

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[(N,N-dimethylcyanamide- κN)lithium]- μ_3 -bromido]

Qianwen Xie, Hongbo Tong and Meisu Zhou*

Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China Correspondence e-mail: mszhou@sxu.edu.cn

Received 13 January 2014; accepted 23 January 2014

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (N–C) = 0.005 Å; R factor = 0.025; wR factor = 0.061; data-to-parameter ratio = 17.0.

The title complex, $[LiBr(C_3H_6N_2)]_n$, is the unexpected product of a reaction between $(Dipp)N(Li)SiMe_3$ (Dipp = 2,6diisopropylphenyl), Me₂NCN and CuBr. The compound is a one-dimensional polymer with a step structure derived from the association of inversion dimers, formed by bromido ligands bridging two Li⁺ cations, each of which carries a dimethylcyanamide ligand. The planar (LiBr)₂ unit of the polymer core has a regular rhombic shape [Li-Br-Li 77.55 (16)° and Br-Li-Br 102.45 (16)°]. These (LiBr·NCNMe₂)₂ dimers represent the repeat unit of a polymer system propagated by additional Br-Li and Li-Br bonds generating an infinite step structure along the *a*-axis direction.

Related literature

For examples of lithium halides solvated by Lewis bases, see: Snaith & Wright (1995); Mulvey (1991); Raston, Skelton *et al.* (1988), Raston, Whitaker & White (1988, 1989*a,b*); Edwards *et al.* (1993); Neumann *et al.* (1995); Gregory *et al.* (1991). For related crystal structures, see: Edwards *et al.* (1993); Raston, Skelton *et al.* (1988). A 1,3,5,7-tetraazaheptatrienyl–lithium salt was reported by Boesveld *et al.* (2009)

Experimental

Crystal data [LiBr(C₃H₆N₂)] $M_r = 156.85$ Monoclinic, $P2_1/c$ a = 4.2680 (8) Å b = 17.214 (3) Å c = 8.9685 (17) Å $\beta = 100.089$ (3)°

Data collection

```
Bruker SMART APEX CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
T_{min} = 0.220, T_{max} = 0.241
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ 67 parameters $wR(F^2) = 0.061$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.57$ e Å⁻³1140 reflections $\Delta \rho_{min} = -0.38$ e Å⁻³

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the financial support of the Natural Science Foundation of China (No. 21371111) and Shanxi Scholarship Council of China (No. 2013–025).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5383).

metal-organic compounds

V = 648.7 (2) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.33 \times 0.32$ mm

3498 measured reflections

1140 independent reflections

965 reflections with $I > 2\sigma(I)$

 $\mu = 6.22 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int} = 0.032$

Z = 4

References

- Boesveld, W. M., Hitchcock, P. B. & Lappert, M. F. (2009). *Inorg. Chem.* 48, 11444–11450.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Edwards, A. J., Paver, M. A., Raithby, P. R., Russell, C. A. & Wright, D. S. (1993). J. Chem. Soc. Dalton Trans. pp. 3265–3266.
- Gregory, K., Schleyer, P. von R. & Snaith, R. (1991). Adv. Inorg. Chem. 37, 47– 142.
- Mulvey, R. E. (1991). Chem. Soc. Rev. 20, 167-209.
- Neumann, F., Hampel, F. & Schleyer, P. von R. (1995). Inorg. Chem. 34, 6553-6555.

- Raston, C. L., Skelton, B. W., Whitaker, C. R. & White, A. H. (1988). Aust. J. Chem. 41, 1925–1934.
- Raston, C. L., Whitaker, C. R. & White, A. H. (1988). J. Chem. Soc. Dalton Trans. pp. 991–995.
- Raston, C. L., Whitaker, C. R. & White, A. H. (1989a). Inorg. Chem. 28, 163–165.
- Raston, C. L., Whitaker, C. R. & White, A. H. (1989b). Aust. J. Chem. 42, 201–207.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Snaith, R. & Wright, D. S. (1995). In Lithium Chemistry: A Theoretical and Experimental Overview, edited by A.-M. Sapse & P. von R. Schleyer, pp. 227–294. New York: Wiley.

supporting information

Acta Cryst. (2014). E70, m69–m70 [doi:10.1107/S1600536814001652] *catena*-Poly[[(*N*,*N*-dimethylcyanamide-κ*N*)lithium]-μ₃-bromido]

Qianwen Xie, Hongbo Tong and Meisu Zhou

S1. Experimental

S1.1. Synthesis and crystallization

Me₂NCN (0.76 mL, 9.38 mmol) was added to a solution of (Dipp)N(Li)SiMe₃ (0.60 g, 2.35 mmol) in Et₂O (30 mL) at -78°C. The resulting mixture was warmed to *ca*. 25°C and stirred for overnight. The resulting mixture was added dropwise into a suspension of CuBr (0.34 g, 2.35 mmol) in Et₂O (10 mL) at -78°C. The resulting mixture was warmed to *ca*. 25°C and stirred for 24 h, then filtered. The filtrate was concentrated in vacuo and stored at 20°C for ten days, yielding colorless crystals of the title compound (0.503 g, 68%).

Anal. calcd. for $C_6H_{12}Br_2Li_2N_4(\%)$: C, 22.96; H, 3.85; N, 17.85. Found: C, 22.93; H, 3.89; N, 17.87. All manipulations were performed under argon using standard Schlenk and vacuum line techniques. Et₂O was dried and distilled over Na under argon prior to use. Elemental analysis is completely in agreement with the structure of the compound.

S1.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.98 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$.

S2. Comment

Lithium halidies solvated by Lewis bases have been studied extensively in the past and the various crystal structures exhibit remarkable structural diversity (Snaith *et al.*, 1995; Mulvey, 1991, Gregory *et al.*, 1991). Monomers, dimers, tetramers, larger oligomers and polymers are known (Raston, Whitaker & White 1988, 1989*a*,*b*; Raston, Skelton *et al.* 1988; Edwards *et al.*,1993). Pyridines, chelating amines and Lewis bases containing oxygen usually serve as ligands (Neumann *et al.*, 1995). A 1,3,5,7-tetraazaheptatrienyl-lithium salt was reported by W. Marco Boesveld (Boesveld *et al.*, 2009) and we were attempting to synthesize a 1,3,5,7-tetraazaheptatrienylcopper complex by the reaction of (Dipp)N(Li)SiMe₃ (Dipp = 2,6-diisopropylphenyl), Me₂NCN and CuBr. No copper complex was obtained but instead the title polymeric lithium complex (**I**), (C₆H₁₂Br₂Li₂N₄)_∞, was isolated from the reaction mixture. Here we present the synthesis and crystal structure of the complex (**I**).

A low-temperature X-ray crystallographic study shows the basic unit (Fig. 1) of the step structure of complex (I) is centrosymmetric, and to have a polymeric structure (Fig. 2) in the solid state. In the unit, atoms Li1, Br1, Li1A and Br1A are exactly co-planar and constitute a regular rhombic shape [Li—Br—Li 77.55 (16)° and Br—Li—Br 102.45 (16)°]. The Li1—Br1 and Li1—N1 bond lengths are 2.543 (5) (*av.*) and 1.999 (5) Å. The bond angles N1—Li1—Br1, N1—Li1—Br1A are 113.1 (2) and 119.6 (2)°, respectively.

Figure 1

The basic repeat unit of the polymer (I) showing the atom numbering scheme with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with a trailing A are related to the other atoms by the symmetry operation 1-x, 1-y, -z

Figure 2

The expanded step polymeric structure of (I) viewed along the crystallographic c axis.

catena-Poly[[(N,N-dimethylcyanamide- κN)lithium]- μ_3 -bromido]

Crystal data [LiBr(C₃H₆N₂)] $M_r = 156.85$ Monoclinic, $P2_1/c$ a = 4.2680 (8) Å b = 17.214 (3) Å c = 8.9685 (17) Å $\beta = 100.089$ (3)° V = 648.7 (2) Å³ Z = 4

F(000) = 304 $D_x = 1.607 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1538 reflections $\theta = 2.4-26.5^{\circ}$ $\mu = 6.22 \text{ mm}^{-1}$ T = 200 KBlock, colourless $0.35 \times 0.33 \times 0.32 \text{ mm}$ Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{min} = 0.220, T_{max} = 0.241$ Refinement	3498 measured reflections 1140 independent reflections 965 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -5 \rightarrow 3$ $k = -20 \rightarrow 18$ $l = -10 \rightarrow 10$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.061$	$w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 0.3312P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
1140 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
67 parameters	$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{A}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.38 \text{ e A}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0053 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Lil	0.2655 (11)	0.4372 (3)	0.0594 (6)	0.0289 (11)	
Br1	0.81425 (7)	0.485193 (18)	0.18525 (3)	0.03230 (16)	
N1	0.2914 (7)	0.32132 (16)	0.0517 (3)	0.0475 (8)	
N2	0.5102 (8)	0.18972 (16)	0.0853 (3)	0.0509 (8)	
C1	0.3896 (8)	0.25987 (19)	0.0667 (4)	0.0352 (8)	
C2	0.3986 (11)	0.1281 (2)	-0.0201 (5)	0.0672 (12)	
H2A	0.2384	0.1487	-0.1023	0.101*	
H2B	0.3037	0.0868	0.0327	0.101*	
H2C	0.5779	0.1070	-0.0621	0.101*	
C3	0.7254 (9)	0.1720 (2)	0.2260 (5)	0.0581 (11)	
H3A	0.7997	0.2206	0.2775	0.087*	
H3B	0.9081	0.1426	0.2035	0.087*	
H3C	0.6130	0.1410	0.2916	0.087*	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Lil	0.025 (3)	0.022 (3)	0.038 (3)	0.0034 (19)	0.001 (2)	0.004 (2)
Br1	0.0248 (2)	0.0371 (2)	0.0339 (2)	0.00073 (13)	0.00223 (13)	0.00497 (14)
N1	0.052 (2)	0.0287 (17)	0.057 (2)	0.0056 (14)	-0.0034 (15)	0.0025 (14)
N2	0.068 (2)	0.0252 (16)	0.053 (2)	0.0129 (14)	-0.0071 (16)	-0.0022 (14)
C1	0.035 (2)	0.032 (2)	0.0363 (19)	-0.0027 (15)	-0.0003 (14)	-0.0015 (14)
C2	0.108 (4)	0.036 (2)	0.062 (3)	-0.003(2)	0.027 (2)	-0.0161 (19)
C3	0.050 (2)	0.058 (3)	0.065 (3)	0.0178 (19)	0.003 (2)	0.019 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Li1—N1	1.999 (5)	N2—C1	1.312 (4)	
Li1—Br1 ⁱ	2.535 (5)	N2—C2	1.445 (5)	
Li1—Br1 ⁱⁱ	2.541 (5)	N2—C3	1.457 (5)	
Li1—Br1	2.553 (5)	C2—H2A	0.9800	
Li1—Li1 ⁱⁱⁱ	3.179 (9)	C2—H2B	0.9800	
Li1—Li1 ⁱⁱ	3.251 (10)	C2—H2C	0.9800	
Br1—Li1 ^{iv}	2.535 (5)	С3—НЗА	0.9800	
Br1—Li1 ⁱⁱ	2.541 (5)	С3—Н3В	0.9800	
N1—C1	1.137 (4)	С3—Н3С	0.9800	
N1—Li1—Br1 ⁱ	113.1 (2)	C1—N1—Li1	161.0 (3)	
N1—Li1—Br1 ⁱⁱ	119.6 (2)	C1—N2—C2	121.0 (3)	
Br1 ⁱ —Li1—Br1 ⁱⁱ	102.45 (16)	C1—N2—C3	118.4 (3)	
N1—Li1—Br1	106.6 (2)	C2—N2—C3	119.9 (3)	
Br1 ⁱ —Li1—Br1	114.03 (19)	N1-C1-N2	178.5 (4)	
Br1 ⁱⁱ —Li1—Br1	100.67 (17)	N2—C2—H2A	109.5	
N1—Li1—Li1 ⁱⁱⁱ	135.1 (3)	N2—C2—H2B	109.5	
Br1 ⁱ —Li1—Li1 ⁱⁱⁱ	51.30 (14)	H2A—C2—H2B	109.5	
Br1 ⁱⁱ —Li1—Li1 ⁱⁱⁱ	51.15 (14)	N2—C2—H2C	109.5	
Br1—Li1—Li1 ⁱⁱⁱ	118.2 (2)	H2A—C2—H2C	109.5	
N1—Li1—Li1 ⁱⁱ	127.7 (3)	H2B—C2—H2C	109.5	
Br1 ⁱ —Li1—Li1 ⁱⁱ	119.2 (2)	N2—C3—H3A	109.5	
Br1 ⁱⁱ —Li1—Li1 ⁱⁱ	50.50 (13)	N2—C3—H3B	109.5	
Br1—Li1—Li1 ⁱⁱ	50.17 (13)	НЗА—СЗ—НЗВ	109.5	
Li1 ⁱⁱⁱ —Li1—Li1 ⁱⁱ	83.2 (2)	N2—C3—H3C	109.5	
Li1 ^{iv} —Br1—Li1 ⁱⁱ	77.55 (16)	НЗА—СЗ—НЗС	109.5	
Li1 ^{iv} —Br1—Li1	114.03 (19)	H3B—C3—H3C	109.5	
Lil ⁱⁱ —Br1—Li1	79.33 (17)			

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*, -*y*+1, -*z*; (iv) *x*+1, *y*, *z*.