organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(1-Benzyl-1*H*-1,2,3-triazol-4-yl)methyl]-2*H*-1,4-benzothiazin-3(4*H*)-one

Nada Kheira Sebbar,^a* Abdelfettah Zerzouf,^b El Mokhtar Essassi,^a Mohamed Saadi^c and Lahcen El Ammari^c

^aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pharmacochimie, Avenue Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, ^bLaboratoire de Chimie Organique et Etudes Physicochimique, ENS Takaddoum, Rabat, Morocco, and ^cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: nk_sebbar@yahoo.fr

Received 11 January 2014; accepted 13 January 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.149; data-to-parameter ratio = 16.2.

In the title compound, $C_{18}H_{16}N_4OS$, the six-membered heterocycle of the benzothiazine fragment exhibits a screwboat conformation. The dihedral angles between the plane through the triazole ring and those through the fused and terminal benzene rings are 76.68 (11) and 71.0 (1)°, respectively; the benzene rings are nearly perpendicular [dihedral angle = 79.6 (1)°]. In the crystal, molecules are linked by C– $H \cdots N$ and C– $H \cdots O$ interactions, forming a three-dimensional network.

Related literature

For the biological activity of 1,4-benzothiazin-3-one derivatives, see: Rathore & Kumar (2006); Barazarte *et al.* (2008); Chia *et al.* (2008). For related structures, see: Ouzidan *et al.* (2011); Sebbar *et al.* (2014). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{18}H_{16}N_4OS$ $M_r = 336.41$

Monoclinic, $P2_1/c$ a = 13.283 (2) Å b = 5.3661 (10) Å c = 23.281 (4) Å $\beta = 96.633$ (10)°

Data collection

Bruker X8 APEX diffractometer15366 measured reflectionsAbsorption correction: multi-scan
(SADABS; Bruker, 2009)3526 independent reflections $T_{min} = 0.649, T_{max} = 0.747$ $R_{int} = 0.044$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.149$ S = 1.033526 reflections

 $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.33 \text{ e } \text{\AA}^{-3}$

217 parameters

H-atom parameters constrained

V = 1648.3 (5) Å³

Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$

 $0.39 \times 0.35 \times 0.28 \ \text{mm}$

Z = 4

T = 296 K

Table 1

Hydrogen-bond geometry (Å, °).

				$D = \Pi^{*} \cdots \Pi^{*}$
$C8 - H8 \cdots N2^{i}$ $C8 - H8 \cdots N3^{i}$ $C5 - H5 \cdots O1^{ii}$	0.93	2.44	3.344 (3)	165
	0.93	2.44	3.339 (3)	164
	0.93	2.58	3.477 (2)	163

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5287).

References

- Barazarte, A., Camacho, J., Dominguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). *Bioorg. Med. Chem.* 16, 3661–3674.
- Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chia, E. W., Pearce, A. N., Berridge, M. V., Larsen, L., Perry, N. B., Sansom, C. E., Godfrey, C. A., Hanton, L. R., Lu, G. L., Walton, M., Denny, W. A., Webb, V. L., Copp, B. R. & Harper, J. L. (2008). *Bioorg. Med. Chem.* 16, 9432–9442.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., Essassi, E. M. & El Ammari, L. (2011). *Acta Cryst.* E67, 0890–0891.
- Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.
- Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, 0116.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o160-o161 [doi:10.1107/S1600536814000786]

4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-2H-1,4-benzothiazin-3(4H)-one

Nada Kheira Sebbar, Abdelfettah Zerzouf, El Mokhtar Essassi, Mohamed Saadi and Lahcen El Ammari

S1. Experimental

S1.1. Synthesis and crystallization

A mixture of 4-(prop-2-yn-1-yl)-3,4-dihydro-2*H*-1,4-benzothiazin-3-one (0.27 g, 0.35 mmol) and benzylazide (1.34 ml, 0.35 mmol) in ethanol (5 ml) was stirred at room temperature for 24 h. After cooling, the solid obtained was purified by column chromatography on silica gel with ethyl acetate-hexane (1/2) as eluent. Crystals were isolated when the solvent was allowed to evaporate.

S1.2. Refinement

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic) and C—H = 0.97 Å (methylene), and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

S2. Results and discussion

1,4-Benzothiazine derivatives have a wide spectrum of pharmaceutical and biological activities, such as anti-microbial (Rathore & Kumar, 2006); anti-malarial (Barazarte *et al.*, 2008) and anti-inflammatory (Chia *et al.*, 2008). The present work is a continuation of the investigation of the benzothiazine derivatives published recently by our team (Ouzidan *et al.*, 2011; Sebbar *et al.*, 2014). The aim of the present paper was to study the crystal structure of the recently synthesized 4-[(1-benzyl-1*H*-1,2,3-triazol-4-yl)methyl]-3,4-dihydro-2*H*-1,4-benzothiazin-3-one compound.

The molecule of the title compound is built up from two fused six-membered rings linked to a triazole ring, *via* the heterocyclic, which in turn is attached to benzene ring as shown in Fig. 1. The 1,4-thiazine ring adopts a screw boat conformation as indicated by the puckering amplitude Q = 0.6197 (17) Å, spherical polar angle θ = 64.42 (16)° and with φ = 329.6 (2)° (Cremer & Pople, 1975). The triazole ring (N1N2N3C8C9) makes dihedral angles of 76.68 (11) and 71.0 (1)° with the benzene fused to the 1,4-thiazine ring (C11 to C16) and the other benzene ring (C1 to C6), respectively. Moreover, the two benzene rings are nearly perpendicular as indicated by the dihedral angle between them of 79.6 (1)°.

In the crystal, the molecules are linked together by a weak intermolecular C8–H8…N2, C8–H8…N3 and C5–H5…O1 interactions, to form a three-dimensional network (see Fig. 2 and Table 1).

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Figure 2

Partial three dimensional plot of the title compound, showing molecules linked through C8–H8…N2, C8–H8…N3 and C5–H5…O1 hydrogen bonds (dashed lines).

4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-2H-1,4-benzothiazin-3(4H)-one

Crystal data

C₁₈H₁₆N₄OS $M_r = 336.41$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.283 (2) Å b = 5.3661 (10) Å c = 23.281 (4) Å $\beta = 96.633$ (10)° V = 1648.3 (5) Å³ Z = 4

Data collection

Bruker X8 APEX	15366 measured reflections
diffractometer	3526 independent reflections
Radiation source: fine-focus sealed tube	2540 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.044$
φ and ω scans	$\theta_{\rm max} = 27.1^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 17$
(SADABS; Bruker, 2009)	$k = -6 \rightarrow 5$
$T_{\min} = 0.649, \ T_{\max} = 0.747$	$l = -29 \longrightarrow 29$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.087P)^2 + 0.1602P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2

F(000) = 704

 $\theta = 1.8 - 27.1^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 296 K

Block. colourless

 $0.39 \times 0.35 \times 0.28 \text{ mm}$

 $D_{\rm x} = 1.356 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3526 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.22144 (17)	1.2104 (4)	0.32721 (9)	0.0608 (6)	
H1	0.2703	1.3328	0.3361	0.073*	
C2	0.13131 (19)	1.2201 (4)	0.35176 (10)	0.0663 (6)	
H2	0.1207	1.3471	0.3776	0.080*	

C3	0.05772 (18)	1.0436 (4)	0.33828 (10)	0.0620 (6)
H3	-0.0028	1.0501	0.3547	0.074*
C4	0.07467 (19)	0.8572 (5)	0.30010 (9)	0.0675 (7)
H4	0.0246	0.7387	0.2901	0.081*
C5	0.16506 (19)	0.8438 (4)	0.27650 (8)	0.0577 (6)
H5	0.1759	0.7140	0.2515	0.069*
C6	0.23928 (15)	1.0199 (4)	0.28950 (7)	0.0457 (4)
C7	0.33713 (17)	1.0077 (4)	0.26263 (8)	0.0597 (6)
H7A	0.3309	0.8829	0.2323	0.072*
H7B	0.3490	1.1673	0.2450	0.072*
C8	0.48825 (17)	1.0970 (4)	0.33613 (9)	0.0545 (5)
H8	0.4885	1.2703	0.3354	0.065*
C9	0.55342 (15)	0.9457 (3)	0.36961 (7)	0.0424 (4)
C10	0.64140 (18)	1.0099 (4)	0.41219 (9)	0.0555 (5)
H10A	0.6711	1.1646	0.4006	0.067*
H10B	0.6181	1.0363	0.4497	0.067*
C11	0.72308 (14)	0.6346 (4)	0.46251 (7)	0.0438 (4)
C12	0.64100 (17)	0.6069 (5)	0.49446 (8)	0.0581 (6)
H12	0.5823	0.6994	0.4847	0.070*
C13	0.6465 (2)	0.4417 (5)	0.54082 (8)	0.0727 (8)
H13	0.5923	0.4296	0.5627	0.087*
C14	0.7301 (2)	0.2979 (6)	0.55454 (8)	0.0780 (8)
H14	0.7327	0.1873	0.5854	0.094*
C15	0.81136 (19)	0.3164 (5)	0.52239 (8)	0.0683 (7)
H15	0.8680	0.2154	0.5311	0.082*
C16	0.80820 (15)	0.4867 (4)	0.47686 (7)	0.0499 (5)
C17	0.84430 (15)	0.5783 (4)	0.36944 (7)	0.0526 (5)
H17A	0.8910	0.6067	0.3410	0.063*
H17B	0.8032	0.4341	0.3572	0.063*
C18	0.77735 (15)	0.8007 (4)	0.37190 (7)	0.0480 (5)
N1	0.42420 (12)	0.9464 (3)	0.30471 (6)	0.0442 (4)
N2	0.44742 (13)	0.7078 (3)	0.31697 (6)	0.0482 (4)
N3	0.52629 (12)	0.7072 (3)	0.35664 (6)	0.0461 (4)
N4	0.71926 (12)	0.8149 (3)	0.41721 (6)	0.0451 (4)
01	0.77092 (14)	0.9600 (3)	0.33403 (6)	0.0689 (5)
S1	0.91484 (4)	0.51598 (14)	0.43858 (2)	0.0692 (2)
	× /	× /		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0529 (13)	0.0505 (13)	0.0794 (14)	-0.0036 (10)	0.0088 (11)	-0.0073 (10)
C2	0.0640 (15)	0.0553 (13)	0.0817 (14)	0.0067 (11)	0.0168 (12)	-0.0186 (11)
C3	0.0530 (13)	0.0659 (14)	0.0694 (13)	0.0021 (11)	0.0169 (11)	0.0023 (11)
C4	0.0738 (16)	0.0651 (15)	0.0658 (12)	-0.0245 (12)	0.0177 (12)	-0.0075 (11)
C5	0.0784 (16)	0.0501 (12)	0.0461 (9)	-0.0030 (11)	0.0137 (10)	-0.0047 (9)
C6	0.0480 (11)	0.0503 (11)	0.0385 (8)	0.0108 (9)	0.0041 (7)	0.0125 (8)
C7	0.0553 (13)	0.0785 (16)	0.0465 (10)	0.0182 (11)	0.0108 (9)	0.0225 (10)
C8	0.0598 (13)	0.0292 (9)	0.0759 (13)	0.0004 (9)	0.0141 (11)	0.0046 (9)

C9	0.0480 (11)	0.0325 (9)	0.0483 (9)	-0.0044 (8)	0.0125 (8)	-0.0029 (7)
C10	0.0621 (13)	0.0426 (11)	0.0615 (11)	-0.0112 (10)	0.0064 (10)	-0.0110 (9)
C11	0.0433 (10)	0.0563 (11)	0.0312 (7)	-0.0180 (9)	0.0015 (7)	-0.0067 (7)
C12	0.0483 (12)	0.0824 (15)	0.0449 (10)	-0.0193 (11)	0.0101 (9)	-0.0094 (10)
C13	0.0673 (16)	0.114 (2)	0.0379 (9)	-0.0397 (15)	0.0129 (10)	-0.0035 (11)
C14	0.0828 (19)	0.110 (2)	0.0378 (9)	-0.0344 (16)	-0.0084 (10)	0.0178 (11)
C15	0.0655 (15)	0.0909 (18)	0.0437 (10)	-0.0127 (13)	-0.0145 (9)	0.0138 (11)
C16	0.0410 (10)	0.0736 (14)	0.0332 (8)	-0.0165 (10)	-0.0039 (7)	-0.0012 (8)
C17	0.0461 (11)	0.0736 (14)	0.0391 (8)	-0.0139 (10)	0.0094 (8)	-0.0017 (9)
C18	0.0469 (11)	0.0581 (12)	0.0387 (8)	-0.0221 (9)	0.0036 (7)	-0.0004 (8)
N1	0.0450 (9)	0.0419 (9)	0.0469 (8)	0.0054 (7)	0.0102 (7)	0.0093 (6)
N2	0.0531 (10)	0.0375 (9)	0.0513 (8)	0.0015 (7)	-0.0049 (7)	0.0012 (7)
N3	0.0538 (10)	0.0318 (8)	0.0503 (8)	-0.0042 (7)	-0.0035 (7)	-0.0009 (6)
N4	0.0435 (9)	0.0497 (9)	0.0419 (7)	-0.0123 (7)	0.0044 (6)	-0.0033 (7)
O1	0.0803 (12)	0.0684 (10)	0.0588 (8)	-0.0190 (8)	0.0122 (8)	0.0172 (7)
S 1	0.0364 (3)	0.1170 (6)	0.0528 (3)	-0.0050 (3)	-0.0005 (2)	0.0036 (3)

Geometric parameters (Å, °)

C1—C6	1.385 (3)	C10—H10B	0.9700
C1—C2	1.386 (3)	C11—C16	1.390 (3)
C1—H1	0.9300	C11—C12	1.397 (3)
C2—C3	1.371 (3)	C11—N4	1.428 (2)
С2—Н2	0.9300	C12—C13	1.392 (3)
C3—C4	1.374 (3)	C12—H12	0.9300
С3—Н3	0.9300	C13—C14	1.360 (4)
C4—C5	1.379 (3)	C13—H13	0.9300
C4—H4	0.9300	C14—C15	1.387 (4)
C5—C6	1.374 (3)	C14—H14	0.9300
С5—Н5	0.9300	C15—C16	1.396 (3)
C6—C7	1.508 (3)	C15—H15	0.9300
C7—N1	1.464 (3)	C16—S1	1.766 (2)
C7—H7A	0.9700	C17—C18	1.493 (3)
С7—Н7В	0.9700	C17—S1	1.798 (2)
C8—N1	1.330 (3)	C17—H17A	0.9700
С8—С9	1.364 (3)	C17—H17B	0.9700
С8—Н8	0.9300	C18—O1	1.224 (2)
C9—N3	1.354 (2)	C18—N4	1.379 (2)
C9—C10	1.483 (3)	N1—N2	1.340 (2)
C10—N4	1.466 (3)	N2—N3	1.314 (2)
C10—H10A	0.9700		
C6—C1—C2	120.5 (2)	C16—C11—C12	118.32 (18)
С6—С1—Н1	119.7	C16—C11—N4	121.53 (16)
C2—C1—H1	119.7	C12—C11—N4	120.14 (19)
C3—C2—C1	120.5 (2)	C13—C12—C11	120.4 (2)
С3—С2—Н2	119.8	C13—C12—H12	119.8
C1—C2—H2	119.8	C11—C12—H12	119.8

C2—C3—C4	119.0 (2)	C14—C13—C12	120.8 (2)
С2—С3—Н3	120.5	C14—C13—H13	119.6
С4—С3—Н3	120.5	С12—С13—Н13	119.6
C3—C4—C5	120.7 (2)	C13—C14—C15	119.9 (2)
C3—C4—H4	119.6	C13—C14—H14	120.1
C5—C4—H4	119.6	C15—C14—H14	120.1
C6—C5—C4	120.80 (19)	C14—C15—C16	120.0 (2)
С6—С5—Н5	119.6	C14—C15—H15	120.0
С4—С5—Н5	119.6	C16—C15—H15	120.0
C5—C6—C1	118.43 (18)	C11—C16—C15	120.55 (19)
C5—C6—C7	120.64 (18)	C11—C16—S1	120.37 (14)
C1—C6—C7	120.92 (19)	C15—C16—S1	119.07 (18)
N1—C7—C6	112.60 (14)	C18—C17—S1	111.42 (13)
N1—C7—H7A	109.1	С18—С17—Н17А	109.3
С6—С7—Н7А	109.1	S1—C17—H17A	109.3
N1—C7—H7B	109.1	C18—C17—H17B	109.3
С6—С7—Н7В	109.1	S1—C17—H17B	109.3
H7A—C7—H7B	107.8	H17A—C17—H17B	108.0
N1—C8—C9	106.02 (17)	O1—C18—N4	120.9 (2)
N1—C8—H8	127.0	O1—C18—C17	121.52 (17)
С9—С8—Н8	127.0	N4—C18—C17	117.51 (16)
N3—C9—C8	107.47 (18)	C8—N1—N2	110.29 (16)
N3—C9—C10	122.51 (17)	C8—N1—C7	129.57 (18)
C8—C9—C10	130.00 (18)	N2—N1—C7	120.13 (17)
N4—C10—C9	112.43 (15)	N3—N2—N1	107.31 (15)
N4—C10—H10A	109.1	N2—N3—C9	108.92 (15)
C9—C10—H10A	109.1	C18—N4—C11	123.52 (17)
N4—C10—H10B	109.1	C18—N4—C10	115.48 (16)
C9—C10—H10B	109.1	C11—N4—C10	120.46 (15)
H10A—C10—H10B	107.8	C16—S1—C17	95.91 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C8—H8····N2 ⁱ	0.93	2.44	3.344 (3)	165
C8—H8····N3 ⁱ	0.93	2.44	3.339 (3)	164
С5—Н5…О1 ^{іі}	0.93	2.58	3.477 (2)	163

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, *y*–1/2, –*z*+1/2.