Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dimethyl 5-acetyl-1-hydroxy-4-methyl-1H-pyrrole-2,3-dicarboxylate, an oxidation-resistant N-hydroxypyrrole

Gerald M. Rosen, ${ }^{\text {a }}$ Sukumaran Muralidharan, ${ }^{\text {b }}$ Peter Y. Zavalij ${ }^{\text {c }}$ and Joseph P. Y. Kao ${ }^{\text {b,d* }}$

${ }^{\text {a }}$ Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA, ${ }^{\mathbf{b}}$ Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA, ${ }^{\text {c Department of Chemistry and Biochemistry, University of Maryland, College }}$ Park, MD 20742, USA, and dDepartment of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
Correspondence e-mail: jkao@umaryland.edu

Received 3 December 2013; accepted 22 December 2013

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.031 ; w R$ factor $=0.064 ;$ data-to-parameter ratio $=16.0$.

The title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6}$, exhibits an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond between the N-hydroxyl H atom and carbonyl O atom of the neighboring acetyl group. This finding contradicts a previously published model in which the hydrogen bond was postulated to occur with the neighboring carbomethoxy group. This relatively strong hydrogen bond $\left[\mathrm{O}-\mathrm{H} \cdots \mathrm{O}: D=2.5583(11) \AA\right.$ and $\left.\theta=152^{\circ}\right]$ may underlie the resistance of the title compound to oxidation into the corresponding nitroxide.

Related literature

The title compound was obtained as part of an effort to synthesize aromatic nitroxides and was prepared by a published procedure (Hekmatshoar et al., 2008). The compound could not be converted to the corresponding nitroxide under commonly used oxidation conditions (Keana et al., 1988). For analysis of intramolecular hydrogen-bond parameters in organic crystals, see: Bilton et al. (2000); Galek et al. (2010). A survey of the effect of intramolecular hydrogen bonding on the reduction potential of quinones appears in the review by Guin et al. (2011). Examples of hydrogen bonding affecting the redox properties of quinones are discussed by Gupta \& Linschitz (1997) and Feldman et al. (2007).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6}$
$M_{r}=255.22$
Monoclinic, $P 2_{1} / c$
$a=10.3893$ (8) \AA
$b=15.1803$ (12) \AA
$c=7.5789$ (6) A
$\beta=99.630(1)^{\circ}$
$V=1178.45(16) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.52 \times 0.43 \times 0.31 \mathrm{~mm}$

Data collection

Bruker SMART APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.888, T_{\text {max }}=0.964$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.064$
215 parameters
$S=1.00$
3437 reflections
All H -atom parameters refined
All H-atom paramet
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O} 5$	$0.888(16)$	$1.746(16)$	$2.5583(11)$	$150.8(14)$

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2010) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported in part by grants GM056481 (JPYK) and ER2034 (GMR) from the US National Institutes of Health.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2115).

References

Bilton, C., Allen, F. H., Shields, G. P. \& Howard, J. A. K. (2000). Acta Cryst. B56, 849-856.
Bruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
Feldman, K. S., Hester, D. K. II \& Golbeck, J. H. (2007). Bioorg. Med. Chem. Lett. 17, 4891-4894.
Galek, P. T. A., Fábián, L. \& Allen, F. H. (2010). Acta Cryst. B66, 237-252.

Guin, P. S., Das, S. \& Mandal, P. C. (2011). Int. J. Electrochem. vol. 2011, Article ID 816202, 22 pages, doi:10.4061/2011/816202.
Gupta, N. \& Linschitz, H. (1997). J. Am. Chem. Soc. 119, 6384-6391.
Hekmatshoar, R., Nouri, R. \& Beheshtiha, S. Y. Sh. (2008). Heteroat. Chem. 19, 100-103.
Keana, J. F. W., Heo, G. S., Mann, J. S., Van Nice, F. L., Lex, L., Prabhu, V. S. \& Ferguson, G. (1988). J. Org. Chem. 53, 2268-2274.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o110-o111 [doi:10.1107/S1600536813034466]

Dimethyl 5-acetyl-1-hydroxy-4-methyl-1H-pyrrole-2,3-dicarboxylate, an oxidation-resistant N-hydroxypyrrole

Gerald M. Rosen, Sukumaran Muralidharan, Peter Y. Zavalij and Joseph P. Y. Kao

S1. Comment

The title compound was synthesized by a published procedure (Hekmatshoar et al., 2008) with the goal of preparing the corresponding nitroxide by oxidation. The molecular structure is shown in Fig. 1. The compound proved resistant to several oxidizing conditions commonly used to convert N-hydroxylamines to nitroxides. Resistance of the title compound to oxidation may be attributable to the relatively strong hydrogen bond formed between the N-hydroxyl hydrogen and the carbonyl oxygen of the acetyl group in the 5-position. Modulation of redox properties by hydrogen bonding has been documented for quinones (see Guin et al. (2011) for review, Gupta and Linschitz (1997) and Feldman et al. (2007) for studies on specific series of benzoquinones and naphthoquinones, respectively). Existence of the intramolecular H -bond in the title compound is unsurprising, since in organic crystals where intramolecular hydrogen bonding would result in a planar 6-membered ring structure, the H-bond is almost always observed (Bilton et al., 2000). The observed $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ donor-acceptor distance $(2.558 \AA)$ is significantly shorter than the mean of $2.692 \AA$ found for 8493 organic crystal structures in the Cambridge Structural Database in which the H-bond closes a 6-membered ring (Galek et al., 2010). Likewise, the observed $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ bond angle $\left(150.8^{\circ}\right)$ is significantly greater than the mean of 137.8° found for the same set of 8493 structures (Galek et al., 2010). These comparisons suggest that the intramolecular H-bond in the title compound is stronger than average. Finally, it may be interesting to note that, in the original paper reporting the synthesis of the title compound (Hekmatshoar et al., 2008), the authors suggested H-bonding between the N-hydroxyl hydrogen and the carbonyl oxygen of the ester group in the 2-position of the pyrrole ring.

S2. Experimental

The title compound was prepared by the procedure of Hekmatshoar et al. (2008) in an effort to synthesize the corresponding nitroxide. The compound was subjected to four oxidation reactions: 1) m-chloroperbenzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2) hydrogen peroxide-sodium tungstate in methanol/acetonitrile, 3) nickel peroxide in benzene, and 4) lead dioxide in benzene (Keana et al., 1988). In each case, no nitroxide was isolated, and only the title compound was recovered.

S3. Refinement

Positions of all H atoms were calculated from geometric considerations. H atoms were refined as riding on the attached C atoms. Orientation of CH_{3} groups was optimized. For all H atoms, $U_{\text {iso }}$ was refined but constrained to be equal within CH_{3} groups.

Figure 1

Molecular structure of the title compound with non-hydrogen atoms labeled. Displacement ellipsoids are shown at the 60% probability level.

Dimethyl 5-acetyl-1-hydroxy-4-methyl-1H-pyrrole-2,3-dicarboxylate

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{6}$
$M_{r}=255.22$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=10.3893$ (8) \AA
$b=15.1803$ (12) \AA
$c=7.5789$ (6) \AA
$\beta=99.630(1)^{\circ}$
$V=1178.45(16) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.888, T_{\text {max }}=0.964$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.064$
$F(000)=536$
$D_{\mathrm{x}}=1.439 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 13127 reflections
$\theta=2.4-31.0^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colourless
$0.52 \times 0.43 \times 0.31 \mathrm{~mm}$

19259 measured reflections
3437 independent reflections
2836 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-21 \rightarrow 21$
$l=-10 \rightarrow 10$
$S=1.00$
3437 reflections
215 parameters
0 restraints

supporting information

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.01 P)^{2}+0.4962 P\right], P= \\
& \quad\left(\max \left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. For all H atoms both coordinate and isotropic displacement parameters were freely refined.
All H atoms were located from the difference Fourier maps and refined unconstrained including isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.58967(7)$	$0.15991(5)$	$0.01532(11)$	$0.02245(15)$
C1	$0.57608(9)$	$0.25121(6)$	$0.00825(12)$	$0.02170(17)$
C2	$0.69238(9)$	$0.28546(6)$	$0.10473(12)$	$0.02101(16)$
C3	$0.77256(8)$	$0.21282(6)$	$0.16540(12)$	$0.02102(16)$
C4	$0.70478(8)$	$0.13542(6)$	$0.10655(12)$	$0.02093(17)$
O1	$0.49892(7)$	$0.09969(5)$	$-0.06513(11)$	$0.03059(16)$
H1	$0.4367(15)$	$0.1346(10)$	$-0.121(2)$	$0.055(4)^{*}$
C5	$0.45803(9)$	$0.28874(6)$	$-0.09308(13)$	$0.02522(18)$
O5	$0.37225(7)$	$0.23953(5)$	$-0.17286(11)$	$0.03488(18)$
C6	$0.44010(11)$	$0.38675(7)$	$-0.10178(16)$	$0.0318(2)$
H61	$0.3632(15)$	$0.3989(10)$	$-0.190(2)$	$0.056(4)^{*}$
H62	$0.4261(14)$	$0.4098(10)$	$0.012(2)$	$0.048(4)^{*}$
H63	$0.5176(13)$	$0.4162(9)$	$-0.1332(17)$	$0.039(4)^{*}$
C7	$0.72552(11)$	$0.38090(6)$	$0.13774(14)$	$0.02725(19)$
H71	$0.8031(14)$	$0.3861(10)$	$0.227(2)$	$0.050(4)^{*}$
H72	$0.6559(14)$	$0.4127(9)$	$0.1794(18)$	$0.044(4)^{*}$
H73	$0.7376(13)$	$0.4103(9)$	$0.0300(19)$	$0.044(4)^{*}$
C8	$0.90325(9)$	$0.21540(6)$	$0.27407(13)$	$0.02425(18)$
O8	$0.96516(8)$	$0.28077(5)$	$0.32002(13)$	$0.0425(2)$
O9	$0.94825(7)$	$0.13382(5)$	$0.31885(10)$	$0.02999(16)$
C9	$1.07658(11)$	$0.13084(9)$	$0.42886(18)$	$0.0394(3)$
H91	$1.0973(16)$	$0.0679(11)$	$0.439(2)$	$0.062(5)^{*}$
H92	$1.1394(14)$	$0.1618(10)$	$0.3656(19)$	$0.046(4)^{*}$
H93	$1.0726(13)$	$0.1588(10)$	$0.543(2)$	$0.046(4)^{*}$
C10	$0.74086(8)$	$0.04013(6)$	$0.13628(12)$	$0.02129(17)$
O10	$0.70851(7)$	$-0.00387(4)$	$0.25304(10)$	$0.02722(15)$
O11	$0.81287(7)$	$0.01306(5)$	$0.01819(10)$	$0.02943(16)$

C11	$0.86684(14)$	$-0.07523(8)$	$0.04835(18)$	$0.0383(3)$
H111	$0.9238(14)$	$-0.0816(9)$	$-0.0377(19)$	$0.046(4)^{*}$
H112	$0.9172(15)$	$-0.0775(11)$	$0.170(2)$	$0.060(5)^{*}$
H113	$0.7977(15)$	$-0.1177(11)$	$0.037(2)$	$0.059(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0195(3)$	$0.0176(3)$	$0.0295(4)$	$-0.0019(3)$	$0.0019(3)$	$-0.0014(3)$
C1	$0.0216(4)$	$0.0181(4)$	$0.0260(4)$	$0.0008(3)$	$0.0056(3)$	$0.0002(3)$
C2	$0.0233(4)$	$0.0185(4)$	$0.0220(4)$	$-0.0006(3)$	$0.0061(3)$	$-0.0007(3)$
C3	$0.0203(4)$	$0.0196(4)$	$0.0232(4)$	$-0.0016(3)$	$0.0038(3)$	$-0.0009(3)$
C4	$0.0192(4)$	$0.0186(4)$	$0.0250(4)$	$-0.0002(3)$	$0.0040(3)$	$-0.0004(3)$
O1	$0.0225(3)$	$0.0219(3)$	$0.0438(4)$	$-0.0053(3)$	$-0.0046(3)$	$-0.0031(3)$
C5	$0.0224(4)$	$0.0257(4)$	$0.0284(4)$	$0.0036(3)$	$0.0068(3)$	$0.0028(4)$
O5	$0.0246(3)$	$0.0322(4)$	$0.0446(4)$	$0.0018(3)$	$-0.0036(3)$	$0.0005(3)$
C6	$0.0282(5)$	$0.0256(5)$	$0.0414(6)$	$0.0066(4)$	$0.0055(4)$	$0.0056(4)$
C7	$0.0338(5)$	$0.0184(4)$	$0.0291(5)$	$-0.0026(4)$	$0.0039(4)$	$-0.0019(4)$
C8	$0.0223(4)$	$0.0251(4)$	$0.0253(4)$	$-0.0020(3)$	$0.0037(3)$	$0.0002(3)$
O8	$0.0323(4)$	$0.0298(4)$	$0.0591(5)$	$-0.0082(3)$	$-0.0103(4)$	$-0.0025(4)$
O9	$0.0226(3)$	$0.0286(4)$	$0.0362(4)$	$0.0011(3)$	$-0.0027(3)$	$0.0030(3)$
C9	$0.0268(5)$	$0.0473(7)$	$0.0399(6)$	$0.0063(5)$	$-0.0063(4)$	$0.0017(5)$
C10	$0.0193(4)$	$0.0186(4)$	$0.0247(4)$	$-0.0003(3)$	$0.0001(3)$	$-0.0014(3)$
O10	$0.0305(3)$	$0.0218(3)$	$0.0303(3)$	$-0.0020(3)$	$0.0079(3)$	$0.0013(3)$
O11	$0.0368(4)$	$0.0229(3)$	$0.0308(4)$	$0.0106(3)$	$0.0120(3)$	$0.0057(3)$
C11	$0.0488(7)$	$0.0259(5)$	$0.0442(6)$	$0.0169(5)$	$0.0190(6)$	$0.0075(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 4$	$1.3304(11)$	$\mathrm{C} 7-\mathrm{H} 71$	$0.963(15)$
$\mathrm{N} 1-\mathrm{O} 1$	$1.3799(10)$	$\mathrm{C} 7-\mathrm{H} 72$	$0.965(14)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3932(11)$	$\mathrm{C} 7-\mathrm{H} 73$	$0.957(14)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.4033(12)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.2020(12)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.4503(13)$	$\mathrm{C} 8-\mathrm{O} 9$	$1.3470(12)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.4118(12)$	$\mathrm{O} 9-\mathrm{C} 9$	$1.4501(13)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.5005(13)$	$\mathrm{C} 9-\mathrm{H} 91$	$0.980(17)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.4037(12)$	$\mathrm{C} 9-\mathrm{H} 92$	$0.991(15)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.4661(12)$	$\mathrm{C} 9-\mathrm{H} 93$	$0.971(15)$
$\mathrm{C} 4-\mathrm{C} 10$	$1.5018(12)$	$\mathrm{C} 10-\mathrm{O} 10$	$1.2007(11)$
$\mathrm{O} 1-\mathrm{H} 1$	$0.888(16)$	$\mathrm{C} 10-\mathrm{O} 11$	$1.3242(11)$
$\mathrm{C} 5-\mathrm{O} 5$	$1.2399(12)$	$\mathrm{O} 11-\mathrm{C} 11$	$1.4561(12)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.4995(14)$	$\mathrm{C} 11-\mathrm{H} 111$	$0.956(14)$
$\mathrm{C} 6-\mathrm{H} 61$	$0.968(15)$	$\mathrm{C} 11-\mathrm{H} 112$	$0.981(16)$
$\mathrm{C} 6-\mathrm{H} 62$	$0.963(15)$	$\mathrm{C} 11-\mathrm{H} 113$	$0.958(16)$
$\mathrm{C} 6-\mathrm{H} 63$	$0.985(14)$		$112.0(8)$
C4-N1-O1		$\mathrm{C} 2-\mathrm{C} 7-\mathrm{H} 72$	$108.4(11)$

$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	125.78 (8)
N1-C1-C2	106.00 (8)
N1-C1-C5	118.84 (8)
C2-C1-C5	135.11 (8)
C1-C2-C3	106.86 (8)
C1-C2-C7	126.74 (8)
C3-C2-C7	126.40 (8)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	108.24 (8)
C4-C3-C8	124.69 (8)
C2-C3-C8	127.06 (8)
N1-C4-C3	106.90 (8)
N1-C4-C10	121.82 (8)
C3-C4-C10	131.24 (8)
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{H} 1$	101.8 (10)
O5-C5-C1	119.78 (9)
O5-C5-C6	120.16 (9)
C1-C5-C6	120.06 (9)
C5-C6-H61	107.5 (9)
C5-C6-H62	111.0 (9)
H61-C6-H62	108.4 (12)
C5-C6-H63	111.2 (8)
H61-C6-H63	111.1 (11)
H62-C6-H63	107.6 (11)
C2-C7-H71	109.7 (9)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.55 (11)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-178.69 (8)
C4-N1-C1-C5	177.39 (8)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	-0.75 (14)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.48 (10)
C5-C1-C2-C3	-176.97 (10)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	-179.43 (9)
C5-C1-C2-C7	3.13 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.26 (10)
C7-C2-C3-C4	179.64 (9)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	-179.17 (9)
C7-C2-C3-C8	0.73 (15)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	178.61 (8)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	0.39 (11)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 10$	-3.29 (14)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 10$	178.50 (8)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	-0.07 (10)
C8-C3-C4-N1	178.87 (8)

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$
N1-C1-C5
C2-C1-C5
C1- $\mathrm{C} 2-\mathrm{C} 3$
C1-C2-C7
C3-C2-C7
C4-C3-C2
C4-C3-C8
C2-C3-C8
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 10$
C3-C4-C10
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{H} 1$
O5-C5-C1
O5-C5-C6
C5-C6-H61
C5-C6-H62
H61-C6-H62
C5-C6-H63
H61-C6-H63
H62-C6-H63
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$
O1—N1-C1-C5
N1- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
C5- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
N1- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$
C5- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$
C1-C2-C3-C4
C7-C2-C3-C4

- $22-\mathrm{C} 3-\mathrm{C} 8$
$\mathrm{O}-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$
O1-N1-C4-C10
C1-N1-C4-C10
C8-C3-C4-N1
125.78 (8)
106.00 (8)
118.84 (8)
135.11 (8)
106.86 (8)
126.74 (8)
126.40 (8)
108.24 (8)
124.69 (8)
127.06 (8)
106.90 (8)
121.82 (8)
131.24 (8)
101.8 (10)
119.78 (9)
120.16 (9)
120.06 (9)
107.5 (9)
111.0 (9)
108.4 (12)
111.2 (8)
111.1 (11)
107.6 (11)
109.7 (9)
-0.55 (11)
-178.69 (8)
177.39 (8)
-0.75 (14)
0.48 (10)
-176.97 (10)
-179.43 (9)
3.13 (17)
-0.26 (10)
179.64 (9)
-179.17 (9)
0.73 (15)
178.61 (8)
0.39 (11)
-3.29 (14)
178.50 (8)
178.87 (8)

C2-C7-H73
H71-C7-H73
H72-C7-H73
O8-C8-09
O8-C8-C3
O9-C8-C3
C8-O9-C9
O9-C9-H91
O9-C9-H92
H91-C9-H92
O9-C9-H93
H91-C9-H93
H92-C9-H93
O10-C10-O11
$\mathrm{O} 10-\mathrm{C} 10-\mathrm{C} 4$
O11-C10-C4
C10-O11-C11
O11-C11-H111
O11-C11-H112
$\mathrm{H} 111-\mathrm{C} 11-\mathrm{H} 112$
O11-C11-H113
H111-C11-H113
H112-C11-H113

111.6 (8)
110.1 (12)
104.9 (11)
122.66 (9)
125.82 (9)
111.52 (8)
114.87 (8)
104.2 (10)
108.9 (8)
110.4 (12)
109.0 (8)
113.3 (13)
110.7 (12)
125.81 (8)
123.55 (8)
110.64 (8)
115.20 (8)
104.6 (9)
108.1 (10)
110.1 (12)
110.0 (9)
114.3 (13)
109.5 (13)
-177.93 (9)
1.01 (15)
-0.77 (14)
176.43 (10)
179.45 (9)
-3.36(16)
176.89 (10)
-4.37 (16)
-3.19 (13)
175.56 (9)
0.77 (15)
-179.15 (9)
-82.60 (12)
94.99 (12)
97.95 (10)
-84.45 (12)
-6.69 (15)
172.74 (9)

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 5$	$0.888(16)$	$1.746(16)$	$2.5583(11)$	$150.8(14)$

