

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1,10-phenanthrolin-1-ium) tetrachloridozincate monohydrate

E. Govindan,^a Subramani Thirumurugan,^b Ayyakannu Sundaram Ganeshraja,^b Krishnamoorthy Anbalagan^b and A. SubbiahPandi^a*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India Correspondence e-mail: a_sp59@yahoo.in

Received 29 December 2013; accepted 4 January 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.068; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, $(C_{12}H_9N_2)_2[ZnCl_4]\cdot H_2O$, the two independent 1,10-phenanthrolinium cations are bridged by the water molecule and the tetrahedral tetrachloridozincate anion via N-H···O, O- $H \cdots Cl$ and $N - H \cdots Cl$ hydrogen bonds, forming chains along [100]. The chains are linked via $C-H \cdots Cl$ hydrogen bonds and a number of π - π interactions [centroid-centroid distances] vary from 3.5594 (14) to 3.7057 (13) Å], forming a threedimensional network. In each 1,10-phenanthrolinium cation, there is a short $N-H \cdots N$ interaction.

Related literature

For an example of the crystal structure of a hybrid compound combining an organic cation and the tetrachloridozincate anion, see: Dong & Liu (2012). For details of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data $(C_{12}H_9N_2)_2[ZnCl_4]\cdot H_2O$ $M_r = 587.61$

Monoclinic, $P2_1/a$ a = 14.6046 (5) Å

b = 10.8008 (3) Å c = 16.3151 (6) Å $\beta = 107.390 \ (4)^{\circ}$ V = 2455.93 (14) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur	10373 measured reflections
diffractometer with Eos detector	4293 independent reflections
Absorption correction: multi-scan	3414 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.028$
Diffraction, 2009)	
$T_{\min} = 0.743, T_{\max} = 0.803$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of
$wR(F^2) = 0.068$	independent and constrained
S = 1.05	refinement
4293 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
324 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å	°)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO1^{i}$	0.74 (3)	2.01 (3)	2.711 (4)	158 (2)
$O1 - H1A \cdots Cl1$	0.80(4)	2.44 (4)	3.231 (3)	172 (3)
$O1 - H1B \cdot \cdot \cdot Cl2^{ii}$	0.73 (3)	2.82 (4)	3.317 (3)	128 (4)
N15−H15···Cl3	0.83 (3)	2.50(2)	3.225 (2)	146 (2)
C3-H3···Cl2 ⁱⁱⁱ	0.93	2.80	3.728 (3)	172
$C24 - H24 \cdots Cl2^{iv}$	0.93	2.74	3.629 (3)	160
$N1 - H1 \cdot \cdot \cdot N12$	0.74 (3)	2.42 (2)	2.737 (3)	107 (2)
N15-H15···N26	0.83 (3)	2.41 (2)	2.731 (3)	104 (2)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z$; (iii) -x, -y + 2, -z + 1; (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + 2.$

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

EG and KA thank the CSIR, New Delhi (Lr: No. 01 (2570)/ 12/EMR-II/3.4.2012) for financial support through a major research project. The authors also thank the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2681).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388. Dong, Z. & Liu, B. (2012). Acta Cryst. E68, m131. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Mo $K\alpha$ radiation

 $0.21 \times 0.18 \times 0.15 \text{ mm}$

 $\mu = 1.46 \text{ mm}^{-1}$

T = 293 K

Acta Cryst. (2014). E70, m53 [doi:10.1107/S1600536814000208]

Bis(1,10-phenanthrolin-1-ium) tetrachloridozincate monohydrate

E. Govindan, Subramani Thirumurugan, Ayyakannu Sundaram Ganeshraja, Krishnamoorthy Anbalagan and A. SubbiahPandi

S1. Comment

As part of an ongoing investigation of the structures of and non-covalent interactions present in self-assembling organic and inorganic hybrid materials prepared by the combination of an organic cation and the tetrachloridozincate anion we synthesized the title compound. There are only a small number of structures of materials containing bis(1,10-phenanthrolinium) cations and perhalometallate anions in the Cambridge Structural Database (CSD; V5.35, last update Nov. 2013; Allen, 2002), and none of them involve the tetrachloridozincate anion.

The molecule structure of the title compound is shown in Fig. 1. The asymmetric unit contains one inorganic tetrachloridozincate anion and two 1,10-phenanthrolinium organic cations. The compound crystallized as a monohydrate. The tetrachlorozincate anion has a perfect tetrahedral coordination environment. The bond lengths Zn—Cl [2.556 (7) - 2.3085 (7) Å] and C—N [1.320 (3) - 1.362 (3) Å] are comparable with the values reported for Bis(10-methoxy-benzo[*h*]quinolinium) tetrachloridozinc [Dong & Liu, 2012]. The sum of the bond angles around atoms N1 and N15 (360°) in the 1,10-phenanthrolinium cations indicates *sp*² hybridization states. The two 1,10-phenanthrolinium ring systems (N1/N12/C2-C11/C13/C14) and (N15/N26/C16-C25/C27/C28) are planar with r.m.s values of 0.029 (3) and 0.022 (2) Å, respectively. In each 1,10-phenanthrolinium cation there is a short N-H…N interaction (Table 1).

In the crystal, the two independent 1,10-phenanthrolinium cations are bridged by the water molecule and the tetrachloridozinc anion via N-H···O, O-H···Cl and N-H···Cl hydrogen bonds (Table 1 and Fig. 2) forming chains along [100]. The chains are linked via C-H···Cl hydrogen bonds (Table 1) and a number of π - π interactions forming a three-dimensional network.

The centroid-centroid distances are 3.5594 (14) Å for Cg1···Cg2ⁱ [Cg1 and Cg2 and the centroids of rings N1/C2-C5/C14 and N12/C8-C11/C13, respectively; symmetry code: (i) = -x, -y+2, -z+1], 3.6501 (15) Å for Cg1···Cg3ⁱ [Cg3 is the centroid of ring C5-C8/C13/C14] and 3.7057 (13) Å for Cg8···Cg9ⁱⁱ [Cg8 and Cg9 are the centroids of rings N26/C22-C25/C27 and C19-C22/C27/C28, respectively; symmetry code: (ii) -x, -y, -z+2].

S2. Experimental

Zinc chloride (136 mg, 1 mmol) was dissolved in 10 mL of water. To this 1,10-phenanthroline (396 mg, 2 mmol) in 20 ml of an EtOH/HCl mixture (1:9 v/v) was added drop wise. The mixture was heated to 323 K for 2–3 hrs and then allowed to stand. On slow evaporation colourless crystals separated out. They were filtered off and recrystallized using acidified water.

S3. Refinement

The NH and water H atoms were located in a difference Fourier map and freely refined. The C bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C-H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at 30% probability level.

Figure 2

A view along the *b*-axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Bis(1,10-phenanthrolin-1-ium) tetrachloridozincate monohydrate

Crystal data	
$(C_{12}H_9N_2)_2[ZnCl_4]\cdot H_2O$ $M_r = 587.61$	F(000) = 1192 $D_x = 1.589 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/a$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yab	Cell parameters from 3414 reflections
a = 14.6046 (5) Å	$\theta = 3.8 - 25.0^{\circ}$
b = 10.8008 (3) Å	$\mu = 1.46 \text{ mm}^{-1}$
c = 16.3151 (6) Å	T = 293 K
$\beta = 107.390 \ (4)^{\circ}$	Block, colourless
$V = 2455.93 (14) Å^3$	$0.21 \times 0.18 \times 0.15 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur diffractometer with Eos detector Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) $T_{\min} = 0.743, T_{\max} = 0.803$ Refinement	10373 measured reflections 4293 independent reflections 3414 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.8^{\circ}$ $h = -17 \rightarrow 17$ $k = -11 \rightarrow 12$ $l = -19 \rightarrow 19$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H atoms treated by a mixture of independent
$wR(F^2) = 0.068$	and constrained refinement
S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 0.2557P]$
4293 reflections	where $P = (F_o^2 + 2F_c^2)/3$
324 parameters	$(\Delta/\sigma)_{max} < 0.001$
0 restraints	$\Delta\rho_{max} = 0.38$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.29$ e Å ⁻³
direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)] ^{-1/4}
map	Extinction coefficient: 0.0165 (5)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.05391 (18)	1.17583 (19)	0.56437 (14)	0.0382 (8)	
N12	0.13002 (14)	0.97933 (17)	0.66837 (13)	0.0364 (7)	
C2	0.0227 (2)	1.2729 (2)	0.51338 (17)	0.0498 (10)	
C3	-0.0746 (2)	1.2890 (3)	0.47489 (18)	0.0574 (10)	
C4	-0.1379 (2)	1.2056 (3)	0.49016 (18)	0.0533 (11)	
C5	-0.10528 (18)	1.1038 (2)	0.54406 (16)	0.0401 (9)	
C6	-0.16693 (19)	1.0148 (3)	0.56456 (18)	0.0497 (10)	
C7	-0.13202 (18)	0.9219 (3)	0.61895 (18)	0.0475 (10)	
C8	-0.03095 (17)	0.9048 (2)	0.65657 (15)	0.0354 (8)	
C9	0.0097 (2)	0.8067 (2)	0.71173 (17)	0.0437 (9)	
C10	0.1068 (2)	0.7959 (2)	0.74208 (18)	0.0469 (10)	
C11	0.16361 (19)	0.8837 (2)	0.71874 (16)	0.0427 (9)	
C13	0.03328 (16)	0.9889 (2)	0.63748 (14)	0.0293 (7)	
C14	-0.00593 (17)	1.0909 (2)	0.58142 (14)	0.0306 (8)	
N15	-0.07856 (15)	0.34171 (18)	0.92218 (13)	0.0339 (7)	

N26	0.08664 (14)	0.25794 (18)	1.03725 (13)	0.0378 (7)
C16	-0.15449 (18)	0.3854 (2)	0.86201 (17)	0.0424 (9)
C17	-0.24346 (18)	0.3314 (3)	0.84870 (17)	0.0460 (9)
C18	-0.25201 (17)	0.2333 (2)	0.89907 (17)	0.0428 (9)
C19	-0.17174 (16)	0.1862 (2)	0.96188 (15)	0.0339 (8)
C20	-0.17495 (18)	0.0817 (2)	1.01531 (17)	0.0411 (9)
C21	-0.09527 (18)	0.0398 (2)	1.07310 (16)	0.0407 (9)
C22	-0.00318 (17)	0.0967 (2)	1.08369 (15)	0.0327 (8)
C23	0.08261 (19)	0.0549 (2)	1.14257 (16)	0.0417 (9)
C24	0.16602 (19)	0.1130 (2)	1.14723 (17)	0.0473 (9)
C25	0.16456 (18)	0.2136 (3)	1.09347 (18)	0.0470 (9)
C27	0.00304 (16)	0.1986 (2)	1.03291 (15)	0.0291 (7)
C28	-0.08273 (16)	0.2437 (2)	0.97183 (15)	0.0287 (7)
Zn1	0.02573 (2)	0.43561 (2)	0.73719 (2)	0.0324 (1)
Cl1	-0.11018 (5)	0.52315 (6)	0.64898 (5)	0.0584 (3)
Cl2	0.15128 (4)	0.45542 (6)	0.68453 (4)	0.0445 (2)
C13	0.06504 (5)	0.53130 (5)	0.86969 (4)	0.0429 (2)
Cl4	-0.00552 (5)	0.23479 (5)	0.76075 (4)	0.0433 (2)
01	-0.25358 (17)	0.2883 (3)	0.61679 (19)	0.0609 (9)
H1	0.1064 (18)	1.169 (2)	0.5852 (17)	0.033 (8)*
H2	0.06620	1.32970	0.50370	0.0600*
H3	-0.09690	1.35620	0.43880	0.0690*
H4	-0.20340	1.21660	0.46450	0.0640*
H6	-0.23290	1.02140	0.53950	0.0600*
H7	-0.17430	0.86710	0.63270	0.0570*
H9	-0.02950	0.74930	0.72740	0.0530*
H10	0.13470	0.73060	0.77800	0.0560*
H11	0.22980	0.87460	0.74000	0.0510*
H15	-0.0270 (18)	0.379 (2)	0.9296 (16)	0.040 (8)*
H16	-0.14770	0.45270	0.82870	0.0510*
H17	-0.29670	0.36120	0.80630	0.0550*
H18	-0.31190	0.19750	0.89150	0.0510*
H20	-0.23320	0.04250	1.00970	0.0490*
H21	-0.09940	-0.02770	1.10720	0.0490*
H23	0.08200	-0.01220	1.17810	0.0500*
H24	0.22340	0.08620	1.18570	0.0570*
H25	0.22260	0.25230	1.09750	0.0560*
H1A	-0.217 (3)	0.344 (3)	0.620 (2)	0.083 (15)*
H1B	-0.239 (3)	0.241 (3)	0.650 (2)	0.079 (16)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0427 (15)	0.0374 (13)	0.0337 (13)	0.0058 (11)	0.0103 (11)	0.0005 (10)
N12	0.0342 (11)	0.0336 (11)	0.0368 (12)	0.0014 (9)	0.0034 (9)	-0.0013 (9)
C2	0.081 (2)	0.0349 (15)	0.0369 (17)	0.0056 (14)	0.0228 (15)	0.0018 (12)
C3	0.087 (2)	0.0461 (17)	0.0368 (17)	0.0339 (17)	0.0149 (16)	0.0047 (13)
C4	0.0546 (18)	0.066 (2)	0.0358 (17)	0.0293 (16)	0.0081 (14)	-0.0022 (14)

C5	0.0395 (15)	0.0489 (15)	0.0312 (15)	0.0145 (12)	0.0096 (12)	-0.0083 (12)
C6	0.0301 (14)	0.0680 (19)	0.0472 (18)	0.0052 (14)	0.0058 (13)	-0.0136 (15)
C7	0.0374 (15)	0.0549 (17)	0.0524 (18)	-0.0112 (13)	0.0168 (13)	-0.0128 (14)
C8	0.0396 (14)	0.0367 (13)	0.0299 (14)	-0.0049 (11)	0.0105 (11)	-0.0108 (11)
C9	0.0582 (18)	0.0342 (14)	0.0405 (16)	-0.0133 (13)	0.0173 (14)	-0.0057 (12)
C10	0.0600 (19)	0.0330 (14)	0.0402 (16)	0.0000 (13)	0.0036 (14)	0.0023 (12)
C11	0.0407 (15)	0.0394 (14)	0.0388 (16)	0.0024 (12)	-0.0019 (12)	-0.0012 (12)
C13	0.0325 (13)	0.0291 (12)	0.0248 (13)	0.0011 (10)	0.0062 (10)	-0.0079 (10)
C14	0.0365 (13)	0.0317 (13)	0.0241 (13)	0.0034 (11)	0.0099 (11)	-0.0065 (10)
N15	0.0305 (12)	0.0374 (12)	0.0362 (13)	0.0010 (10)	0.0138 (10)	0.0036 (10)
N26	0.0319 (11)	0.0453 (12)	0.0355 (13)	-0.0040 (9)	0.0090 (9)	0.0053 (10)
C16	0.0423 (15)	0.0481 (15)	0.0396 (16)	0.0136 (13)	0.0164 (12)	0.0134 (12)
C17	0.0326 (15)	0.0642 (18)	0.0382 (16)	0.0129 (13)	0.0059 (12)	0.0039 (14)
C18	0.0282 (13)	0.0558 (17)	0.0437 (17)	-0.0009 (12)	0.0098 (12)	-0.0058 (13)
C19	0.0320 (13)	0.0379 (13)	0.0340 (15)	-0.0021 (11)	0.0131 (11)	-0.0053 (11)
C20	0.0382 (15)	0.0454 (15)	0.0435 (16)	-0.0125 (12)	0.0180 (13)	-0.0040 (13)
C21	0.0482 (16)	0.0377 (14)	0.0404 (16)	-0.0082 (12)	0.0195 (13)	0.0033 (12)
C22	0.0389 (14)	0.0338 (13)	0.0277 (13)	0.0002 (11)	0.0137 (11)	-0.0008 (11)
C23	0.0520 (17)	0.0420 (15)	0.0316 (15)	0.0045 (13)	0.0133 (12)	0.0067 (12)
C24	0.0388 (15)	0.0594 (17)	0.0373 (16)	0.0056 (13)	0.0015 (12)	0.0101 (14)
C25	0.0305 (14)	0.0625 (18)	0.0444 (17)	-0.0057 (13)	0.0057 (12)	0.0052 (14)
C27	0.0302 (12)	0.0321 (13)	0.0264 (13)	-0.0010 (10)	0.0106 (10)	-0.0030 (10)
C28	0.0336 (13)	0.0285 (12)	0.0267 (13)	-0.0002 (10)	0.0132 (10)	-0.0025 (10)
Zn1	0.0315 (2)	0.0318 (2)	0.0336 (2)	-0.0033 (1)	0.0091 (1)	-0.0023 (1)
Cl1	0.0373 (4)	0.0486 (4)	0.0735 (5)	-0.0010 (3)	-0.0074 (3)	0.0052 (4)
Cl2	0.0409 (4)	0.0505 (4)	0.0470 (4)	-0.0073 (3)	0.0208 (3)	-0.0059 (3)
C13	0.0575 (4)	0.0369 (3)	0.0369 (4)	-0.0085 (3)	0.0182 (3)	-0.0086 (3)
Cl4	0.0575 (4)	0.0299 (3)	0.0460 (4)	-0.0072 (3)	0.0210 (3)	-0.0050 (3)
01	0.0530 (14)	0.0493 (14)	0.083 (2)	0.0033 (13)	0.0242 (13)	0.0021 (14)

Geometric parameters (Å, °)

Zn1—Cl4	2.2728 (6)	С2—Н2	0.9300
Zn1—Cl1	2.2798 (8)	С3—Н3	0.9300
Zn1—Cl2	2.2556 (7)	C4—H4	0.9300
Zn1—Cl3	2.3085 (7)	С6—Н6	0.9300
O1—H1A	0.80 (4)	С7—Н7	0.9300
O1—H1B	0.73 (3)	С9—Н9	0.9300
N1—C2	1.331 (3)	C10—H10	0.9300
N1—C14	1.352 (3)	C11—H11	0.9300
N12—C13	1.355 (3)	C16—C17	1.381 (4)
N12—C11	1.320 (3)	C17—C18	1.369 (4)
N1—H1	0.74 (3)	C18—C19	1.402 (3)
N15—C28	1.345 (3)	C19—C20	1.435 (3)
N15—C16	1.329 (3)	C19—C28	1.406 (3)
N26—C25	1.320 (4)	C20—C21	1.339 (4)
N26—C27	1.362 (3)	C21—C22	1.441 (4)
N15—H15	0.83 (3)	C22—C27	1.397 (3)

C2—C3	1.382 (4)	C22—C23	1.406 (4)
C3—C4	1.366 (4)	C23—C24	1.352 (4)
C4—C5	1.400 (4)	C24—C25	1.393 (4)
C5—C6	1.424 (4)	C27—C28	1.433 (3)
C5—C14	1.403 (4)	C16—H16	0.9300
C6—C7	1.336 (4)	C17—H17	0.9300
С7—С8	1.431 (4)	C18—H18	0.9300
C8—C13	1.406 (3)	C20—H20	0.9300
С8—С9	1.402 (3)	C21—H21	0.9300
C9—C10	1.360 (4)	C23—H23	0.9300
C10-C11	1 386 (4)	C24—H24	0.9300
C_{13} C_{14}	1.330(1) 1.437(3)	C25—H25	0.9300
015 014	1.457 (5)	023 1123	0.9500
Cl3—Zn1—Cl4	105.98 (2)	C8—C7—H7	119.00
Cl1— $Zn1$ — $Cl4$	108.76 (3)	С8—С9—Н9	120.00
Cl1-Zn1-Cl2	111.95 (3)	C10—C9—H9	120.00
$C_1 = Z_n = C_1 = C_1$	109 35 (3)	C9-C10-H10	120.00
C_{12} T_{n1} C_{13}	109.35(3) 108.14(3)	C_{11} C_{10} H_{10}	120.00
C12 = Zn1 = C13 C12 = -7n1 = -C14	100.14(3) 11247(3)	N12—C11—H11	118.00
	112.47(5) 116(4)	C_{10} C_{11} H_{11}	118.00
$C_2 = N_1 = C_1 A$	110(4) 122.8(3)	N15 $C16$ $C17$	120.3(2)
C_{11} N12 C13	122.8(3)	$C_{16} = C_{17} = C_{17}$	120.3(2)
C14 N1 H1	110.3(2) 118.7(18)	$C_{10} - C_{18} - C_{18}$	118.9(2)
$C14$ — $N1$ — $\Pi1$	110.7(10) 118.5(18)	C1/-C18-C19	120.9(2)
C_2 —NI—HI	118.5 (18)	C18 - C19 - C28	117.8 (2)
C16-N15-C28	123.1(2)	C18 - C19 - C20	123.9 (2)
C_{25} —N26— C_{27}	116.0 (2)	$C_{20} = C_{19} = C_{28}$	118.3 (2)
C28—N15—H15	119.8 (16)	C19—C20—C21	121.0 (2)
C16—N15—H15	117.1 (16)	C20—C21—C22	121.6 (2)
N1—C2—C3	119.8 (3)	C21—C22—C27	119.3 (2)
C2—C3—C4	119.6 (3)	C23—C22—C27	117.1 (2)
C3—C4—C5	120.7 (3)	C21—C22—C23	123.6 (2)
C4—C5—C14	117.7 (2)	C22—C23—C24	119.6 (2)
C4—C5—C6	123.9 (3)	C23—C24—C25	118.9 (2)
C6—C5—C14	118.4 (2)	N26—C25—C24	124.7 (3)
C5—C6—C7	121.4 (3)	C22—C27—C28	118.8 (2)
С6—С7—С8	121.5 (3)	N26—C27—C28	117.4 (2)
C9—C8—C13	116.6 (2)	N26—C27—C22	123.8 (2)
C7—C8—C13	119.5 (2)	C19—C28—C27	121.1 (2)
С7—С8—С9	123.9 (2)	N15—C28—C19	119.0 (2)
C8—C9—C10	119.6 (2)	N15—C28—C27	119.9 (2)
C9-C10-C11	119.1 (2)	N15—C16—H16	120.00
N12-C11-C10	124.4 (3)	C17—C16—H16	120.00
C8-C13-C14	118.1 (2)	C18—C17—H17	121.00
N12-C13-C14	117.9 (2)	C16—C17—H17	121.00
N12—C13—C8	124.0 (2)	C17—C18—H18	120.00
N1-C14-C5	119.4 (2)	C19—C18—H18	120.00
N1-C14-C13	119.5 (2)	C21—C20—H20	120.00
C5—C14—C13	121.1 (2)	C19—C20—H20	120.00
	× /		

N1—C2—H2	120.00	C20—C21—H21	119.00
С3—С2—Н2	120.00	C22—C21—H21	119.00
С4—С3—Н3	120.00	С22—С23—Н23	120.00
С2—С3—Н3	120.00	С24—С23—Н23	120.00
C3—C4—H4	120.00	C23—C24—H24	121.00
C5—C4—H4	120.00	С25—С24—Н24	121.00
С5—С6—Н6	119.00	N26—C25—H25	118.00
С7—С6—Н6	119.00	С24—С25—Н25	118.00
С6—С7—Н7	119.00		
C14—N1—C2—C3	-0.6 (4)	C8—C9—C10—C11	1.0 (4)
C2—N1—C14—C13	-179.7 (2)	C9-C10-C11-N12	0.2 (4)
C2—N1—C14—C5	0.3 (4)	C8—C13—C14—C5	-2.4(3)
C11—N12—C13—C14	-179.1 (2)	N12—C13—C14—C5	177.2 (2)
C11—N12—C13—C8	0.5 (3)	C8—C13—C14—N1	177.6 (2)
C13—N12—C11—C10	-0.9 (4)	N12—C13—C14—N1	-2.7(3)
C16—N15—C28—C27	177.3 (2)	N15—C16—C17—C18	0.7 (4)
C28—N15—C16—C17	1.0 (4)	C16—C17—C18—C19	-1.4 (4)
C16—N15—C28—C19	-1.9 (3)	C17—C18—C19—C28	0.6 (4)
C25—N26—C27—C28	-179.4 (2)	C17—C18—C19—C20	-178.3 (2)
C25—N26—C27—C22	0.0 (3)	C20—C19—C28—C27	0.8 (3)
C27—N26—C25—C24	-0.3 (4)	C18—C19—C20—C21	178.7 (2)
N1—C2—C3—C4	0.6 (4)	C28—C19—C20—C21	-0.1 (4)
C2—C3—C4—C5	-0.3 (4)	C18—C19—C28—C27	-178.2(2)
C3—C4—C5—C14	0.0 (4)	C20-C19-C28-N15	180.0 (2)
C3—C4—C5—C6	178.5 (3)	C18—C19—C28—N15	1.1 (3)
C4—C5—C14—N1	0.0 (4)	C19—C20—C21—C22	-0.5(4)
C4—C5—C6—C7	-177.5 (3)	C20—C21—C22—C23	-179.0(2)
C14—C5—C6—C7	1.0 (4)	C20—C21—C22—C27	0.5 (4)
C4—C5—C14—C13	-180.0 (2)	C23—C22—C27—N26	0.3 (3)
C6—C5—C14—C13	1.5 (3)	C21—C22—C27—N26	-179.2 (2)
C6—C5—C14—N1	-178.6 (2)	C21—C22—C27—C28	0.2 (3)
C5—C6—C7—C8	-2.4 (4)	C23—C22—C27—C28	179.7 (2)
C6—C7—C8—C9	-177.8(3)	C21—C22—C23—C24	179.1 (2)
C6—C7—C8—C13	1.4 (4)	C27—C22—C23—C24	-0.5 (3)
C7—C8—C9—C10	177.8 (3)	C22—C23—C24—C25	0.3 (4)
C9—C8—C13—N12	0.6 (3)	C23—C24—C25—N26	0.2 (4)
C7—C8—C13—N12	-178.6 (2)	N26—C27—C28—N15	-0.6 (3)
C9—C8—C13—C14	-179.7 (2)	C22—C27—C28—C19	-0.8 (3)
C7—C8—C13—C14	1.0 (3)	N26—C27—C28—C19	178.6 (2)
C13—C8—C9—C10	-1.4 (4)	C22—C27—C28—N15	-180.0(2)
	(-)		10010 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>	
N1—H1···O1 ⁱ	0.74 (3)	2.01 (3)	2.711 (4)	158 (2)	
O1—H1A···Cl1	0.80 (4)	2.44 (4)	3.231 (3)	172 (3)	
O1—H1B····Cl2 ⁱⁱ	0.73 (3)	2.82 (4)	3.317 (3)	128 (4)	

Acta Cryst. (2014). E70, m53

N15—H15…Cl3	0.83 (3)	2.50 (2)	3.225 (2)	146 (2)
C3—H3····Cl2 ⁱⁱⁱ	0.93	2.80	3.728 (3)	172
C24—H24···Cl2 ^{iv}	0.93	2.74	3.629 (3)	160
N1—H1…N12	0.74 (3)	2.42 (2)	2.737 (3)	107 (2)
N15—H15…N26	0.83 (3)	2.41 (2)	2.731 (3)	104 (2)

Symmetry codes: (i) *x*+1/2, *-y*+3/2, *z*; (ii) *x*-1/2, *-y*+1/2, *z*; (iii) *-x*, *-y*+2, *-z*+1; (iv) *-x*+1/2, *y*-1/2, *-z*+2.