organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Flupentixol tartrate

Thammarse S. Yamuna,^a Manpreet Kaur,^a Brian J. Anderson^b lerry P. Jasinski^{b*} and H.S. Yathiraian^a

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: jjasinski@keene.edu

Received 20 January 2014; accepted 21 January 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.078; wR factor = 0.206; data-to-parameter ratio = 13.3

In the title salt, $C_{23}H_{26}F_3N_2OS^+ \cdot C_4H_5O_6^-$ [systematic name: 1-(2-hydroxyethyl)-4-[3-(2-(trifluoromethyl)thioxanthen-9-ylidene)propyl]piperazin-1-ium 3-carboxy-2,3-dihydroxypropionate], the monoprotonated piperazine ring in the cation adopts a chair conformation, while the thiopyran ring of the thioxanthene group has a boat conformation. The dihedral angle between the mean planes of the two outer aromatic rings of the thioxanthene groups is $31.6 (2)^{\circ}$. In the crystal, the cations and anions are linked via O-H···O, N-H···O, O- $H \cdots N$ and $C - H \cdots O$ hydrogen bonds, forming chains propagating along [100]. In addition, $R_2^2(7)$, $R_2^2(11)$, $R_2^2(10)$ and $R_2^2(12)$ graph-set ring motifs involving the anions, and $R_2^2(9)$ graph-set ring motifs involving both the cations and anions are observed. The three F atoms of the trifluoromethyl group are disordered over two sets of sites and the individual atoms were refined with occupancy ratios of 0.54 (6):0.46 (6), 0.72 (2):0.28 (2) and 0.67 (3):0.33 (3).

Related literature

For general background and the pharmacological properties of flupentixol, see: Robertson & Trimble (1981); Valle-Jones & Swarbrick (1981). For related structures, see: Jones et al. (1977); Post et al. (1975a,b); Siddegowda et al. (2011a,b). For standard bond lengths, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $C_{23}H_{26}F_{3}N_{2}OS^{+}\cdot C_{4}H_{5}O_{6}^{-}$ $M_r = 584.60$ Monoclinic, $P2_1/n$ a = 9.9239 (3) Å b = 9.1968 (3) Å c = 30.0099 (8) Å $\beta = 96.617 (3)^{\circ}$

Data collection

Agilent Gemini EOS diffractometer Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012). $T_{\min} = 0.871, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.078$	H atoms treated by a mixture of
$wR(F^2) = 0.206$	independent and constrained
S = 1.09	refinement
5325 reflections	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
399 parameters	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

CrossMark

 $V = 2720.68 (13) \text{ Å}^3$

 $0.26 \times 0.14 \times 0.08 \text{ mm}$

16827 measured reflections

5325 independent reflections

4331 reflections with $I > 2\sigma(I)$

Cu Ka radiation

 $\mu = 1.67 \text{ mm}^-$

T = 173 K

 $R_{\rm int} = 0.036$

Z = 4

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01A - H1A \cdots O1B^{i}$ $N2A - H2A \cdots O2B^{i}$ $O3B - H3B \cdots O5B^{ii}$ $O4B - H4B \cdots O3B^{ii}$ $O6B - H6B \cdots N1A$ $C3A - H3AB \cdots O5B$	0.82 0.96 (4) 0.82 0.82 0.82 0.82 0.97	1.83 1.73 (4) 2.18 2.14 1.83 2.59	2.652 (4) 2.675 (3) 2.903 (3) 2.954 (4) 2.629 (4) 3.314 (4)	178 165 (3) 147 175 165 132
$C5A - H5AA \cdots O2B^{iii}$ $C15A - H15A \cdots O1A^{iv}$	0.97 0.93	2.53 2.58	3.466 (4) 3.397 (5)	163 148

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2691).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Jones, P. G., Kennard, O. & Horn, A. S. (1977). Acta Cryst. B33, 3744-3747.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726. Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.
- Robertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761-763.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011*a*). *Acta Cryst.* E**67**, o2079–o2080. Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh,
- A. R. (2011b). Acta Cryst. E67, o2017-o2018.
- Valle-Jones, J. C. & Swarbrick, D. J. (1981). Curr. Med. Res. Opin. 1, 543-549.

Acta Cryst. (2014). E70, o206-o207 [doi:10.1107/S1600536814001536]

Flupentixol tartrate

Thammarse S. Yamuna, Manpreet Kaur, Brian J. Anderson, Jerry P. Jasinski and H.S. Yathirajan

S1. Comment

Flupentixol [systematic name: 2-[4-[3-[(EZ)-2-(trifluoromethyl)-9H- thioxanthen-9-ylidene] propyl]piperazin-1yl]ethanol is a well documented antipsychotic drug of the thioxanthene class. In addition to pure drug preparations, it is also available as deanxit, a combination product containing both melitracen and flupentixol. Low-dose neuroleptics have been applied increasingly in recent years to treat anxiety and depression (Robertson & Trimble, 1981; Valle-Jones & Swarbrick, 1981). The crystal structures of α -flupentixol (Post *et al.*, 1975*b*), β -flupentixol (Post *et al.*, 1975*a*), piflutixol (Jones *et al.*, 1977) have been reported. The crystal structures of he dihydrochloride and difumarate salt of flupentixol has been reported by our group (Siddegowda *et al.*, 2011*a*,*b*). In view of the importance of flupentixol, we prepared the tartrate salt of flupentixol and report herein on its crystal structure.

The title salt, Fig. 1, crystallizes with one independent monocation (A) and monoanion (B) in the asymmetric unit. Bond lengths are in normal ranges (Allen *et al.*, 1987). The monoprotonated piperazine ring in A adopts a slightly disordered chair conformation while the thiopyran ring of the thioxanthene group has a boat conformation. The puckering parameters (Cremer & Pople, 1975) for the various rings are: (N1A//N2A/C1A-C4A) Q, θ , and $\varphi = 0.578$ (3) Å, 174.4 (3)° and 192 (3)°, respectively; (S1A/C16A/C11A/C10A/C22A/C17A) Q, θ , and $\varphi = 0.486$ (4) Å, 90.7 (5)° and 2.0 (5)°, respectively. The dihedral angle between the mean planes of the two outer aromatic rings of the thioxanthene groups is 31.6 (2)°.

In the crystal, the cations and anions are linked via O-H···O, N-H···O, O-H···N and C-H···O hydrogen bonds (Fig. 1), forming one-dimensional chains propagating along [1 0 0] (see Table 1 and Fig. 2). In addition, $R^2_2(7)$, $R^2_2(11)$, $R^2_2(10)$ and $R^2_2(12)$ graph set ring motifs involving the anions (Fig. 3) and $R^2_2(9)$ graph set ring motifs involving both the cations and anions (Fig. 2) are observed.

S2. Experimental

A gift sample of flupentixol was donated by R. L. Fine Chemicals. The title salt was prepared by mixing flupentixol (0.2 g, 4.602 mmol) and tartaric acid (0.07 g, 4.602 mmol) dissolved in 5 mL of dimethyl formamide. The mixture was stirred at 320 K for 30 minutes. X-ray quality colourless block-like crystals were obtained on slow evaporation of the reaction mixture (M.p: 468-474 K).

S3. Refinement

The NH H atom was located in a difference Fourier map and freely refined. All of the other H atoms were placed in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.97 and 0.98 Å for CH, methylene and methine H atoms, respectively, with $U_{iso}(H) = 1.5U_{eq}(O)$, and $= 1.2U_{eq}(C)$ for other H atoms. Disorder of the three F atoms of the trifluoromethyl group was modeled over two sets of sites: atoms F1A/F1AB, F2A/F2AB and F3A/F3AB with occupancy ratios of 0.54 (6):0.46 (6), 0.72 (2):0.28 (2) and 0.67 (3):0.33 (3), respectively. 6 reflections with were

omitted in the final cycles of refinement.

Figure 1

A view of the molecular structure of the title salt, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Figure 2

A view along the b axis of the crystal packing of the title compound showing the $R^2_2(9)$ graph set ring motifs involving cations and anions. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Figure 3

A view along the a axis of the crystal packing of the title compound showing the $R_2^2(7)$, $R_2^2(11)$, $R_2^2(10)$ and $R_2^2(12)$ graph set ring motifs involving the anions. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

1-(2-Hydroxyethyl)-4-{3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl}piperazin-1-ium 3-carboxy-2,3-dihydroxypropionate

Crystal data

 $C_{23}H_{26}F_{3}N_{2}OS^{+}C_{4}H_{5}O_{6}^{-1}$ $M_{r} = 584.60$ Monoclinic, $P2_{1}/n$ a = 9.9239 (3) Å b = 9.1968 (3) Å c = 30.0099 (8) Å $\beta = 96.617$ (3)° V = 2720.68 (13) Å³ Z = 4

Data collection

Agilent Gemini EOS diffractometer Radiation source: Enhance (Cu) X-ray Source Detector resolution: 16.0416 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> and <i>CrysAlis RED</i> ; Agilent, 2012). $T_{min} = 0.871, T_{max} = 1.000$ <i>Refinement</i>	16827 measured reflections 5325 independent reflections 4331 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 72.6^\circ, \ \theta_{min} = 3.0^\circ$ $h = -11 \rightarrow 12$ $k = -11 \rightarrow 11$ $l = -37 \rightarrow 25$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.206$ S = 1.09 5325 reflections 399 parameters 0 restraints	Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0775P)^2 + 5.4936P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.71 \text{ e } \text{Å}^{-3}$

Cu K α radiation, $\lambda = 1.54184$ Å Cell parameters from 5128 reflections $\theta = 3.0-72.5^{\circ}$ $\mu = 1.67 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.26 \times 0.14 \times 0.08 \text{ mm}$

F(000) = 1224

 $D_{\rm x} = 1.427 {\rm ~Mg} {\rm ~m}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1A	0.22263 (14)	0.19267 (13)	0.15278 (4)	0.0582 (3)	
F1A	0.7407 (15)	0.0331 (16)	0.3035 (8)	0.097 (7)	0.54 (6)
F1AB	0.758 (2)	-0.042 (12)	0.2900 (16)	0.21 (2)	0.46 (6)
F2A	0.5941 (6)	-0.0768 (15)	0.3334 (2)	0.095 (4)	0.72 (2)
F2AB	0.676 (7)	0.033 (5)	0.3316 (9)	0.23 (3)	0.28 (2)
F3A	0.6844 (14)	-0.1770 (13)	0.2809 (4)	0.128 (6)	0.67 (3)
F3AB	0.624 (4)	-0.182 (4)	0.3087 (18)	0.23 (3)	0.33 (3)
01A	0.0148 (2)	0.2962 (3)	0.58260 (9)	0.0404 (6)	
H1A	-0.0533	0.2684	0.5668	0.061*	
N1A	0.1313 (3)	0.2330 (3)	0.39016 (9)	0.0307 (6)	
N2A	0.1121 (3)	0.2869 (3)	0.48473 (9)	0.0265 (6)	
H2A	0.015 (4)	0.289 (4)	0.4845 (12)	0.036 (10)*	
C1A	0.0891 (3)	0.3761 (4)	0.40584 (11)	0.0306 (7)	
H1AA	-0.0090	0.3796	0.4045	0.037*	
H1AB	0.1177	0.4519	0.3865	0.037*	
C2A	0.1518 (3)	0.4018 (4)	0.45352 (11)	0.0309 (7)	
H2AA	0.2498	0.4033	0.4544	0.037*	
H2AB	0.1232	0.4960	0.4635	0.037*	
C3A	0.1422 (3)	0.1394 (4)	0.46724 (11)	0.0298 (7)	
H3AA	0.1058	0.0658	0.4857	0.036*	
H3AB	0.2396	0.1260	0.4693	0.036*	
C4A	0.0820 (3)	0.1199 (4)	0.41933 (12)	0.0321 (7)	
H4AA	0.1063	0.0247	0.4088	0.039*	
H4AB	-0.0161	0.1248	0.4175	0.039*	
C5A	0.1858 (3)	0.3134 (4)	0.53071 (11)	0.0319 (7)	
H5AA	0.1816	0.4164	0.5373	0.038*	
H5AB	0.2805	0.2882	0.5303	0.038*	
C6A	0.1307 (3)	0.2288 (4)	0.56834 (12)	0.0339 (8)	
H6AA	0.1073	0.1311	0.5580	0.041*	
H6AB	0.2008	0.2213	0.5936	0.041*	
C7A	0.0795 (4)	0.2111 (4)	0.34276 (12)	0.0389 (8)	
H7AA	0.0832	0.3022	0.3267	0.047*	
H7AB	-0.0145	0.1801	0.3405	0.047*	
C8A	0.1644 (4)	0.0949 (5)	0.32109 (14)	0.0486 (10)	
H8AA	0.2542	0.1330	0.3183	0.058*	
H8AB	0.1744	0.0092	0.3400	0.058*	
C9A	0.0966 (4)	0.0553 (5)	0.27644 (14)	0.0471 (10)	
H9A	0.0035	0.0405	0.2749	0.057*	
C10A	0.1497 (4)	0.0376 (4)	0.23774 (14)	0.0458 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C11A	0.2971 (4)	0.0496 (4)	0.23310 (13)	0.0431 (9)
C12A	0.3973 (4)	-0.0074 (4)	0.26503 (14)	0.0434 (9)
H12A	0.3719	-0.0572	0.2897	0.052*
C13A	0.5340 (5)	0.0093 (5)	0.26043 (15)	0.0508 (10)
C14A	0.5736 (5)	0.0809 (5)	0.22360 (16)	0.0565 (12)
H14A	0.6652	0.0898	0.2201	0.068*
C15A	0.4755 (5)	0.1393 (5)	0.19180 (14)	0.0547 (11)
H15A	0.5020	0.1916	0.1677	0.066*
C16A	0.3389 (5)	0.1206 (4)	0.19556 (14)	0.0482 (10)
C17A	0.0773 (5)	0.0805 (5)	0.15652 (15)	0.0533 (11)
C18A	-0.0161 (6)	0.0691 (6)	0.11939 (16)	0.0668 (14)
H18A	-0.0022	0.1189	0.0934	0.080*
C19A	-0.1312 (5)	-0.0157 (6)	0.12010 (18)	0.0630 (13)
H19A	-0.1958	-0.0211	0.0951	0.076*
C20A	-0.1479 (5)	-0.0926 (6)	0.15899 (17)	0.0633 (13)
H20A	-0.2229	-0.1529	0.1596	0.076*
C21A	-0.0565 (5)	-0.0809 (5)	0.19603 (16)	0.0550 (11)
H21A	-0.0698	-0.1337	0.2216	0.066*
C22A	0.0591 (4)	0.0105 (5)	0.19664 (14)	0.0472 (10)
C23A	0.6367 (5)	-0.0546 (6)	0.2954 (2)	0.0642 (13)
O1B	0.7933 (3)	0.2013 (3)	0.53327 (9)	0.0420 (6)
O2B	0.8419 (2)	0.3109 (3)	0.47059 (8)	0.0353 (6)
O3B	0.5331 (2)	0.1935 (3)	0.50950 (8)	0.0350 (6)
H3B	0.5829	0.1594	0.5306	0.052*
O4B	0.6567 (2)	-0.0008 (3)	0.44961 (9)	0.0382 (6)
H4B	0.5999	-0.0500	0.4605	0.057*
O5B	0.3929 (2)	0.0037 (3)	0.41614 (9)	0.0374 (6)
O6B	0.3977 (2)	0.2427 (3)	0.40286 (9)	0.0384 (6)
H6B	0.3165	0.2310	0.3950	0.058*
C1B	0.7628 (3)	0.2518 (4)	0.49518 (12)	0.0301 (7)
C2B	0.6127 (3)	0.2418 (4)	0.47601 (11)	0.0301 (7)
H2B	0.5809	0.3379	0.4653	0.036*
C3B	0.6004 (3)	0.1351 (4)	0.43639 (12)	0.0321 (7)
H3BA	0.6511	0.1749	0.4130	0.038*
C4B	0.4522 (3)	0.1186 (4)	0.41685 (11)	0.0298 (7)

Atomic displacement parameters $(Å^2)$

	x x11	T 7))	T 722	T 712	T 12	T 7)2
	U	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0820 (8)	0.0475 (6)	0.0469 (6)	0.0068 (6)	0.0150 (6)	0.0075 (5)
F1A	0.042 (6)	0.115 (11)	0.126 (12)	-0.029 (5)	-0.030 (7)	0.029 (7)
F1AB	0.073 (8)	0.39 (6)	0.153 (19)	0.00(2)	0.024 (11)	0.11 (3)
F2A	0.044 (3)	0.173 (10)	0.069 (4)	0.013 (4)	0.004 (2)	0.046 (5)
F2AB	0.40 (7)	0.18 (3)	0.077 (15)	0.12 (4)	-0.04 (3)	-0.069 (18)
F3A	0.129 (10)	0.099 (8)	0.146 (8)	0.077 (7)	-0.023 (6)	-0.013 (5)
F3AB	0.15 (2)	0.19 (3)	0.32 (5)	-0.12 (2)	-0.10 (3)	0.19 (3)
O1A	0.0287 (12)	0.0545 (16)	0.0379 (14)	0.0055 (12)	0.0034 (10)	-0.0116 (12)
N1A	0.0282 (14)	0.0325 (15)	0.0319 (15)	0.0036 (11)	0.0057 (11)	-0.0002 (12)

N2A	0.0212 (13)	0.0293 (14)	0.0296 (14)	0.0016 (11)	0.0049 (11)	-0.0001 (11)
C1A	0.0266 (16)	0.0294 (17)	0.0361 (18)	0.0044 (13)	0.0049 (14)	0.0042 (14)
C2A	0.0289 (16)	0.0277 (16)	0.0360 (18)	-0.0007 (13)	0.0031 (14)	0.0017 (13)
C3A	0.0275 (16)	0.0265 (16)	0.0360 (18)	0.0035 (13)	0.0068 (14)	0.0004 (13)
C4A	0.0299 (17)	0.0294 (17)	0.0379 (19)	0.0004 (14)	0.0076 (14)	-0.0028 (14)
C5A	0.0258 (16)	0.0356 (18)	0.0328 (18)	0.0039 (14)	-0.0026 (13)	-0.0028 (14)
C6A	0.0267 (16)	0.0407 (19)	0.0336 (18)	0.0070 (14)	0.0002 (14)	0.0012 (15)
C7A	0.0389 (19)	0.046 (2)	0.0319 (19)	-0.0005 (16)	0.0038 (15)	-0.0006 (16)
C8A	0.036 (2)	0.062 (3)	0.046 (2)	0.0048 (19)	0.0005 (17)	-0.001 (2)
C9A	0.037 (2)	0.060 (3)	0.045 (2)	0.0037 (19)	0.0045 (17)	-0.0053 (19)
C10A	0.049 (2)	0.042 (2)	0.047 (2)	0.0075 (18)	0.0093 (19)	0.0000 (17)
C11A	0.055 (2)	0.038 (2)	0.038 (2)	-0.0011 (18)	0.0142 (18)	-0.0053 (16)
C12A	0.048 (2)	0.044 (2)	0.041 (2)	0.0052 (18)	0.0178 (18)	-0.0004 (17)
C13A	0.050 (2)	0.050 (2)	0.054 (3)	-0.0012 (19)	0.013 (2)	-0.010 (2)
C14A	0.058 (3)	0.052 (3)	0.065 (3)	-0.016 (2)	0.028 (2)	-0.013 (2)
C15A	0.066 (3)	0.062 (3)	0.038 (2)	-0.020 (2)	0.016 (2)	0.008 (2)
C16A	0.070 (3)	0.036 (2)	0.041 (2)	-0.0008 (19)	0.017 (2)	-0.0062 (17)
C17A	0.068 (3)	0.043 (2)	0.050 (2)	0.022 (2)	0.010 (2)	-0.0046 (19)
C18A	0.092 (4)	0.058 (3)	0.048 (3)	0.030 (3)	0.000 (3)	-0.003 (2)
C19A	0.055 (3)	0.057 (3)	0.072 (3)	0.016 (2)	-0.012 (2)	-0.010 (2)
C20A	0.050 (3)	0.073 (3)	0.063 (3)	0.010 (2)	-0.013 (2)	-0.018 (3)
C21A	0.052 (3)	0.052 (3)	0.060 (3)	0.005 (2)	0.007 (2)	-0.004 (2)
C22A	0.050 (2)	0.046 (2)	0.046 (2)	0.0109 (19)	0.0073 (19)	-0.0062 (18)
C23A	0.041 (2)	0.073 (3)	0.081 (4)	0.002 (2)	0.013 (2)	-0.002 (3)
O1B	0.0320 (13)	0.0488 (15)	0.0436 (15)	-0.0057 (11)	-0.0028 (11)	0.0103 (12)
O2B	0.0216 (11)	0.0418 (14)	0.0427 (14)	-0.0011 (10)	0.0039 (10)	0.0017 (11)
O3B	0.0229 (11)	0.0455 (14)	0.0373 (14)	0.0031 (10)	0.0068 (10)	0.0041 (11)
O4B	0.0249 (11)	0.0362 (13)	0.0528 (16)	0.0069 (10)	0.0020 (11)	-0.0016 (11)
O5B	0.0263 (12)	0.0380 (14)	0.0467 (15)	0.0008 (10)	-0.0003 (10)	0.0023 (11)
O6B	0.0220 (11)	0.0409 (14)	0.0513 (16)	0.0007 (10)	0.0004 (11)	0.0106 (12)
C1B	0.0237 (15)	0.0280 (16)	0.0383 (19)	0.0008 (13)	0.0019 (14)	-0.0033 (14)
C2B	0.0209 (15)	0.0321 (17)	0.0378 (19)	0.0022 (13)	0.0051 (13)	0.0035 (14)
C3B	0.0200 (15)	0.0375 (18)	0.0388 (19)	0.0031 (13)	0.0039 (13)	0.0013 (15)
C4B	0.0224 (15)	0.0373 (18)	0.0304 (17)	0.0037 (14)	0.0058 (13)	0.0037 (14)

Geometric parameters (Å, °)

S1A—C16A	1.754 (5)	С9А—Н9А	0.9300
S1A—C17A	1.788 (5)	C9A—C10A	1.340 (6)
F1A—C23A	1.311 (12)	C10A—C11A	1.489 (6)
F1AB—F2AB	1.71 (8)	C10A—C22A	1.461 (6)
F1AB—C23A	1.24 (2)	C11A—C12A	1.401 (6)
F2A—C23A	1.278 (8)	C11A—C16A	1.406 (6)
F2AB—C23A	1.37 (3)	C12A—H12A	0.9300
F3A—C23A	1.314 (8)	C12A—C13A	1.387 (6)
F3AB—C23A	1.25 (2)	C13A—C14A	1.382 (6)
O1A—H1A	0.8200	C13A—C23A	1.497 (7)
01A—C6A	1.415 (4)	C14A—H14A	0.9300

N1A—C1A	1.474 (4)	C14A—C15A	1.391 (7)
N1A—C4A	1.479 (4)	C15A—H15A	0.9300
N1A—C7A	1.470 (4)	C15A—C16A	1.384 (6)
N2A—H2A	0.96 (4)	C17A—C18A	1.369 (7)
N2A—C2A	1.495 (4)	C17A—C22A	1.395 (6)
N2A—C3A	1.497 (4)	C18A—H18A	0.9300
N2A—C5A	1.505 (4)	C18A—C19A	1.385 (8)
C1A—H1AA	0.9700	C19A—H19A	0.9300
C1A—H1AB	0.9700	C19A—C20A	1.391 (8)
C1A—C2A	1.512 (5)	C20A—H20A	0.9300
C2A—H2AA	0.9700	C20A—C21A	1 356 (6)
C2A—H2AB	0.9700	C21A—H21A	0.9300
C3A—H3AA	0.9700	$C^{21}A - C^{22}A$	1 421 (6)
C3A—H3AB	0.9700	O1B-C1B	1.121(0) 1.239(4)
C3A - C4A	1 503 (5)	O^2B — C^1B	$1.25^{\circ}(1)$ 1 261 (4)
C4A - H4AA	0.9700	O3B - H3B	0.8200
C4A - H4AB	0.9700	O3B - C2B	1419(4)
	0.9700	04B—H4B	0.8200
C5A—H5AB	0.9700	O4B-O4B	1407(4)
C_{5A} C_{6A}	1.524(5)	05B C4B	1.407(4) 1.208(4)
C6A - H6AA	0.9700	OGB-H6B	0.8200
C6A—H6AB	0.9700	O6B-C4B	1312(4)
	0.9700	C1B-C2B	1.512(4) 1.537(4)
C7A H7AB	0.9700	C2B H2B	0.0800
C7A C8A	1.540 (6)	C2B - C2B	1,535 (5)
	0.0700	C2B = C3B	0.0800
	0.9700	$C_{3B} = C_{4B}$	1.526(4)
	1.474(6)	C3D-C4D	1.520 (4)
CoA-CAA	1.474 (0)		
C16A—S1A—C17A	101.7 (2)	C12A—C11A—C16A	118.0 (4)
C23A—F1AB—F2AB	52 (3)	C16A—C11A—C10A	119.6 (4)
C23A—F2AB—F1AB	46 (2)	C11A—C12A—H12A	119.5
C6A—O1A—H1A	109.5	C13A—C12A—C11A	121.1 (4)
C1A—N1A—C4A	108.3 (2)	C13A—C12A—H12A	119.5
C7A—N1A—C1A	110.6 (3)	C12A—C13A—C23A	118.8 (4)
C7A—N1A—C4A	111.9 (3)	C14A—C13A—C12A	120.3 (4)
C2A—N2A—H2A	108 (2)	C14A—C13A—C23A	120.9 (4)
C2A—N2A—C3A	110.1 (2)	C13A—C14A—H14A	120.3
C2A—N2A—C5A	108.9 (3)	C13A—C14A—C15A	119.4 (4)
C3A—N2A—H2A	105 (2)	C15A—C14A—H14A	120.3
C3A—N2A—C5A	111.9 (3)	C14A—C15A—H15A	119.6
C5A—N2A—H2A	112 (2)	C16A—C15A—C14A	120.7 (4)
N1A—C1A—H1AA	109.7	C16A—C15A—H15A	119.6
N1A—C1A—H1AB	109.7	C11A—C16A—S1A	122.1 (4)
N1A—C1A—C2A	109.9 (3)	C15A—C16A—S1A	117.5 (3)
H1AA—C1A—H1AB	108.2	C15A—C16A—C11A	120.4 (4)
C2A—C1A—H1AA	109.7	C18A—C17A—S1A	118.0 (4)
C2A—C1A—H1AB	109.7	C18A—C17A—C22A	121.6 (5)

N2A—C2A—C1A	111.9 (3)	C22A—C17A—S1A	120.4 (4)
N2A—C2A—H2AA	109.2	C17A—C18A—H18A	119.6
N2A—C2A—H2AB	109.2	C17A—C18A—C19A	120.8 (5)
C1A—C2A—H2AA	109.2	C19A—C18A—H18A	119.6
C1A—C2A—H2AB	109.2	C18A—C19A—H19A	120.7
H2AA—C2A—H2AB	107.9	C18A—C19A—C20A	118.5 (5)
N2A—C3A—H3AA	109.3	C20A—C19A—H19A	120.7
N2A—C3A—H3AB	109.3	C19A—C20A—H20A	119.5
N2A—C3A—C4A	111.8 (3)	C21A—C20A—C19A	120.9 (5)
H3AA—C3A—H3AB	107.9	C21A—C20A—H20A	119.5
C4A - C3A - H3AA	109.3	C_{20A} C_{21A} H_{21A}	119.3
C4A - C3A - H3AB	109.3	C_{20A} C_{21A} C_{22A}	121.4 (5)
N1A - C4A - C3A	111 1 (3)	$C^{22}A - C^{21}A - H^{21}A$	119 3
N1A—C4A—H4AA	109.4	C17A - C22A - C10A	121.5 (4)
N1A—C4A—H4AB	109.4	C17A - C22A - C21A	121.5(1) 1165(4)
C_{3A} C_{4A} H_{4A} A	109.4	$C_{21A} - C_{22A} - C_{10A}$	121.9(4)
C_{3A} C_{4A} H_{4AB}	109.4	$E_1 \Delta C_{23} \Delta E_{3} \Delta$	121.9(4) 1064(11)
	109.4	F1A = C23A = C13A	100.4(11) 110.3(8)
N2A - C5A - H5AA	108.6	F1AB = C23A = F2AB	82 (5)
N2A - C5A - H5AB	108.6	F1AB = C23A = F3AB	105(4)
N2A - C5A - C6A	114.7(3)	F1AB - C23A - C13A	103(+) 1178(14)
$H_{5AA} = C_{5A} = H_{5AB}$	107.6	$F_{2} = C_{23} = F_{14}$	105.5(12)
C6A - C5A - H5AA	107.0	$F_2A = C_{23}A = F_{3}A$	109.3(12) 109.1(9)
C6A - C5A - H5AB	108.6	$F_2A = C_{23}A = C_{13}A$	109.1(9) 114.9(4)
$C_{0A} = C_{5A} = H_{5AB}$	100.0	$F_{2A} = C_{23A} = C_{13A}$	114.9(4) 115.7(12)
O1A C6A H6AA	112.0 (5)	$F_{2AD} = C_{23A} = C_{13A}$	113.7(12) 110.3(6)
O1A C6A H6AR	109.2	$F_{2AP} = C_{23A} = C_{13A}$	110.3(0) 100(3)
$C_{5A} = C_{6A} = H_{6AA}$	109.2	$F_{2AB} = C_{23A} = F_{2AB}$	109(3) 1203(11)
$C_{5A} = C_{6A} = H_{6A} P$	109.2	$C_{2}D_{1}O_{2}D_{1}D_{2$	120.5 (11)
	109.2	$C_{2}D = O_{3}D = H_{4}D$	109.5
N1A C7A H7AA	107.9	$C_{4}D = O_{4}D = H_{4}D$	109.5
NIA = C7A = H7AP	109.5	C4B = C0B = H0B	109.5
$NIA = C/A = \pi/AB$	109.5	$\begin{array}{c} 01B \\ 01B \\ 01B \\ 01B \\ 02B \\$	120.8(3) 116.5(3)
$\mathbf{N}\mathbf{I}\mathbf{A} = \mathbf{C}\mathbf{A} = \mathbf{C}\mathbf{A}\mathbf{A}$	110.8 (5)	$\begin{array}{c} \text{OIB-CIB-C2B} \\ \text{O2B-C1B-C2B} \\ \end{array}$	110.3(3) 116.7(2)
$\Pi/AA - C/A - \Pi/AB$	100.1	$O_{2}B$ $C_{1}B$ $C_{2}B$ $C_{1}B$	110.7(3)
$C_{A} C_{A} H_{A}$	109.5	$O_{2D} = C_{2D} = U_{2D}$	110.4 (5)
$C_{A} C_{A} H_{A}$	109.5	O3B - C2B - H2B	109.5
C/A = C8A = H8AA	109.7	$O_{3B} = C_{2B} = C_{3B}$	110.3 (3)
	109.7	CIB - C2B - H2B	109.3
H8AA—C8A—H8AB	108.2	C_{3B} C_{2B} C_{1B}	108.4 (3)
C9A - C8A - C/A	109.8 (3)	C3B—C2B—H2B	109.3
C9A—C8A—H8AA	109.7	O4B - C3B - C2B	110.8 (3)
С9А—С8А—Н8АВ	109.7	04B—C3B—H3BA	108.3
С8А—С9А—Н9А	115.3	O4B—C3B—C4B	110.7 (3)
CIUA—C9A—C8A	129.4 (4)	C2B—C3B—H3BA	108.3
C10A—C9A—H9A	115.3	C4B—C3B—C2B	110.4 (3)
C9A—C10A—C11A	124.1 (4)	C4B—C3B—H3BA	108.3
C9A—C10A—C22A	119.2 (4)	05B-C4B-06B	125.0 (3)
C22A—C10A—C11A	116.7 (4)	O5B—C4B—C3B	122.7 (3)

C12A—C11A—C10A	122.4 (4)	O6B—C4B—C3B	112.3 (3)
S1A—C17A—C18A—C19A	-179.8 (4)	C12A—C13A—C14A—C15A	1.7 (7)
S1A-C17A-C22A-C10A	6.3 (5)	C12A—C13A—C23A—F1A	-141.2 (14)
S1A—C17A—C22A—C21A	-177.6 (3)	C12A—C13A—C23A—F1AB	178 (6)
F1AB—F2AB—C23A—F1A	-22 (3)	C12A—C13A—C23A—F2A	-22.2 (10)
F1AB—F2AB—C23A—F2A	138 (3)	C12A—C13A—C23A—F2AB	-88 (4)
F1AB—F2AB—C23A—F3A	51 (4)	C12A—C13A—C23A—F3A	101.6 (10)
F1AB—F2AB—C23A—F3AB	104 (4)	C12A—C13A—C23A—F3AB	47 (4)
F1AB—F2AB—C23A—C13A	-117 (3)	C13A—C14A—C15A—C16A	-3.1 (7)
F2AB—F1AB—C23A—F1A	27 (3)	C14A—C13A—C23A—F1A	40.3 (14)
F2AB—F1AB—C23A—F2A	-43 (4)	C14A—C13A—C23A—F1AB	-1 (6)
F2AB—F1AB—C23A—F3A	-142.6 (18)	C14A—C13A—C23A—F2A	159.3 (8)
F2AB—F1AB—C23A—F3AB	-108 (3)	C14A—C13A—C23A—F2AB	94 (4)
F2AB—F1AB—C23A—C13A	115 (3)	C14A—C13A—C23A—F3A	-77.0 (10)
N1A—C1A—C2A—N2A	-58.7 (3)	C14A—C13A—C23A—F3AB	-132 (4)
N1A—C7A—C8A—C9A	169.7 (3)	C14A—C15A—C16A—S1A	-177.8 (4)
N2A—C3A—C4A—N1A	57.1 (3)	C14A—C15A—C16A—C11A	3.8 (7)
N2A—C5A—C6A—O1A	-80.8 (4)	C16A—S1A—C17A—C18A	-157.3 (3)
C1A—N1A—C4A—C3A	-61.0 (3)	C16A—S1A—C17A—C22A	24.3 (4)
C1A—N1A—C7A—C8A	158.2 (3)	C16A—C11A—C12A—C13A	1.8 (6)
C2A—N2A—C3A—C4A	-51.9 (3)	C17A—S1A—C16A—C11A	-26.5 (4)
C2A—N2A—C5A—C6A	165.7 (3)	C17A—S1A—C16A—C15A	155.1 (4)
C3A—N2A—C2A—C1A	53.0 (3)	C17A—C18A—C19A—C20A	-1.9 (7)
C3A—N2A—C5A—C6A	-72.3 (3)	C18A—C17A—C22A—C10A	-172.0 (4)
C4A—N1A—C1A—C2A	61.3 (3)	C18A—C17A—C22A—C21A	4.1 (6)
C4A—N1A—C7A—C8A	-80.9 (4)	C18A—C19A—C20A—C21A	2.5 (7)
C5A—N2A—C2A—C1A	176.0 (3)	C19A—C20A—C21A—C22A	0.3 (7)
C5A—N2A—C3A—C4A	-173.2 (3)	C20A—C21A—C22A—C10A	172.6 (4)
C7A—N1A—C1A—C2A	-175.7 (3)	C20A—C21A—C22A—C17A	-3.5 (6)
C7A—N1A—C4A—C3A	176.8 (3)	C22A—C10A—C11A—C12A	-141.7 (4)
C7A—C8A—C9A—C10A	135.7 (5)	C22A—C10A—C11A—C16A	38.5 (5)
C8A—C9A—C10A—C11A	2.8 (8)	C22A—C17A—C18A—C19A	-1.5 (7)
C8A—C9A—C10A—C22A	-174.6 (4)	C23A—C13A—C14A—C15A	-179.8 (4)
C9A—C10A—C11A—C12A	40.8 (6)	O1B—C1B—C2B—O3B	8.5 (4)
C9A—C10A—C11A—C16A	-139.0 (4)	O1B—C1B—C2B—C3B	-112.4 (3)
C9A—C10A—C22A—C17A	136.5 (4)	O2B—C1B—C2B—O3B	-171.3 (3)
C9A—C10A—C22A—C21A	-39.4 (6)	O2B—C1B—C2B—C3B	67.8 (4)
C10A—C11A—C12A—C13A	-178.1 (4)	O3B—C2B—C3B—O4B	-65.3 (3)
C10A—C11A—C16A—S1A	-1.6 (5)	O3B—C2B—C3B—C4B	57.7 (4)
C10A—C11A—C16A—C15A	176.7 (4)	O4B—C3B—C4B—O5B	4.4 (5)
C11A—C10A—C22A—C17A	-41.1 (6)	O4B—C3B—C4B—O6B	-178.0 (3)
C11A—C10A—C22A—C21A	143.0 (4)	C1B—C2B—C3B—O4B	55.6 (3)
C11A—C12A—C13A—C14A	-1.1 (6)	C1B—C2B—C3B—C4B	178.6 (3)
C11A—C12A—C13A—C23A	-179.6 (4)	C2B—C3B—C4B—O5B	-118.7 (4)
C12A—C11A—C16A—S1A	178.5 (3)	C2B—C3B—C4B—O6B	58.9 (4)
C12A—C11A—C16A—C15A	-3.1 (6)		

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
$\overline{\text{O1}A-\text{H1}A\cdots\text{O1}B^{\text{i}}}$	0.82	1.83	2.652 (4)	178
$N2A$ — $H2A$ ···· $O2B^{i}$	0.96 (4)	1.73 (4)	2.675 (3)	165 (3)
O3 <i>B</i> —H3 <i>B</i> ···O5 <i>B</i> ⁱⁱ	0.82	2.18	2.903 (3)	147
O4 <i>B</i> —H4 <i>B</i> ···O3 <i>B</i> ⁱⁱ	0.82	2.14	2.954 (4)	175
O6 <i>B</i> —H6 <i>B</i> ⋯N1 <i>A</i>	0.82	1.83	2.629 (4)	165
C3 <i>A</i> —H3 <i>AB</i> ···O5 <i>B</i>	0.97	2.59	3.314 (4)	132
C5 <i>A</i> —H5 <i>AA</i> ···O2 <i>B</i> ⁱⁱⁱ	0.97	2.53	3.466 (4)	163
C15A—H15A…O1A ^{iv}	0.93	2.58	3.397 (5)	148

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*+1/2, -*y*+1/2, *z*-1/2.