metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaqua{ μ_2 -N,N'-bis[(cyclohexanylidene)amino]oxamide}bis(triphenylphosphane)silver(I) dinitrate

Ruthairat Nimthong, Nattakunya Thepsena, Walailak Puetpaiboon and Yupa Wattanakanjana*

Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand Correspondence e-mail: yupa.t@psu.ac.th

Received 17 December 2013; accepted 22 December 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.072; data-to-parameter ratio = 24.3.

The dinuclear title compound, $[Ag_2(C_{14}H_{22}N_4O_2)(C_{18}H_{15}P)_2(H_2O)_2](NO_3)_2$, lies across an inversion center and consists of two $[Ag(H_2O)(PPh_3)]$ units bridged by a bis(cyclohexanone)-oxalydihydrazone ligand. The charge-balance is supplied by two nitrate anions. The symmetry-unique Ag^I ion is in a distorted tetrahedral geometry coordinated by a P atom from a triphenylphosphane ligand, an O atom from a water molecule and a bis(cyclohexanone)oxalydihydrazone ligand bidentate chelating through the O atom and one of N atoms. In the crystal, $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds link the components, forming chains along the *b*-axis direction. These chains are connected through weak $C-H \cdots O$ hydrogen bonds, leading to the formation of a two-dimensional supramolecular network parallel to (001).

Related literature

For potential applications of hydrazone derivatives, see: Fouda *et al.* (2007); Qu *et al.* (2011); van der Star *et al.* (2012). For the use of metal(I) complexes of phosphine ligands as precursors for the preparation of mixed-ligand complexes, see: Nawaz *et al.* (2011); Pakawatchai *et al.* (2012). For a related structure, see: Wattanakanjana *et al.* (2013).

 $\beta = 83.676 \ (1)^{\circ}$

 $\gamma = 77.091 (1)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 0.91 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.032$

Z = 1

V = 1246.49 (18) Å³

 $0.42 \times 0.38 \times 0.10 \text{ mm}$

29613 measured reflections

7621 independent reflections

7076 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

 $\begin{bmatrix} Ag_2(C_{14}H_{22}N_4O_2)(C_{18}H_{15}P)_2 - \\ (H_2O)_2 \end{bmatrix} (NO_3)_2 \\ M_r = 1178.68 \\ \text{Triclinic, } P\overline{1} \\ a = 9.0903 (8) \\ b = 9.5730 (8) \\ A \\ c = 15.2638 (13) \\ A \\ \alpha = 74.617 (1)^\circ$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2012) $T_{\rm min} = 0.624, T_{\rm max} = 0.746$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 313 parameters $wR(F^2) = 0.072$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 1.50 \text{ e } \text{\AA}^{-3}$ 7621 reflections $\Delta \rho_{min} = -0.54 \text{ e } \text{\AA}^{-3}$

Table 1

H	lyd	lrogen-	bond	geome	etry	(A,))
---	-----	---------	------	-------	------	-----	---	---

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2−H2A…O3	0.80	2.02	2.8103 (17)	167
$O2-H2B\cdots O3^{i}$	0.88	1.98	2.8684 (16)	177
$N1 - H1 \cdot \cdot \cdot O5^i$	0.88	2.16	2.8407 (19)	134
C22-H22···O4	0.95	2.58	3.297 (2)	133

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008), *SHELXLE* (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Office of the Higher Education Commission, Ministry of Education, and the

m30 Nimthong et al.

Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. RN would like to thank Dr Matthias Zeller for valuable suggestions and assistance with the X-ray structure determination and use of structure refinement programs.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5679).

References

- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fouda, A. S., Mostafa, H. A., Ghazy, S. E. & El-Farah, S. A. (2007). Int. J. Electrochem. Sci. 2, 182–194.

- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281– 1284.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nawaz, S., Isab, A. A., Merz, K., Vasylyeva, V., Metzler-Nolte, N., Saleem, M. & Ahmad, S. (2011). *Polyhedron*, **30**, 1502–1506.
- Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507.
- Qu, Q., Gao, G., Gao, H., Li, L. & Ding, Z. (2011). Mater. Corros. 62, 778–785. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Star, B. J. van der, Vogel, D. Y., Kipp, M., Puentes, F., Baker, D. & Amor, S. (2012). CNS Neurol. Disord. Drug Targets, 11, 570-588.
- Wattanakanjana, Y., Pakawatchai, C. & Nimthong, R. (2013). Acta Cryst. E69, m83-m84.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, m30-m31 [doi:10.1107/S1600536813034454]

Diaqua{ μ_2 -N,N'-bis[(cyclohexanylidene)amino]oxamide}bis(triphenyl-phosphane)silver(I) dinitrate

Ruthairat Nimthong, Nattakunya Thepsena, Walailak Puetpaiboon and Yupa Wattanakanjana

S1. Comment

Studies of hydrazone derivatives containing nitrogen and oxygen have recently attracted considerable attention because not only are they corrosion inhibitors but it has been discovered that they are effective in different types of media (Fouda *et al.*, 2007; Qu *et al.*, 2011). They are an invaluable tool for studying mechanisms of acquired demyelination and remyelination which are histological hallmarks of multiple sclerosis (MS) (van der Star *et al.*, 2012). Silver(I) complexes of phosphine ligands have been extensively studied as precursors for preparing mixed-ligand complexes having different geometries such as mononuclear and dinuclear (Nawaz *et al.*, 2011; Pakawatchai *et al.*, 2012). Here, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The symmetry unique Ag¹ ion is coordinated to the P atom of a triphenylphosphane ligand and the O atom of water molecule which forms the $[Ag(H_2O)(PPh_3)]$ units. The bis-(cyclohexanone)oxalydihydrazone ligand, located on an inversion center, acts as a bidentate bridging ligand between the two $[Ag(H_2O)(PPh_3)]$ units by way of one O atom and one N atom. The Ag¹ ion displays a distorted tetrahedral coordination. The P1—Ag1 bond length of 2.3369 (4) Å is shorter than that found in for example $[Ag_2C_{12}(CH_5N_3S)_2(C_{18}H_{15}P)_2]$, which is 2.4225 (4) Å (Wattanakanjana *et al.*, 2013). In the crystal, hydrogen bonds play a key role stabilizing a 2-D network. Intermolecular O—H···O hydrogen bonds occur where the oxygen atoms of nitrate anions serve as acceptors while H atoms of water molecules act as donors (Table 1). In addition, a pair of O—H···O hydrogen bonds form a four-membered O₂H₂ ring within a 1-D chain along [010] (Fig. 2). The chains are connected through weak C—H···O hydrogen bonds leading to the formation of a 2-D supramolecular network parallel to (001) as shown in Figure 3.

S2. Experimental

Bis(cyclohexanone)oxalydihydrazone, BCO, (0.16g,0.58 mmol) was dissolved in 30 cm³ of methanol at 332 K. AgNO₃ (0.10g,0.59 mmol) was added and the mixture was stirred for 3 hours. Triphenylphosphine, PPh₃, (0.31g,1.18 mmol) was added and new reaction mixture was heated under reflux for 2 hours. The resulting clear solution was filtered off and left to evaporate at room temperature. Colorless crystals, which were deposited upon standing for 6 days, were filtered off and dried under reduced pressure.

S3. Refinement

H atoms bonded to C and N atoms were included in calculated positions with C—H = 0.95-0.99Å, N—H = 0.88Å and refined in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The H atoms of the water molecules were included 'as found' positions with $1.5U_{eq}(O)$.

Figure 1

The molecular structure with displacement ellipsoids drawn at the 30% probability level. Only the symmetry unique anion is shown and the asymmetric unit labelled.

Figure 2

Part of the crystal structure of $[{Ag(H_2O)(C_{18}H_{15}P)}_2(C_{14}H_{22}N_4O_2)] \cdot (NO_3)_2$ with O—H…O hydrogen bonds (red dashed lines) showing 1-D chain along [010] axis.

A Fragment of the 2-D network of $[{Ag(H_2O)(C_{18}H_{15}P)}_2(C_{14}H_{22}N_4O_2)]$ ·(NO₃)₂, showing C—H···O hydrogen bonds viewed along the *a* axis.

Diaqua{ μ_2 -N,N'-bis[(cyclohexanylidene)amino]oxamide}bis(triphenylphosphane)silver(I) dinitrate

Crystal data

$[Ag_{2}(C_{14}H_{22}N_{4}O_{2})(C_{18}H_{15}P)_{2}(H_{2}O)_{2}](NO_{3})_{2}$ $M_{r} = 1178.68$ Triclinic, $P\overline{1}$ a = 9.0903 (8) Å b = 9.5730 (8) Å c = 15.2638 (13) Å a = 74.617 (1)° $\beta = 83.676$ (1)° w = 77.001 (1)°	Z = 1 F(000) = 602 $D_x = 1.570 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 6878 reflections $\theta = 2.3 - 31.3^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$ T = 100 K Plote colourloss
V = 1246.49 (18) Å ³	$0.42 \times 0.38 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer	7621 independent reflections 7076 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\rm max} = 31.6^\circ, \ \theta_{\rm min} = 2.3^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$

Absorption correction: multi-scan (*SADABS*; Bruker, 2012) $T_{min} = 0.624, T_{max} = 0.746$ 29613 measured reflections

 $k = -13 \rightarrow 13$

 $l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: mixed
$wR(F^2) = 0.072$	H-atom parameters constrained
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 0.444P]$
7621 reflections	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
313 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 1.50 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$
direct methods	

Special details

Experimental. Reflections 0 0 1 was affected by the beam stop and was omitted from the refinement.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.77397 (2)	0.67531 (2)	0.14033 (2)	0.01512 (4)	
P1	0.87389 (4)	0.59821 (4)	0.28403 (3)	0.01204 (7)	
01	0.58233 (10)	0.91020 (10)	0.10413 (6)	0.0182 (2)	
O2	0.60176 (10)	0.57786 (10)	0.07530 (6)	0.0278 (3)	
H2A	0.5453	0.5216	0.0951	0.042*	
H2B	0.5935	0.5990	0.0158	0.042*	
O3	0.41980 (18)	0.36454 (16)	0.11758 (9)	0.0311 (3)	
O4	0.46973 (17)	0.30464 (18)	0.26020 (10)	0.0327 (3)	
O5	0.37588 (17)	0.15741 (16)	0.20689 (9)	0.0289 (3)	
N1	0.67258 (14)	0.90320 (14)	-0.04115 (9)	0.0146 (2)	
H1	0.6597	0.9387	-0.0998	0.017*	
N2	0.80176 (14)	0.79893 (14)	-0.00875 (9)	0.0144 (2)	
N3	0.42173 (16)	0.27494 (17)	0.19571 (10)	0.0211 (3)	
C1	0.56953 (16)	0.94638 (16)	0.02131 (10)	0.0132 (3)	
C2	0.91980 (17)	0.79182 (17)	-0.06359 (10)	0.0160 (3)	
C3	0.93888 (19)	0.88935 (19)	-0.15685 (11)	0.0203 (3)	
H3A	0.8466	0.9672	-0.1707	0.024*	
H3B	0.9540	0.8301	-0.2025	0.024*	
C4	1.0763 (2)	0.96139 (19)	-0.16206 (12)	0.0220 (3)	
H4A	1.0959	1.0152	-0.2258	0.026*	
H4B	1.0528	1.0343	-0.1245	0.026*	
C5	1.21787 (19)	0.8478 (2)	-0.12903 (12)	0.0222 (3)	
H5A	1.2474	0.7802	-0.1699	0.027*	
H5B	1.3020	0.8989	-0.1309	0.027*	
C6	1.19021 (19)	0.75881 (19)	-0.03247 (12)	0.0210 (3)	
H6A	1.1659	0.8255	0.0091	0.025*	
H6B	1.2827	0.6846	-0.0123	0.025*	

C7	1.05827 (18)	0.68022 (18)	-0.02872 (11)	0.0185 (3)
H7A	1.0861	0.6074	-0.0663	0.022*
H7B	1.0371	0.6264	0.0348	0.022*
C11	0.74414 (17)	0.67524 (18)	0.36679 (11)	0.0163 (3)
C12	0.66381 (18)	0.82024 (19)	0.33780 (12)	0.0204 (3)
H12	0.6780	0.8747	0.2768	0.024*
C13	0.5628 (2)	0.8854 (2)	0.39823 (15)	0.0289 (4)
H13	0.5084	0.9842	0.3786	0.035*
C14	0.5425 (2)	0.8049 (3)	0.48700 (15)	0.0347 (5)
H14	0.4741	0.8492	0.5284	0.042*
C15	0.6211 (2)	0.6599 (3)	0.51627 (14)	0.0338 (4)
H15	0.6058	0.6054	0.5772	0.041*
C16	0.7224 (2)	0.5946 (2)	0.45616 (12)	0.0244 (3)
H16	0.7765	0.4957	0.4759	0.029*
C21	0.91018 (18)	0.39933 (16)	0.33027 (10)	0.0146 (3)
C22	0.7932 (2)	0.32645 (19)	0.32916 (11)	0.0201 (3)
H22	0.6984	0.3814	0.3067	0.024*
C23	0.8160 (2)	0.1736 (2)	0.36097 (12)	0.0262 (4)
H23	0.7362	0.1240	0.3613	0.031*
C24	0.9551 (3)	0.0933 (2)	0.39231 (13)	0.0297 (4)
H24	0.9703	-0.0113	0.4139	0.036*
C25	1.0718 (3)	0.1643 (2)	0.39229 (14)	0.0309 (4)
H25	1.1671	0.1084	0.4132	0.037*
C26	1.0499 (2)	0.31784 (19)	0.36159 (12)	0.0222 (3)
H26	1.1299	0.3667	0.3620	0.027*
C31	1.05027 (17)	0.65300 (16)	0.29052 (11)	0.0152 (3)
C32	1.07908 (19)	0.70550 (18)	0.36258 (12)	0.0204 (3)
H32	1.0065	0.7101	0.4120	0.025*
C33	1.2145 (2)	0.7513 (2)	0.36192 (15)	0.0296 (4)
H33	1.2338	0.7877	0.4108	0.036*
C34	1.3209 (2)	0.7438 (2)	0.29016 (16)	0.0337 (4)
H34	1.4121	0.7769	0.2895	0.040*
C35	1.2953 (2)	0.6887 (3)	0.21933 (15)	0.0322 (4)
H35	1.3696	0.6816	0.1709	0.039*
C36	1.1601 (2)	0.6437 (2)	0.21948 (13)	0.0243 (3)
H36	1.1421	0.6062	0.1708	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.01432 (6)	0.01811 (6)	0.01070 (6)	0.00005 (4)	-0.00308 (4)	-0.00155 (4)
P1	0.01111 (16)	0.01418 (16)	0.01055 (16)	-0.00195 (13)	-0.00170 (12)	-0.00267 (13)
O1	0.0195 (5)	0.0194 (5)	0.0129 (5)	0.0032 (4)	-0.0034 (4)	-0.0040(4)
O2	0.0328 (7)	0.0370 (7)	0.0208 (6)	-0.0188 (6)	-0.0022 (5)	-0.0096 (5)
03	0.0411 (8)	0.0359 (7)	0.0194 (6)	-0.0171 (6)	-0.0039 (6)	-0.0038 (5)
O4	0.0329 (7)	0.0479 (9)	0.0250 (7)	-0.0109 (6)	-0.0062 (6)	-0.0180 (6)
O5	0.0355 (7)	0.0358 (7)	0.0203 (6)	-0.0179 (6)	0.0022 (5)	-0.0078 (5)
N1	0.0128 (6)	0.0159 (6)	0.0118 (5)	0.0001 (5)	-0.0018 (4)	0.0000 (5)

supporting information

N2	0.0106 (5)	0.0161 (6)	0.0137 (6)	0.0000 (4)	-0.0011 (4)	-0.0010 (5)
N3	0.0161 (6)	0.0308 (7)	0.0187 (6)	-0.0047 (6)	0.0005 (5)	-0.0107 (6)
C1	0.0121 (6)	0.0127 (6)	0.0146 (6)	-0.0020 (5)	-0.0030 (5)	-0.0023 (5)
C2	0.0140 (7)	0.0186 (7)	0.0151 (7)	-0.0040 (5)	-0.0003 (5)	-0.0034 (5)
C3	0.0171 (7)	0.0265 (8)	0.0140 (7)	-0.0055 (6)	0.0016 (5)	0.0005 (6)
C4	0.0216 (8)	0.0230 (8)	0.0205 (8)	-0.0075 (6)	0.0036 (6)	-0.0033 (6)
C5	0.0177 (7)	0.0277 (8)	0.0237 (8)	-0.0084 (6)	0.0026 (6)	-0.0092 (7)
C6	0.0151 (7)	0.0267 (8)	0.0219 (8)	-0.0028 (6)	-0.0003 (6)	-0.0088 (6)
C7	0.0139 (7)	0.0193 (7)	0.0203 (7)	-0.0008 (6)	-0.0003 (6)	-0.0041 (6)
C11	0.0124 (6)	0.0231 (7)	0.0168 (7)	-0.0053 (6)	0.0005 (5)	-0.0095 (6)
C12	0.0148 (7)	0.0222 (7)	0.0286 (8)	-0.0055 (6)	0.0001 (6)	-0.0131 (7)
C13	0.0178 (8)	0.0323 (9)	0.0458 (11)	-0.0070 (7)	0.0044 (7)	-0.0266 (9)
C14	0.0253 (9)	0.0514 (12)	0.0426 (11)	-0.0163 (9)	0.0126 (8)	-0.0367 (10)
C15	0.0325 (10)	0.0552 (13)	0.0228 (9)	-0.0190 (9)	0.0096 (7)	-0.0213 (9)
C16	0.0246 (8)	0.0339 (9)	0.0160 (7)	-0.0081 (7)	0.0016 (6)	-0.0079 (7)
C21	0.0181 (7)	0.0148 (6)	0.0109 (6)	-0.0044 (5)	-0.0003 (5)	-0.0022 (5)
C22	0.0209 (8)	0.0215 (7)	0.0201 (7)	-0.0086 (6)	0.0028 (6)	-0.0069 (6)
C23	0.0357 (10)	0.0241 (8)	0.0231 (8)	-0.0164 (7)	0.0103 (7)	-0.0094 (7)
C24	0.0493 (12)	0.0160 (7)	0.0212 (8)	-0.0078 (8)	0.0020 (8)	-0.0008 (6)
C25	0.0383 (11)	0.0196 (8)	0.0289 (9)	0.0019 (7)	-0.0101 (8)	0.0010 (7)
C26	0.0249 (8)	0.0183 (7)	0.0213 (8)	-0.0020 (6)	-0.0074 (6)	-0.0005 (6)
C31	0.0128 (6)	0.0141 (6)	0.0180 (7)	-0.0027 (5)	-0.0029 (5)	-0.0021 (5)
C32	0.0175 (7)	0.0209 (7)	0.0248 (8)	-0.0042 (6)	-0.0044 (6)	-0.0073 (6)
C33	0.0219 (8)	0.0336 (10)	0.0408 (11)	-0.0080(7)	-0.0083 (8)	-0.0173 (8)
C34	0.0171 (8)	0.0388 (11)	0.0508 (13)	-0.0101 (8)	-0.0037 (8)	-0.0163 (9)
C35	0.0167 (8)	0.0450 (11)	0.0377 (11)	-0.0099 (8)	0.0055 (7)	-0.0147 (9)
C36	0.0175 (8)	0.0337 (9)	0.0253 (8)	-0.0082 (7)	0.0026 (6)	-0.0123 (7)

Geometric parameters (Å, °)

Ag1—N2	2.2849 (13)	C11—C16	1.395 (2)
Ag1—P1	2.3369 (4)	C11—C12	1.396 (2)
Ag1—O2	2.4068	C12—C13	1.395 (2)
Ag1—O1	2.4898 (9)	C12—H12	0.9500
P1—C21	1.8137 (15)	C13—C14	1.385 (3)
P1—C31	1.8149 (16)	C13—H13	0.9500
P1-C11	1.8187 (16)	C14—C15	1.391 (3)
O1—C1	1.2304 (17)	C14—H14	0.9500
O2—H2A	0.8048	C15—C16	1.393 (3)
O2—H2B	0.8848	C15—H15	0.9500
O3—N3	1.270 (2)	C16—H16	0.9500
O4—N3	1.2404 (19)	C21—C26	1.394 (2)
O5—N3	1.249 (2)	C21—C22	1.400 (2)
N1—C1	1.340 (2)	C22—C23	1.389 (2)
N1—N2	1.4008 (17)	C22—H22	0.9500
N1—H1	0.8800	C23—C24	1.387 (3)
N2—C2	1.287 (2)	C23—H23	0.9500
C1—C1 ⁱ	1.524 (3)	C24—C25	1.382 (3)

supporting information

C2—C3	1.497 (2)	C24—H24	0.9500
C2—C7	1.501 (2)	C25—C26	1.394 (2)
C3—C4	1.542 (2)	С25—Н25	0.9500
С3—НЗА	0.9900	С26—Н26	0.9500
С3—Н3В	0.9900	C31—C32	1.395 (2)
C4—C5	1.523 (2)	C31—C36	1.398 (2)
C4—H4A	0.9900	$C_{32} - C_{33}$	1 394 (2)
C4—H4B	0.9900	C32—H32	0.9500
C5-C6	1 519 (2)	C_{33} C_{34}	1.385(3)
C5 H5A	0.0000	C33 H33	0.9500
C5 H5P	0.9900	C34 C35	1.384(2)
C6 C7	0.9900	$C_{24} = U_{24}$	1.384 (3)
	1.341(2)	C34—H34	0.9300
	0.9900	$C_{35} = C_{36}$	1.390 (3)
Со—нов	0.9900	С35—Н35	0.9500
C/—H/A	0.9900	С36—Н36	0.9500
С/—Н/В	0.9900		
$N_2 = A_{\alpha 1} = P_1$	146.82 (2)	C2 C7 H7P	100 7
$N_2 = Ag_1 = 1$	140.03(3)	$C_2 - C_7 - H_7 B$	109.7
$N_2 - Ag_1 - O_2$	120.70(2)		109.7
PI—AgI—O2	130.70(2)	H/A - C/ - H/B	108.2
N2—Ag1—O1	69.04 (4)		120.00 (15)
PI—AgI—OI	118.43 (2)	CI6—CII—PI	122.44 (13)
O2—Ag1—O1	84.40 (3)	C12—C11—P1	117.56 (12)
C21—P1—C31	105.26 (7)	C13—C12—C11	120.17 (17)
C21—P1—C11	105.67 (7)	C13—C12—H12	119.9
C31—P1—C11	104.89 (7)	C11—C12—H12	119.9
C21—P1—Ag1	113.89 (5)	C14—C13—C12	119.49 (19)
C31—P1—Ag1	115.29 (5)	C14—C13—H13	120.3
C11—P1—Ag1	110.99 (5)	C12—C13—H13	120.3
C1	107.71 (8)	C13—C14—C15	120.72 (17)
Ag1—O2—H2A	135.1	C13—C14—H14	119.6
Ag1—O2—H2B	121.5	C15—C14—H14	119.6
H2A—O2—H2B	103.3	C14—C15—C16	119.94 (19)
C1—N1—N2	116.91 (12)	C14—C15—H15	120.0
C1—N1—H1	121.5	С16—С15—Н15	120.0
N2—N1—H1	121.5	C15—C16—C11	119.67 (19)
$C_2 - N_2 - N_1$	117.05 (13)	C15—C16—H16	120.2
$C_2 = N_2 = A_g I$	129 26 (11)	C11—C16—H16	120.2
N1 - N2 - Ag1	113 55 (9)	$C_{26} = C_{21} = C_{22}$	119.82 (15)
04 N3 05	120 55 (16)	$C_{26} = C_{21} = C_{22}$	117.02(13) 122.88(12)
04 N3 03	120.55(10) 110.60(16)	$C_{20} = C_{21} = 11$	122.88(12) 117.21(12)
04 - N3 - 03	119.09(10) 110.76(14)	$C_{22} = C_{21} = F_1$	117.21(12)
03 - N3 - 03	119.70(14) 125.00(12)	$C_{23} = C_{22} = C_{21}$	119.01 (17)
$O_1 = O_1 = O_1$	123.99 (13)	$C_{23} = C_{22} = H_{22}$	120.1
	121.34 (17)	C_{21} $-C_{22}$ $-H_{22}$	120.1
NI - CI - CI'	112.43 (16)	$C_{24} = C_{23} = C_{22}$	120.06 (17)
N2-C2-C3	127.37 (15)	C24—C23—H23	120.0
N2—C2—C7	117.00 (14)	C22—C23—H23	120.0
C3—C2—C7	115.50 (13)	C25—C24—C23	120.41 (16)

$C^{2}-C^{3}-C^{4}$	109 85 (14)	C25_C24_H24	119.8
$C_2 = C_3 = C_4$	109.05 (14)	$C_{23} = C_{24} = H_{24}$	110.8
C_{4} C_{3} H_{3} Λ	109.7	$C_{23} = C_{24} = C_{124}$	117.0 120.14(18)
$C_{1} = C_{2} = H_{2}$	109.7	$C_{24} = C_{25} = C_{20}$	120.14 (10)
$C_2 = C_3 = H_3 B$	109.7	$C_{24} = C_{25} = H_{25}$	119.9
$U_{4} = C_{3} = H_{3}D$	109.7	$C_{20} = C_{23} = H_{23}$	117.7
$H_{3A} = C_{3} = H_{3B}$	100.2	$C_{21} = C_{20} = C_{23}$	119.75 (17)
$C_5 = C_4 = U_{4,4}$	112.13 (14)	$C_{21} = C_{20} = H_{20}$	120.1
C_{3} C_{4} H_{4A}	109.2	$C_{23} = C_{20} = H_{20}$	120.1
C_{3} — C_{4} — $H_{4}A$	109.2	$C_{32} = C_{31} = C_{30}$	119.17(15)
C3—C4—H4B	109.2	C32—C31—P1	122.66 (12)
C3—C4—H4B	109.2	C36—C31—P1	118.16 (12)
H4A—C4—H4B	107.9	C33—C32—C31	119.95 (17)
C6—C5—C4	110.70 (14)	С33—С32—Н32	120.0
С6—С5—Н5А	109.5	C31—C32—H32	120.0
C4—C5—H5A	109.5	C34—C33—C32	120.11 (18)
С6—С5—Н5В	109.5	С34—С33—Н33	119.9
C4—C5—H5B	109.5	С32—С33—Н33	119.9
H5A—C5—H5B	108.1	C35—C34—C33	120.54 (17)
C5—C6—C7	109.82 (14)	С35—С34—Н34	119.7
С5—С6—Н6А	109.7	С33—С34—Н34	119.7
С7—С6—Н6А	109.7	C34—C35—C36	119.52 (18)
С5—С6—Н6В	109.7	С34—С35—Н35	120.2
С7—С6—Н6В	109.7	С36—С35—Н35	120.2
Н6А—С6—Н6В	108.2	C35—C36—C31	120.69 (17)
C2—C7—C6	109.86 (13)	С35—С36—Н36	119.7
С2—С7—Н7А	109.7	С31—С36—Н36	119.7
С6—С7—Н7А	109.7		
C1—N1—N2—C2	-158.29 (14)	C12—C11—C16—C15	-0.4 (3)
C1—N1—N2—Ag1	17.79 (16)	P1-C11-C16-C15	-179.89 (14)
Ag1-01-C1-N1	-22.20 (17)	C31—P1—C21—C26	-0.36 (16)
Ag1—01—C1—C1 ⁱ	160.03 (15)	C11—P1—C21—C26	-111.04 (14)
N2—N1—C1—O1	5.0 (2)	Ag1—P1—C21—C26	126.88 (13)
$N2-N1-C1-C1^{i}$	-177.05 (14)	C31—P1—C21—C22	-176.91 (12)
N1-N2-C2-C3	4.3 (2)	$C_{11} = P_1 = C_{21} = C_{22}$	72.41 (13)
Ag1—N2—C2—C3	-171.05(12)	Ag1 - P1 - C21 - C22	-49.67(13)
$N_1 - N_2 - C_2 - C_7$	179 89 (13)	$C_{26} = C_{21} = C_{22} = C_{23}$	13(2)
Ag1 - N2 - C2 - C7	45(2)	$P_1 = C_2 $	1.5(2) 177 95 (13)
$N_2 - C_2 - C_3 - C_4$	123 63 (18)	$C_{21} = C_{22} = C_{23} = C_{24}$	-11(3)
C_{7} C_{2} C_{3} C_{4}	-52.01(19)	$C_{21} = C_{22} = C_{23} = C_{24} = C_{25}$	0.1(3)
$C_1 = C_2 = C_3 = C_4$	52.01(1)	$C_{22} = C_{23} = C_{24} = C$	0.1(3)
$C_2 = C_3 = C_4 = C_5$	-56 60 (10)	$C_{23} = C_{24} = C_{23} = C_{20}$	-0.5(3)
$C_{3} - C_{4} - C_{5} - C_{6} - C_{7}$	59 54 (19)	$C_{22} = C_{21} = C_{20} = C_{23}$	-17607(14)
$V_{+} = U_{-} = U_{-} = U_{-}$	-12104(16)	11 - 0.21 - 0.20 - 0.23	-0.5(3)
112 - 02 - 07 - 00	121.04(10)	$C_{24} = C_{23} = C_{20} = C_{21}$	0.3(3)
$C_{5} = C_{4} = C_{7} = C_{2}$	55.07 (19) 56.55 (19)	C_{11} P1 C21 C22	-93.8/(14)
$C_{21} = D_{1} = C_{11} = C_{12}$	-30.33(18)	$r_1 - r_1 - r_3 $	13.37(13)
$C_{21} = P_1 = C_{11} = C_{16}$	17.38 (16)	Ag1 - P1 - C31 - C32	157.74 (12)
C31—P1—C11—C16	-93.57 (15)	C21—P1—C31—C36	85.04 (14)

Ag1—P1—C11—C16	141.31 (13)	C11—P1—C31—C36	-163.72 (13)
C21—P1—C11—C12	-162.09 (12)	Ag1—P1—C31—C36	-41.35 (15)
C31—P1—C11—C12	86.96 (13)	C36—C31—C32—C33	1.6 (3)
Ag1—P1—C11—C12	-38.16 (13)	P1—C31—C32—C33	-177.50 (14)
C16-C11-C12-C13	0.6 (2)	C31—C32—C33—C34	-0.4 (3)
P1-C11-C12-C13	-179.91 (13)	C32—C33—C34—C35	-1.1 (3)
C11—C12—C13—C14	-0.2 (3)	C33—C34—C35—C36	1.5 (3)
C12—C13—C14—C15	-0.3 (3)	C34—C35—C36—C31	-0.3 (3)
C13—C14—C15—C16	0.5 (3)	C32—C31—C36—C35	-1.2 (3)
C14—C15—C16—C11	-0.1 (3)	P1-C31-C36-C35	177.89 (16)

Symmetry code: (i) -x+1, -y+2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O2—H2A···O3	0.80	2.02	2.8103 (17)	167
O2—H2 <i>B</i> ···O3 ⁱⁱ	0.88	1.98	2.8684 (16)	177
N1—H1····O5 ⁱⁱ	0.88	2.16	2.8407 (19)	134
C22—H22…O4	0.95	2.58	3.297 (2)	133

Symmetry code: (ii) -x+1, -y+1, -z.