3)	0.0499 (16)	0.0619 (18)	0.0174 (16)	0.0018 (17)	-0.0008 (13)
C24	0.0581 (17)	0.097 (2)	0.076 (2)	0.0129 (15)	-0.0156 (15)	0.0192 (17)
O1W	0.104 (2)	0.0987 (17)	0.0698 (15)	-0.0214 (15)	-0.0146 (14)	0.0143 (12)
O2W	0.1143 (19)	0.0535 (12)	0.0948 (18)	-0.0154 (12)	-0.0341 (15)	0.0146 (12)

Geometric parameters (Å, °)

O1—C4	1.366 (3)	C10—H10B	0.9700
01—C7	1.431 (3)	C11—C12	1.503 (3)
O2—C5	1.365 (3)	C12—C13	1.525 (3)
O2—C8	1.423 (3)	C12—H12A	0.9700
O3—C11	1.233 (3)	C12—H12B	0.9700
O4—C19	1.374 (3)	C13—C14	1.510 (3)
O4—C23	1.419 (3)	C13—H13A	0.9700
O5—C20	1.363 (3)	C13—H13B	0.9700
O5—C24	1.427 (3)	C14—H14A	0.9700
N1-C11	1.334 (3)	C14—H14B	0.9700
N1-C10	1.449 (3)	C15—C16	1.521 (3)
N1—H1	0.86 (2)	C15—H15A	0.9700
N2-C15	1.488 (3)	C15—H15B	0.9700
N2-C14	1.490 (3)	C16—C17	1.505 (3)
N2—H2	0.92 (3)	C16—H16A	0.9700
N2—H3	0.99 (3)	C16—H16B	0.9700
C1—C2	1.377 (3)	C17—C22	1.369 (3)
C1—C6	1.392 (3)	C17—C18	1.398 (3)
C1—C9	1.512 (3)	C18—C19	1.375 (3)
C2—C3	1.392 (3)	C18—H18A	0.9300
C2—H2A	0.9300	C19—C20	1.404 (3)
C3—C4	1.368 (3)	C20—C21	1.374 (3)
С3—НЗА	0.9300	C21—C22	1.380 (3)
C4—C5	1.405 (3)	C21—H21A	0.9300
C5—C6	1.373 (3)	C22—H22A	0.9300
С6—Н6А	0.9300	C23—H23A	0.9600
С7—Н7А	0.9600	C23—H23B	0.9600
С7—Н7В	0.9600	C23—H23C	0.9600
С7—Н7С	0.9600	C24—H24A	0.9600
C8—H8A	0.9600	C24—H24B	0.9600
C8—H8B	0.9600	C24—H24C	0.9600

C8—H8C	0.9600	O1W—H1W1	0.86 (5)
C9—C10	1.517 (3)	O1W—H2W1	0.91 (5)
С9—Н9А	0.9700	O2W—H1W2	0.96 (4)
С9—Н9В	0.9700	O2W—H2W2	0.80 (4)
C10—H10A	0.9700		
C4—O1—C7	117.0 (2)	C13—C12—H12A	109.4
С5—О2—С8	117.19 (19)	C11—C12—H12B	109.4
C19—O4—C23	117.45 (19)	C13—C12—H12B	109.4
C20—O5—C24	116.9 (2)	H12A—C12—H12B	108.0
C11—N1—C10	122.6 (2)	C14—C13—C12	111.4 (2)
C11—N1—H1	116.1 (16)	C14—C13—H13A	109.3
C10—N1—H1	121.2 (16)	C12—C13—H13A	109.3
C15-N2-C14	112.89 (19)	C14—C13—H13B	109.3
C15-N2-H2	108.8 (16)	C12—C13—H13B	109.3
C14 - N2 - H2	108.9 (16)	H13A—C13—H13B	108.0
C15 - N2 - H3	108.8(13)	N^2 —C14—C13	111.5(2)
C14—N2—H3	108.5(13) 108.5(14)	N2 - C14 - H14A	109.3
$H_2 = N_2 = H_3$	100.3(14) 109(2)	C13 - C14 - H14A	109.3
C_{2} C_{1} C_{6}	109(2) 1183(2)	N2 - C14 - H14B	109.3
$C_2 - C_1 - C_0$	110.5(2) 121.6(2)	C_{13} C_{14} H_{14B}	109.3
$C_{2} = C_{1} = C_{9}$	121.0(2) 1201(2)	H_{14A} C_{14} H_{14B}	109.5
C1 - C2 - C3	120.1(2) 120.0(2)	N^2	1123(2)
C1 C2 H2A	120.0 (2)	$N_2 = C_{15} = C_{10}$	100.2
$C_1 = C_2 = H_2 \Lambda$	120.0	C_{16} C_{15} H_{15A}	109.2
C_{4}	120.0 121.6(2)	N2_C15_H15B	109.2
C4 = C3 = C2	121.0 (2)	C_{16} C_{15} H_{15B}	109.2
$C_2 = C_3 = H_3 \Lambda$	119.2	H15A C15 H15B	109.2
$C_2 - C_3 - \Pi_3 \Lambda$	119.2 125.7(2)	$\begin{array}{c} \text{III} \text{IIII} \text{IIII} \text{IIII} \text{IIII} \text{IIII} \text{IIII} \text{IIII} IIIIIII$	107.9 100.2(2)
01 - C4 - C5	125.7(2) 115.6(2)	C17 C16 H16A	109.2 (2)
$C_1 - C_4 - C_5$	113.0(2) 118.7(2)	C15 $C16$ $H16A$	109.8
C_{3} C_{4} C_{5} C_{6}	110.7(2) 125.1(2)	C17 C16 H16R	109.8
02-05-00	125.1(2) 115.5(2)	C15 $C16$ $H16B$	109.8
02-05-04	110.3(2)	H16A C16 H16B	109.8
$C_{0} - C_{3} - C_{4}$	119.3(2) 122.0(2)	$C^{22} C^{17} C^{18}$	100.3 117.9(2)
C5 C6 H6A	122.0 (2)	$C_{22} = C_{17} = C_{18}$	117.9(2) 122.1(2)
C_{1} C_{6} H_{6A}	119.0	$C_{22} = C_{17} = C_{16}$	122.1(2) 110.0(2)
C1 = C0 = H0A	119.0	$C_{10} = C_{10} = C_{10}$	119.9(2) 121.1(2)
OI = C / = II / A OI = C / = H7B	109.5	C19 - C18 - C17	121.1 (2)
$U_{1} = C_{1} = H_{1} = H_{2}$	109.5	C17 C18 H18A	119.4
$\Pi/A = C / = \Pi/B$	109.5	$O_{1} = C_{10} = C_{18}$	119.4
UI = U = U = U = U = U = U = U = U = U =	109.5	04 - 019 - 018	124.0(2) 115.2(2)
$\Pi/A = C/ = \Pi/C$	109.5	$C_{12} = C_{12} = C_{20}$	113.3(2) 120.1(2)
$\Pi/D = U/= \Pi/U$	109.5	05 C20 C21	120.1(2) 125.5(2)
$O_2 = C_0 = \Pi_0 A$	109.5	05 - 020 - 021	123.3(2)
	109.5	C_{21} C_{20} C_{19}	110.0(2)
110A - 0 - 110D	109.5	$C_{21} - C_{20} - C_{19}$	110.3(2)
	109.3	C_{20} C_{21} U_{21}	120.8 (2)
NON-LO-HOL	109.5	U2U-U2I-H2IA	119.0

H8B—C8—H8C	109.5	C22—C21—H21A	119.6
C1—C9—C10	111.61 (19)	C17—C22—C21	121.6 (2)
С1—С9—Н9А	109.3	C17—C22—H22A	119.2
С10—С9—Н9А	109.3	C21—C22—H22A	119.2
С1—С9—Н9В	109.3	O4—C23—H23A	109.5
С10—С9—Н9В	109.3	O4—C23—H23B	109.5
Н9А—С9—Н9В	108.0	H23A—C23—H23B	109.5
N1—C10—C9	111.15 (19)	O4—C23—H23C	109.5
N1-C10-H10A	109.4	H23A—C23—H23C	109.5
C9—C10—H10A	109.4	H23B—C23—H23C	109.5
N1-C10-H10B	109.4	O5—C24—H24A	109.5
C9—C10—H10B	109.4	O5—C24—H24B	109.5
H10A—C10—H10B	108.0	H24A—C24—H24B	109.5
O3—C11—N1	121.3 (2)	O5—C24—H24C	109.5
O3—C11—C12	122.0 (2)	H24A—C24—H24C	109.5
N1-C11-C12	116.7 (2)	H24B—C24—H24C	109.5
C11—C12—C13	111.3 (2)	H1W1—O1W—H2W1	111 (4)
C11—C12—H12A	109.4	H1W2—O2W—H2W2	113 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
N1—H1···Cl1 ⁱ	0.87 (2)	2.44 (2)	3.300 (2)	173 (2)
O2 <i>W</i> —H1 <i>W</i> 2···O3	0.95 (5)	1.75 (5)	2.704 (3)	179 (6)
N2—H2…Cl1	0.92 (3)	2.22 (3)	3.127 (2)	169 (3)
O2W—H2W2···O1W ⁱⁱ	0.80 (4)	1.97 (4)	2.767 (4)	171 (4)
N2—H3···O2 <i>W</i> ⁱⁱⁱ	0.99 (2)	1.72 (2)	2.709 (3)	177 (2)
O1W—H1W1···Cl1 ⁱ	0.87 (5)	2.31 (5)	3.177 (3)	177 (6)
O1 <i>W</i> —H2 <i>W</i> 1···Cl1	0.91 (4)	2.31 (4)	3.194 (4)	164 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, -*y*+3/2, *z*+1/2; (iii) -*x*+1, -*y*+2, -*z*+1.