Structure Reports

Online
ISSN 1600-5368

catena-Poly[[diaquabis(4-formylbenzo-ato- κO^{1})nickel(II)]- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$

Fatih Çelik, ${ }^{\text {a }}$ Nefise Dilek, ${ }^{\text {b }}$ Nagihan Çaylak Delibas, ${ }^{\text {c }}$ Hacali Necefoğlua and Tuncer Hökelek ${ }^{\text {d* }}$
${ }^{\text {a }}$ Department of Chemistry, Kafkas University, 36100 Kars, Turkey, ${ }^{\text {b }}$ Aksaray University, Department of Physics, 68100, Aksaray, Turkey, ${ }^{\text {c }}$ Department of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and ${ }^{\text {d Department of Physics, }}$ Hacettepe University, 06800 Beytepe, Ankara, Turkey
Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 16 January 2014; accepted 22 January 2014

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.079 ; w R$ factor $=0.209$; data-to-parameter ratio $=11.4$.

In the title polymeric compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the $\mathrm{Ni}^{\text {II }}$ atom is located on a twofold rotation axis and has a slightly distorted octahedral coordination sphere. In the equatorial plane, it is coordinated by two carboxylate O atoms of two symmetry-related monodentate formylbenzoate anions and by two N atoms of the bridging pyrazine ligand, which is bisected by the twofold rotation axis. The axial positions are occupied by two O atoms of the coordinating water molecules. In the formylbenzoate anion, the carboxylate group is twisted away from the attached benzene ring by 7.0 (6) ${ }^{\circ}$, while the benzene and pyrazine rings are oriented at a dihedral angle of $66.2(3)^{\circ}$. The pyrazine ligands bridge the $\mathrm{Ni}^{\mathrm{II}}$ cations, forming polymeric chains running along the b-axis direction. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the water ligands to the carboxylate O atoms. In the crystal, water-water $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link adjacent chains into layers parallel to the bc plane. Pyrazine-formyl C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the layers, forming a threedimensional network. There are also weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions present. The title compound is isotypic with the copper(II) complex [Çelik et al. (2014a). Acta Cryst. E70, m4$\mathrm{m} 5]$.

Related literature

For the structural functions and coordination relationships of the arylcarboxylate ion in transition-metal complexes of benzoic acid derivatives, see: Nadzhafov et al. (1981); Shnulin et al. (1981). For applications of transition-metal complexes with biochemical molecules in biological systems, see: Antolini et al. (1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes, see: Chen \& Chen (2002);

Amiraslanov et al. (1979); Hauptmann et al. (2000). For the isotypic copper(II) complex, see: Çelik et al. (2014a). For other related structures involving 4-formylbenzoate, see: Çelik et al. (2014b); Hökelek et al. (2009). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

$\left[\mathrm{Ni}_{1}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$V=1901.68(8) \AA^{3}$
$M_{r}=473.07$	$Z=4$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=22.1032(5) \AA$	$\mu=1.08 \mathrm{~mm}^{-1}$
$b=6.9925(2) \AA$	$T=296 \mathrm{~K}$
$c=12.3366(3) \AA$	$0.48 \times 0.23 \times 0.14 \mathrm{~mm}$

$\beta=94.160(3)^{\circ}$
$0.48 \times 0.23 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART BREEZE CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2012)
$T_{\text {min }}=0.743, T_{\text {max }}=0.860$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.209$
$S=1.16$
1717 reflections
150 parameters
2 restraints

9913 measured reflections 1717 independent reflections 1554 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.070$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg 1 is the centroid of the $\mathrm{C} 2-\mathrm{C} 7$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 1$	0.82 (5)	1.81 (6)	2.579 (6)	155 (8)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 3^{\text {i }}$	0.82 (2)	2.65 (5)	3.395 (8)	152 (8)
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.45	3.311 (8)	154
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1^{\text {iii }}$	0.93	2.62	3.395 (6)	141
Symmetry cod $-x+\frac{1}{2}, y-\frac{1}{2},-z$	(i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z$; (iii)			

metal-organic compounds

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization). This work is supported financially by Kafkas University Research Fund (grant No. 2012-FEF-12).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2690).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. \& Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. \& Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. \& Hökelek, T. (2014a). Acta Cryst. E70, m4-m5.
Çelik, F., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. \& Hökelek, T. (2014b). Acta Cryst. E70, m37-m38.
Chen, H. J. \& Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Hauptmann, R., Kondo, M. \& Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.
Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. \& Necefoğlu, H. (2009). Acta Cryst. E65, m1399-m1400.
Nadzhafov, G. N., Shnulin, A. N. \& Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. \& Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2014). E70, m65-m66 [doi:10.1107/S160053681400155X]

catena-Poly[[diaquabis(4-formylbenzoato- $\kappa \mathrm{O}^{1}$)nickel(II)]- μ-pyrazine- $\left.\kappa^{2} \mathrm{~N}: \mathrm{N}^{\prime}\right]$

Fatih Çelik, Nefise Dilek, Nagihan Çaylak Delibaş, Hacali Necefoğlu and Tuncer Hökelek

S1. Comment

The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4 -aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen \& Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000). The title compound, which is isotructural with the copper(II) complex (Çelik et al., 2014a) was synthesized and its crystal structure is reported on herein.
The asymmetric unit of the title compound contains half a $\mathrm{Ni}^{\text {II }}$ ion, one formylbenzoate (FB) anion, one water molecule and half of a pyrazine molecule. Atoms Ni1, and N 1 and N 2 of the pyrazine ligand, are located on a two-fold rotation axis (Fig. 1). The pyrazine ligands bridge adjacent Ni^{11} ions forming polymeric chains running along the b-axis direction (Fig. 2). The distances between the symmetry related $\mathrm{Ni}^{\mathrm{II}}$ ions $\left[\mathrm{Ni1} \cdots \mathrm{Ni1}{ }^{1}\right.$; symmetry code: (i) $\left.x, y+1, z\right]$ is 6.992 (3) \AA.

In the equatorial plane of the $\mathrm{Ni}^{\mathrm{il}}$, coordination sphere is composed of two carboxylate O atoms (O 2 and $\mathrm{O} 2^{\mathrm{ii}}$; symmetry code: (ii) $-x, y,-z+1 / 2$) of two symmetry related monodentate formylbenzoate anions and two N atoms (N 1 and N 2) of the bridging pyrazine ligand, which is bisected by the two-fold rotation axis. The axial positions are occupied by two O atoms (O 4 and O^{ii}) of the coordinated water molecules.
The near equality of the $\mathrm{C} 1 — \mathrm{O} 1[1.250(7) \AA]$ and $\mathrm{C} 1 — \mathrm{O} 2[1.260(6) \AA]$ bonds in the carboxylate group indicate delocalized bonding arrangement, rather than localized single and double bonds. The $\mathrm{Ni}-\mathrm{N}$ bond lengths are 2.108 (6) and 2.112 (6) \AA, while the $\mathrm{Ni}-\mathrm{O}$ bond lengths are 2.047 (4) \AA (for benzoate oxygen) and 2.107 (4) \AA (for water oxygen) close to standard values (Allen et al., 1987). The Ni1 atom is displaced out of the mean-plane of the carboxylate group ($\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{O} 2$) by 0.0658 (8) \AA. The dihedral angle between the planar carboxylate group and the adjacent benzene ring (C 2 $-\mathrm{C} 7)$ is $7.0(6)^{\circ}$, while the benzene and pyrazine rings are oriented at a dihedral angle of $66.2(3)^{\circ}$. Strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the water molecules to the carboxylate oxygens.
In the crystal, $\mathrm{O}-\mathrm{H}_{\text {water }} \cdots \mathrm{O}_{\text {water }}$ hydrogen bonds link adjacent chains into layers parallel to the $b c$ plane (Table 1). $\mathrm{C}-$ $\mathrm{H}_{\text {pyrazine }} \cdots \mathrm{O}_{\text {formyl }}$ hydrogen bonds (Table 1) link the layers to form a three-dimensional network. There are also weak $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions present (Table 1).

S2. Experimental

The title compound was prepared by the reaction of $\mathrm{NiSO}_{4} .6 \mathrm{H}_{2} \mathrm{O}(1.31 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{ml})$ and pyrazine $(0.40 \mathrm{~g}, 5$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ with sodium 4-formylbenzoate $(1.72 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue prismatic crystals.

S3. Refinement

Atoms H 41 and $\mathrm{H} 42\left(\right.$ for $\left.\mathrm{H}_{2} \mathrm{O}\right)$ were located in a difference Fourier map and were refined with distance restraints: $\mathrm{O}-\mathrm{H}=$ 0.82 (2) \AA. The C -bound H -atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H -atoms, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Both the highest residual electron density and the deepest hole were found $0.88 \AA$ from atom Ni1.

Figure 1
A view of the coordination geometry around the $\mathrm{Ni}^{\mathrm{II}}$ atom of the title molecule, with the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level. The two-fold rotation axis bisects atoms Ni1, N1 and N2.

Figure 2
A partial view along the c axis of the crystal packing of the title compound. Hydrogen atoms have been omitted for clarity.
catena-Poly[[diaquabis(4-formylbenzoato- κO^{1})nickel(II)]- μ-pyrazine- $\left.\kappa^{2} N: N^{\prime}\right]$

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$

$$
M_{r}=473.07
$$

$$
\begin{aligned}
& a=22.1032(5) \AA \\
& b=6.9925(2) \AA \\
& c=12.3366(3) \AA \\
& \beta=94.160(3)^{\circ}
\end{aligned}
$$

Monoclinic, C2/c
Hall symbol: -C 2yc
$V=1901.68(8) \AA^{3}$
$Z=4$
$F(000)=976$
$D_{\mathrm{x}}=1.652 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5837 reflections

Data collection

Bruker SMART BREEZE CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
$T_{\min }=0.743, T_{\text {max }}=0.860$

$$
\begin{aligned}
& \theta=3.1-28.3^{\circ} \\
& \mu=1.08 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, blue } \\
& 0.48 \times 0.23 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

> 9913 measured reflections
> 1717 independent reflections
> 1554 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.070$
> $\theta_{\max }=25.3^{\circ}, \theta_{\min }=1.9^{\circ}$
> $h=-26 \rightarrow 26$
> $k=-8 \rightarrow 8$
> $l=-14 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.209$
$S=1.16$
1717 reflections
150 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \text { Secondary atom site location: difference Fourier } \\
& \text { map } \\
& \text { Hydrogen site location: inferred from } \\
& \quad \text { neighbouring sites } \\
& \mathrm{H} \text { atoms treated by a mixture of independent } \\
& \quad \text { and constrained refinement } \\
& w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1238 P)^{2}+9.9995 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=2.49 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.05 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Ni1	0.00000	$0.44790(12)$	0.25000	$0.0222(3)$
O1	$0.13672(19)$	$0.3246(7)$	$0.3338(3)$	$0.0435(14)$
O2	$0.08397(17)$	$0.4511(5)$	$0.1900(3)$	$0.0294(11)$
O3	$0.3999(2)$	$0.3724(9)$	$0.0460(4)$	$0.0614(19)$
O4	$0.0372(2)$	$0.4332(6)$	$0.4119(3)$	$0.0342(12)$
N1	0.00000	$0.1464(8)$	0.25000	$0.0242(17)$
N2	0.00000	$0.7500(8)$	0.25000	$0.0260(19)$
C1	$0.1321(2)$	$0.3907(7)$	$0.2394(5)$	$0.0277(16)$
C2	$0.1890(2)$	$0.3983(7)$	$0.1787(5)$	$0.0284(16)$
C3	$0.1889(3)$	$0.4908(8)$	$0.0787(5)$	$0.0300(17)$
C4	$0.2420(3)$	$0.5042(9)$	$0.0271(5)$	$0.0320(17)$

C5	$0.2955(3)$	$0.4294(8)$	$0.0736(5)$	$0.0339(17)$
C6	$0.2958(3)$	$0.3342(8)$	$0.1733(5)$	$0.0338(17)$
C7	$0.2424(2)$	$0.3196(8)$	$0.2243(5)$	$0.0290(17)$
C8	$0.3520(3)$	$0.4471(10)$	$0.0178(6)$	$0.045(2)$
C9	$0.0252(3)$	$0.0463(7)$	$0.1723(5)$	$0.0290(17)$
C10	$0.0250(2)$	$0.8494(7)$	$0.1733(4)$	$0.0280(17)$
H3	0.15320	0.54320	0.04700	0.0360^{*}
H4	0.24170	0.56450	-0.04010	0.0380^{*}
H6	0.33140	0.28130	0.20480	0.0410^{*}
H7	0.24240	0.25590	0.29040	0.0350^{*}
H8	0.35070	0.52240	-0.04450	0.0540^{*}
H9	0.04310	0.11080	0.11700	0.0350^{*}
H10	0.04300	0.78400	0.11840	0.0340^{*}
H41	$0.040(4)$	$0.545(5)$	$0.430(7)$	$0.06(3)^{*}$
H42	$0.0721(18)$	$0.396(13)$	$0.407(7)$	$0.07(3)^{*}$

Atomic displacement parameters (\AA^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0321(6)$	$0.0093(5)$	$0.0253(6)$	0.0000	$0.0022(4)$	0.0000
O1	$0.046(2)$	$0.049(3)$	$0.036(2)$	$0.008(2)$	$0.0059(18)$	$0.012(2)$
O2	$0.032(2)$	$0.0188(19)$	$0.038(2)$	$0.0020(14)$	$0.0065(16)$	$0.0009(16)$
O3	$0.045(3)$	$0.085(4)$	$0.055(3)$	$0.001(3)$	$0.010(2)$	$-0.006(3)$
O4	$0.047(2)$	$0.031(2)$	$0.024(2)$	$0.0063(19)$	$-0.0012(17)$	$-0.0034(17)$
N1	$0.036(3)$	$0.011(3)$	$0.026(3)$	0.0000	$0.005(2)$	0.0000
N2	$0.034(3)$	$0.006(3)$	$0.038(4)$	0.0000	$0.003(3)$	0.0000
C1	$0.039(3)$	$0.012(2)$	$0.032(3)$	$-0.002(2)$	$0.002(2)$	$0.000(2)$
C2	$0.040(3)$	$0.013(2)$	$0.032(3)$	$-0.002(2)$	$0.002(2)$	$-0.004(2)$
C3	$0.036(3)$	$0.022(3)$	$0.031(3)$	$0.000(2)$	$-0.004(2)$	$-0.002(2)$
C4	$0.047(3)$	$0.023(3)$	$0.026(3)$	$-0.006(2)$	$0.003(2)$	$0.000(2)$
C5	$0.040(3)$	$0.026(3)$	$0.036(3)$	$-0.005(2)$	$0.004(2)$	$-0.007(2)$
C6	$0.036(3)$	$0.027(3)$	$0.038(3)$	$0.005(2)$	$0.001(2)$	$-0.002(2)$
C7	$0.039(3)$	$0.021(3)$	$0.027(3)$	$0.005(2)$	$0.003(2)$	$0.002(2)$
C8	$0.050(4)$	$0.044(4)$	$0.043(4)$	$-0.007(3)$	$0.008(3)$	$-0.002(3)$
C9	$0.045(3)$	$0.017(3)$	$0.026(3)$	$-0.002(2)$	$0.009(2)$	$0.002(2)$
C10	$0.041(3)$	$0.016(3)$	$0.028(3)$	$0.000(2)$	$0.010(2)$	$-0.004(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ni} 1-\mathrm{O} 2$	$2.048(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.393(8)$
$\mathrm{Ni} 1-\mathrm{O} 4$	$2.107(4)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.384(7)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$2.108(6)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.378(9)$
$\mathrm{Ni} 1-\mathrm{N} 2$	$2.112(6)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.379(9)$
$\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.048(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.398(9)$
$\mathrm{Ni} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.107(4)$	$\mathrm{C} 5-\mathrm{C} 8$	$1.474(9)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.250(7)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.381(8)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.260(6)$	$\mathrm{C} 9-\mathrm{C} 10^{\mathrm{ii}}$	$1.377(7)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.209(8)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300

$\mathrm{O} 4-\mathrm{H} 42$	0.82 (5)
O4-H41	0.81 (4)
N1-C9 ${ }^{\text {i }}$	1.340 (7)
N1-C9	1.340 (7)
N2-C10	1.327 (6)
$\mathrm{N} 2-\mathrm{C} 10^{\text {i }}$	1.327 (6)
C1-C2	1.511 (7)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 4$	92.38 (16)
$\mathrm{O} 2-\mathrm{Ni} 1$ - N 1	90.63 (10)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 2$	89.37 (10)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 2{ }^{\text {i }}$	178.75 (15)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 4{ }^{\text {i }}$	87.68 (16)
$\mathrm{O} 4-\mathrm{Ni} 1$ - N 1	87.20 (12)
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 2$	92.80 (12)
$\mathrm{O} 2{ }^{\text {i}}-\mathrm{Ni} 1-\mathrm{O} 4$	87.68 (16)
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{O} 4{ }^{\text {i }}$	174.41 (17)
N1-Ni1-N2	180.00 (1)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	90.63 (10)
$\mathrm{O} 4{ }^{\mathrm{i}}$ - $\mathrm{Ni} 1-\mathrm{N} 1$	87.20 (12)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{N} 2$	89.37 (10)
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 2$	92.80 (12)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 4^{\text {i }}$	92.38 (16)
$\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{C} 1$	125.3 (4)
Ni1-O4-H41	103 (6)
Ni1-O4-H42	105 (6)
$\mathrm{H} 41-\mathrm{O} 4-\mathrm{H} 42$	106 (9)
C9-N1-C9 ${ }^{\text {i }}$	117.0 (5)
Ni1-N1-C9	121.5 (3)
Ni1-N1-C9 ${ }^{\text {i }}$	121.5 (3)
Ni1-N2-C10	121.6 (3)
Ni1-N2-C10 ${ }^{\text {i }}$	121.6 (3)
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 10^{\mathrm{i}}$	116.8 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	125.7 (5)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	116.9 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	117.4 (4)
O4-Ni1-O2-C1	22.0 (4)
N1-Ni1-O2-C1	-65.3 (4)
N2-Ni1-O2-C1	114.7 (4)
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{C} 1$	-152.5 (4)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 9$	-35.6 (3)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 9^{\text {i }}$	144.4 (3)
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 9$	-128.0 (3)
O4-Ni1-N1-C9 ${ }^{\text {i }}$	52.0 (3)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 9$	144.4 (3)
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 9$	52.0 (3)
O2-Ni1-N2-C10	35.5 (3)

$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 9-\mathrm{H} 9$	0.9300
$\mathrm{C} 10-\mathrm{H} 10$	0.9300

119.4 (5)
120.0 (5)
120.5 (5)
119.6 (6)
121.0 (6)
119.7 (6)
120.2 (6)
120.0 (6)
119.1 (6)
121.2 (6)
125.7 (7)
120.9 (5)
122.2 (5)
120.00
120.00
119.00
120.00
120.00
120.00
120.00
119.00
117.00
117.00
120.00
120.00
119.00
119.00
179.9 (4)
179.9 (4)
-172.2 (5)
5.2 (8)
8.0 (7)
-174.5 (5)
176.9 (5)
-0.6 (8)
$-176.3(5)$
1.2 (8)
-0.8 (9)

$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 10^{\mathrm{i}}$	$-144.5(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.6(9)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 10$	$127.9(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8$	$-179.3(6)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 10^{\mathrm{i}}$	$-52.1(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-1.0(9)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 10$	$-144.5(3)$	$\mathrm{C} 8-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$179.9(6)$
$\mathrm{O} 4-\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 10$	$-52.1(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 3$	$-172.9(7)$
$\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$-2.3(8)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 8-\mathrm{O} 3$	$6.3(10)$
$\mathrm{Ni} 1-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$177.5(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$-0.4(9)$

Symmetry codes: (i) $-x, y,-z+1 / 2$; (ii) $x, y-1, z$; (iii) $x, y+1, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 2-\mathrm{C} 7$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 — \mathrm{H} 42 \cdots \mathrm{O} 1$	$0.82(5)$	$1.81(6)$	$2.579(6)$	$155(8)$
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 3^{\mathrm{iv}}$	$0.82(2)$	$2.65(5)$	$3.395(8)$	$152(8)$
$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{O}^{v}$	0.93	2.45	$3.311(8)$	154
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{Cg}^{\mathrm{vi}}$	0.93	2.62	$3.395(6)$	141

Symmetry codes: (iv) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (v) $-x+1 / 2,-y+1 / 2,-z$; (vi) $-x+1 / 2, y-1 / 2,-z+1 / 2$.

