Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-\{[2-(2-Hydroxy-5-methoxybenzyl-idene)hydrazin-1-ylidene]methyl\}-4methoxyphenol

Muhammad Taha, ${ }^{\text {a,b }}$ Syed Adnan Ali Shah, ${ }^{\text {a,c }}$ Sadia Sultan, ${ }^{\text {a,c }}$ Nor Hadiani Ismail ${ }^{\text {b }}$ and Sammer Yousuf ${ }^{d_{*}}$

${ }^{\text {a }}$ Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, ${ }^{\mathbf{b}}$ Faculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Malaysia, ${ }^{\text {c }}$ Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, and ${ }^{\mathrm{d}}$ H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
Correspondence e-mail: dr.sammer.yousuf@gmail.com
Received 25 October 2013; accepted 26 December 2013

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.101$; data-to-parameter ratio $=12.5$.

The title phenylhydrazine derivative, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$, has a crystallographically imposed centre of symmetry. Except for the methyl group, all non-H atoms are almost coplanar (r.m.s. deviation $=0.0095 \AA$). Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are observed, generating $S(6)$ graph-set ring motifs.

Related literature

For applications and the biological activity of phenylhydrazine derivatives, see: Khan et al. (2013); Patel et al. (1984); Taha, Baharudin et al. (2013); Taha, Ismail et al. (2013); Khan, Shah et al. (2012); Khan, Taha et al. (2012). For structures of related compounds, see: Taha et al. (2012); Kargar et al. (2012); Zhang et al. (2008).

Experimental

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=300.31$
Monoclinic, $P 2_{2} / c$
$a=6.7132(4) \AA$
$b=15.9369(10) \AA$
$c=6.9022(4) \AA$
$\beta=91.192(2)^{\circ}$
$V=727.59(8) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.944, T_{\text {max }}=0.983$

4243 measured reflections 1327 independent reflections 1093 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.101$
$S=1.06$
1327 reflections
106 parameters

$$
\begin{aligned}
& \mathrm{H} \text { atoms treated by a mixture of } \\
& \text { independent and constrained } \\
& \text { refinement } \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{N} 1$	$0.94(2)$	$1.82(2)$	$2.6451(16)$	$145.0(18)$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors acknowledge Universiti Teknologi MARA (UiTM) for the financial support under the Principal Investigator Support Initiative Grant Scheme [600-RMI/DANA 5/3/ PSI (251/2013)].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5090).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kargar, H., Kia, R. \& Tahir, M. N. (2012). Acta Cryst. E68, o2321-o2322.
Khan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Ali, S., Ambreen, N., Perveen, S., Choudhary, M. I. \& Voelter, W. (2012). Med. Chem. 8, 452-461.
Khan, K. M., Taha, M., Naz, F., Ali, S., Perveen, S. \& Choudhary, M. I. (2012). Med. Chem. 8, 705-710
Khan, K. M., Taha, M., Rahim, F., Fakhri, M. I., Jamil, W., Khan, M., Rasheed, S., Karim, A., Perveen, S. \& Choudhary, M. I. (2013). J. Chem. Soc. Pak. 35, 929-937.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Patel, J. M., Dave, M. P., Langalia, N. A. \& Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 718-720.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Taha, M., Baharudin, M. S., Ismail, N. H., Khan, K. M., Jaafar, F. M., Samreen, Siddiqui, S. \& Choudhary, M. I. (2013). Bioorg. Med. Chem. Lett. 23, $3463-$ 3466.

Taha, M., Ismail, N. H., Jamil, W., Yousuf, S., Jaafar, F. M., Ali, M. I., Kashif, S. M. \& Hussain, E. (2013). Molecules, 18, 10912-10929.

Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. \& Sammer, Y. (2012). Acta Cryst. E68, o2778
Zhang, J.-H., Dong, W.-L., Ge, Y.-Q. \& Zhao, B.-X. (2008). Acta Cryst. E64, o166.

supporting information

Acta Cryst. (2014). E70, o131 [doi:10.1107/S1600536813034636]

2-\{[2-(2-Hydroxy-5-methoxybenzylidene)hydrazin-1-ylidene]methyl\}-4-methoxyphenol

Muhammad Taha, Syed Adnan Ali Shah, Sadia Sultan, Nor Hadiani Ismail and Sammer Yousuf

S1. Comment

Hydrazone derivatives constitute an important class of biologically active drugs (Khan, Shah et al., 2012). In particular, heterocyclic compounds containing the hydrazone moiety are known to possess excellent activity against Mycobacterium tuberculosis H37Rv (Patel et al., 1984). Recently the antioxidant, antiglycating, and antileishmanial activities of different hydrazine derivatives has also been reported by our group (Taha, Baharudin et al., 2013; Taha, Ismail et al., 2013; Khan, Taha et al., 2012; Khan et al., 2013).
The title compound (Fig. 1) has crystallographically imposed centre of symmetry, the inversion centre lying midway along the $\mathrm{N}-\mathrm{N}$ bond. Except for the methyl group, all non-hydrogen atoms in the asymmetric unit are coplanar with an r.m.s. deviation of $0.0095 \AA$. The carbon atom of the methyl group is displaced by 0.1806 (17) \AA from this plane. All bond angles and lengths are found to be normal and similar to those observed in structurally related compounds (Taha et al., 2012; Kargar et al., 2012; Zhang et al., 2008). The molecular configuration is stabilized by a pair of intramolecular $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$ hydrogen interactions generating $S(6)$ graph-set ring motifs. The crystal structure is stabilized only by van der Waals contacts (Fig. 2).

S2. Experimental

The title compound was synthesized by refluxing a mixture of 2-hydroxy-5-methoxybenzaldehyde ($2 \mathrm{mmol}, 0.304 \mathrm{~g}$) and hydrazine hydrate $(55 \%, 2 \mathrm{ml})$ in methanol with a catalytical amount of acetic acid for 1 hour. After completion of the reaction, the solvent was evaporated by vacuum to afford the crude product which was further recrystallized in methanol to obtain needle-like crystals suitable for X-ray analysis (yield $88 \%, 0.524 \mathrm{~g}$).

S3. Refinement

H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. A rotating group model was applied to the methyl group. The hydroxy H atom was located in a difference Fourier map and refined isotropically.

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (A) -x, 1-y, 1-z.

Figure 2
Crystal packing of the title compound viewed down the a axis.

2,2'-[Hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)]bis(4-methoxyphenol)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=300.31$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.7132$ (4) \AA
$b=15.9369$ (10) \AA
$c=6.8022(4) \AA$
$\beta=91.192(2)^{\circ}$
$V=727.59(8) \AA^{3}$
$Z=2$
$F(000)=316$
$D_{\mathrm{x}}=1.371 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1747 reflections
$\theta=2.6-27.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Needle, yellow
$0.58 \times 0.22 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.944, T_{\max }=0.983$

> 4243 measured reflections
> 1327 independent reflections
> 1093 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.016$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.6^{\circ}$
> $h=-8 \rightarrow 7$
> $k=-18 \rightarrow 19$
> $l=-7 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.101$
$S=1.06$
1327 reflections
106 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0505 P)^{2}+0.0718 P\right]$ \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$
> Extinction correction: $S H E L X T L$ (Sheldrick, \quad 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc} \mathrm{x}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.031(6)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.45722(17)$	$0.62697(7)$	$-0.27087(17)$	$0.0865(4)$
O2	$-0.21947(15)$	$0.62524(8)$	$0.17505(19)$	$0.0767(4)$
H2	$-0.199(3)$	$0.5903(15)$	$0.284(3)$	$0.118(8)^{*}$
N1	$-0.01775(16)$	$0.52608(7)$	$0.41923(16)$	$0.0588(3)$
C1	$0.1157(2)$	$0.67416(8)$	$-0.2207(2)$	$0.0626(4)$
H1C	0.1136	0.7055	-0.3361	0.075^{*}
C2	$-0.0501(2)$	$0.67158(9)$	$-0.1050(2)$	$0.0636(4)$
H2B	-0.1632	0.7015	-0.1436	0.076^{*}
C3	$-0.0522(2)$	$0.62571(8)$	$0.0666(2)$	$0.0562(4)$
C4	$0.12003(18)$	$0.58088(7)$	$0.12530(19)$	$0.0518(3)$
C5	$0.28603(19)$	$0.58474(8)$	$0.0070(2)$	$0.0585(4)$
H5A	0.4008	0.5559	0.0453	0.070^{*}
C6	$0.2857(2)$	$0.63003(8)$	$-0.1651(2)$	$0.0594(4)$
C7	$0.4762(3)$	$0.68202(11)$	$-0.4318(2)$	$0.0842(5)$
H7A	0.6065	0.6762	-0.4856	0.126^{*}

H7B	0.4577	0.7388	-0.3884	0.126^{*}
H7C	0.3773	0.6686	-0.5307	0.126^{*}
C8	$0.12864(19)$	$0.53066(8)$	$0.3019(2)$	$0.0564(4)$
H8A	0.2442	0.5006	0.3314	0.068^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0721(7)$	$0.0981(9)$	$0.0899(8)$	$0.0108(6)$	$0.0178(6)$	$0.0323(6)$
O2	$0.0593(6)$	$0.0892(8)$	$0.0818(8)$	$0.0171(5)$	$0.0052(5)$	$0.0019(6)$
N1	$0.0624(7)$	$0.0524(6)$	$0.0614(7)$	$-0.0025(5)$	$-0.0015(5)$	$0.0012(5)$
C1	$0.0741(9)$	$0.0526(8)$	$0.0607(9)$	$0.0041(6)$	$-0.0104(7)$	$0.0025(6)$
C2	$0.0633(8)$	$0.0590(8)$	$0.0678(9)$	$0.0147(6)$	$-0.0135(7)$	$-0.0034(6)$
C3	$0.0529(7)$	$0.0509(7)$	$0.0647(9)$	$0.0039(5)$	$-0.0051(6)$	$-0.0089(6)$
C4	$0.0528(7)$	$0.0427(6)$	$0.0597(8)$	$-0.0012(5)$	$-0.0049(6)$	$-0.0028(5)$
C5	$0.0524(7)$	$0.0519(7)$	$0.0711(9)$	$0.0051(5)$	$-0.0038(6)$	$0.0063(6)$
C6	$0.0591(8)$	$0.0535(7)$	$0.0654(9)$	$-0.0007(6)$	$-0.0010(6)$	$0.0039(6)$
C7	$0.0942(12)$	$0.0909(12)$	$0.0679(10)$	$-0.0096(9)$	$0.0087(9)$	$0.0141(8)$
C8	$0.0549(7)$	$0.0473(7)$	$0.0666(9)$	$-0.0004(5)$	$-0.0045(6)$	$-0.0006(6)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

O1-C6	1.3713 (17)	C2-H2B	0.9300
O1-C7	1.4105 (18)	C3-C4	1.4101 (18)
O2-C3	1.3563 (16)	C4-C5	1.3894 (17)
$\mathrm{O} 2-\mathrm{H} 2$	0.93 (2)	C4-C8	1.4436 (18)
N1-C8	1.2809 (15)	C5-C6	1.3752 (19)
$\mathrm{N} 1-\mathrm{N} 1^{\text {i }}$	1.394 (2)	C5-H5A	0.9300
C1-C2	1.377 (2)	C7-H7A	0.9600
C1-C6	1.386 (2)	C7-H7B	0.9600
C1-H1C	0.9300	C7-H7C	0.9600
C2-C3	1.377 (2)	C8-H8A	0.9300
C6-O1-C7	118.38 (12)	C6-C5-C4	121.95 (12)
C3-O2-H2	109.0 (13)	C6-C5-H5A	119.0
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{N} 1^{\mathrm{i}}$	113.84 (13)	C4-C5-H5A	119.0
C2-C1-C6	119.96 (14)	O1-C6-C5	116.20 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	120.0	O1-C6- C 1	124.77 (13)
C6- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	120.0	C5-C6-C1	119.03 (13)
C1-C2-C3	121.54 (12)	O1-C7-H7A	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	119.2	O1-C7-H7B	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	119.2	H7A-C7-H7B	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	119.17 (12)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	121.76 (13)	H7A-C7-H7C	109.5
C2-C3-C4	119.07 (13)	H7B-C7-H7C	109.5
C5-C4-C3	118.45 (12)	N1-C8-C4	122.15 (12)
C5-C4-C8	119.20 (11)	N1-C8-H8A	118.9
C3-C4-C8	122.35 (12)	C4-C8-H8A	118.9

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.1(2)$	$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$-170.46(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$-179.95(12)$	$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 1$	$10.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.4(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	$-178.37(12)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.65(11)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.0(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.03(18)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 1$	$178.72(13)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 8$	$1.09(19)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.6(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 8$	$-179.29(12)$	$\mathrm{N} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 4$	$179.45(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.68(19)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 8-\mathrm{N} 1$	$178.39(12)$
$\mathrm{C} 8-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$178.60(12)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 8-\mathrm{N} 1$	$-2.36(19)$

Symmetry code: (i) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ($\hat{A},{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 1$	$0.94(2)$	$1.82(2)$	$2.6451(16)$	$145.0(18)$

