Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,6-Bis(4-methoxyphenyl)-1,4-dithiine

Sha-Sha Zhao, Qiong Su, Zhi-Hong Peng* and De-Lie An*
Department of Chemistry, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
Correspondence e-mail: pzh7251@yahoo.com, deliean@hnu.edu.cn

Received 13 December 2013; accepted 8 January 2014

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.038 ; w R$ factor $=0.102$; data-to-parameter ratio $=14.8$.

The title molecule, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$, reveals crystallographic twofold rotation symmetry (with both S atoms lying on the axis) and one half-molecule defines an asymmetric unit. The dithiine ring is in a boat conformation. The aromatic ring and the $\mathrm{C}=\mathrm{C}$ bond are nearly coplanar, with small torsion angles of $-171.26(19)$ and $8.5(3)^{\circ}$. The two $\mathrm{S}-\mathrm{C}$ bond lengths [1.7391 (19) and 1.7795 (18) Å] are shorter than single C-S bonds and longer than analogous $\mathrm{C}=\mathrm{S}$ double bonds, which indicates a certain degree of conjugation between the lone pair on the S atom and π electrons of the $\mathrm{C}=\mathrm{C}$ bond. The crystal packing only features van der Waals interactions.

Related literature

For a similar crystal structure, 2,6-diphenyl-1,4-dithiine, see: Piao et al. (2004). For background to 1,4-dithiine derivatives, see: Kobayashi \& Gajurel (1986); Scott et al. (2000). For the synthesis of a similar compound, see: Nakayama et al. (1984). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$
$V=1533.6(3) \AA^{3}$
$M_{r}=328.43$
Orthorhombic, Pnma
$Z=4$
$a=10.1330$ (11) \AA
Mo $K \alpha$ radiation
$b=27.318$ (3) A
$c=5.5402$ (6) \AA
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.21 \times 0.18 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
8513 measured reflections 1541 independent reflections 1258 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$

Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.121, T_{\text {max }}=1.000$

104 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported financially by the National Natural Science Foundation of China (No. 21072052) and the Hunan Provincial Science and Technology Department Program (No. 2011 W K4007).

Supporting information for this paper is available from the IUCr electronic archives (Reference: KP2462).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Kobayashi, K. \& Gajurel, C. L. (1986). Sulfur Rep. 7, 123-148.
Nakayama, J., Motoyama, H., Machida, H., Shimomura, M. \& Hoshino, M. (1984). Heterocycles, 22, 1527-1530.

Piao, X. H., Sugihara, Y. \& Nakayama, J. (2004). Heteroat. Chem. 15, 424-427.
Scott, M. K., Ross, T. M., Lee, D. H. S., Wang, H., Shank, R. P., Wild, K. D., Davis, C. B., Crooke, J. J., Potocki, A. C. \& Reitz, A. B. (2000). Bioorg. Med. Chem. 8, 1383-1391.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o137 [doi:10.1107/S1600536814000397]

2,6-Bis(4-methoxyphenyl)-1,4-dithiine

Sha-Sha Zhao, Qiong Su, Zhi-Hong Peng and De-Lie An

S1. Comment

1,4-Dithiine derivatives are very important intermediates in organic synthesis and can be used as versatile building blocks for a variety of chemical purposes (Kobayashi \& Gajurel, 1986). In addition, some 1,4-dithiine derivatives have exhibited good biological activities, For example, Scott et al. showed that 2,3-dihydro-2-phenyl-1,4-dithiin-1,1,4,4-tetroxide could be used as nonpeptide antagonist of the human Galanin hGAL-1 receptor (Scott et al., 2000). Unfortunately, there are very few acceptable methods to prepare 1,4-dithiine compounds thus far, and, in most cases, a successful protocol must use bis(arylethanonyl) sulfides compounds as precursors. Herein we report a new synthetic approaches and crystal structure of 2,6-bis(4-methoxyphenyl)-1,4-dithiine.
The molecular structure of the title compound(I) (Fig. 1) exhibits a twofold rotation axes symmetry. The dithiine ring is in a boat conformation. In the crystal, dominate columns of assembled molecules, however, their separation distances are larger than 5.5402 (13) \AA (Fig. 2). The bond lengths of $\mathrm{C} 1-\mathrm{C} 2$ in heterocyclic ring presents a characteristic of the $\mathrm{C}=\mathrm{C}$ double bond. An aromatic ring and the $\mathrm{C}=\mathrm{C}$ bond are nearly coplanar, with small torsion angles of $-171.26(19)^{\circ}$ and 8.5 (3) ${ }^{\circ}$ for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C}$, respectively \cdot. The two characteristic bond lengths of S1-C2 and S2 -C 1 are shorter than $\mathrm{C}-\mathrm{S}$ single bonds and longer than analogous $\mathrm{C}=\mathrm{S}$ double bonds (Allen et al., 1987), which indicates a certain degree of conjugation between the lone pair on the sulfur atom and π electrons of the $\mathrm{C}=\mathrm{C}$ bond.

S2. Experimental

$\mathrm{NaOEt}(224 \mathrm{mg}, 3.3 \mathrm{mmol})$ was dissolved in alcohol $(10 \mathrm{~mL})$, and then added to bis(4-methoxyphenylethynyl) sulfide $(97.8 \mathrm{mg}, 0.33 \mathrm{mmol})$. After the mixture was stirred at room temperature for $10 \mathrm{~min}, \mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(159 \mathrm{mg}, 0.66 \mathrm{mmol})$ was added. The resulting mixture was then stirred at reflux temperature for 2 h . The reaction mixture was cooled to room temperature and quenched by water and extracted with dichloromethane. The extract was then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated in vacuo, and the residue was chromatographed (SiO_{2}; eluent, ether/dichloromethane, 4: 1) to give 93 mg of compound $\mathbf{I}(85 \%)$ as a yellow solid: mp $401-403 \mathrm{~K} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=3.83\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{OCH}_{3}\right), 6.42(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CH}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.50\left(\mathrm{OCH}_{3}\right), 114.07(\mathrm{CH}), 116.40(\mathrm{CH}), 128.45(\mathrm{CH}), 129.83(\mathrm{C}), 139.52(\mathrm{C}), 160.10$ (C); IR (KBr): $v=3020$, 2959, 2914, 1607, 1508, 1457, 1258, 1191, $832 \mathrm{~cm}^{-1}$; MS (EI): $m / z(\%): 328.2\left(M^{+}, 100\right), 313.1$ (43); HRMS (EI): m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$ 328.0584, Found 328.0586.

Single crystals of (I) suitable for X-ray diffraction analysis was obtained by slow diffusion of petroleum ether into a dichloromethane solution at 298 K .

S3. Refinement

H atoms were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right.$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}$ methyl)] using a riding model, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$.

Figure 1
Structural unit of the title molecule with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code to generate the entire molecule: $x,-y+1 / 2, z$.

Figure 2
Crystal packing reveals a columns of molecules held together by van der Waals interactions, only.

2,6-Bis(4-methoxyphenyl)-1,4-dithiine

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=328.43$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=10.1330$ (11) \AA
$b=27.318$ (3) \AA
$c=5.5402(6) \AA$
$V=1533.6(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=688 \\
& D_{\mathrm{x}}=1.422 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1658 \text { reflections } \\
& \theta=7.5-53.8^{\circ} \\
& \mu=0.35 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Prismatic, yellow } \\
& 0.21 \times 0.18 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.121, T_{\text {max }}=1.000$

> 8513 measured reflections
> 1541 independent reflections
> 1258 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.043$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=3.0^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-33 \rightarrow 32$
> $l=-5 \rightarrow 6$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.102$
$S=1.04$
1541 reflections
104 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.49280(7)$	0.2500	$0.16602(12)$	$0.0352(2)$
S2	$0.70856(7)$	0.2500	$-0.24173(15)$	$0.0423(2)$
O1	$0.14361(14)$	$0.45648(5)$	$0.0468(3)$	$0.0484(4)$
C1	$0.60102(19)$	$0.29896(6)$	$-0.2021(4)$	$0.0364(5)$
H1	0.6115	0.3262	-0.3011	0.044^{*}

C2	$0.50486(19)$	$0.29989(6)$	$-0.0393(3)$	$0.0307(4)$
C3	$0.40701(18)$	$0.33990(6)$	$-0.0143(3)$	$0.0296(4)$
C4	$0.3199(2)$	$0.34206(7)$	$0.1786(4)$	$0.0364(5)$
H4	0.3213	0.3172	0.2931	0.044^{*}
C5	$0.2311(2)$	$0.38017(7)$	$0.2059(3)$	$0.0372(5)$
H5	0.1746	0.3808	0.3381	0.045^{*}
C6	$0.22660(19)$	$0.41714(7)$	$0.0376(3)$	$0.0352(5)$
C7	$0.31115(19)$	$0.41530(7)$	$-0.1595(4)$	$0.0395(5)$
H7	0.3083	0.4399	-0.2753	0.047^{*}
C8	$0.3984(2)$	$0.37754(7)$	$-0.1841(4)$	$0.0371(5)$
H8	0.4537	0.3769	-0.3180	0.044^{*}
C9	$0.0549(2)$	$0.45883(8)$	$0.2462(5)$	$0.0556(6)$
H9A	0.0005	0.4301	0.2479	0.083^{*}
H9B	0.0002	0.4874	0.2311	0.083^{*}
H9C	0.1043	0.4606	0.3938	0.083^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0430(4)$	$0.0328(4)$	$0.0297(4)$	0.000	$-0.0017(3)$	0.000
S2	$0.0266(4)$	$0.0405(4)$	$0.0599(5)$	0.000	$0.0101(3)$	0.000
O1	$0.0487(9)$	$0.0401(8)$	$0.0563(10)$	$0.0129(7)$	$0.0112(7)$	$0.0073(7)$
C1	$0.0326(10)$	$0.0306(9)$	$0.0459(12)$	$-0.0035(8)$	$0.0042(9)$	$0.0016(8)$
C2	$0.0304(9)$	$0.0287(9)$	$0.0332(11)$	$-0.0063(8)$	$-0.0021(8)$	$-0.0015(7)$
C3	$0.0290(10)$	$0.0274(9)$	$0.0324(10)$	$-0.0058(8)$	$-0.0013(8)$	$-0.0028(7)$
C4	$0.0416(11)$	$0.0314(9)$	$0.0361(11)$	$-0.0007(8)$	$0.0067(8)$	$0.0043(8)$
C5	$0.0397(11)$	$0.0362(10)$	$0.0357(11)$	$0.0002(9)$	$0.0093(9)$	$0.0000(8)$
C6	$0.0333(10)$	$0.0305(10)$	$0.0420(11)$	$-0.0001(8)$	$-0.0015(9)$	$-0.0015(8)$
C7	$0.0421(11)$	$0.0382(10)$	$0.0381(11)$	$0.0000(9)$	$0.0019(9)$	$0.0095(9)$
C8	$0.0383(11)$	$0.0397(10)$	$0.0331(11)$	$0.0004(9)$	$0.0062(8)$	$0.0030(8)$
C9	$0.0548(14)$	$0.0493(13)$	$0.0627(15)$	$0.0180(11)$	$0.0168(12)$	$0.0019(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 2$	$1.7795(18)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.384(3)$
$\mathrm{S} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.7795(18)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~S} 2-\mathrm{C} 1$	$1.7391(19)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.375(3)$
$\mathrm{S} 2-\mathrm{C} 1^{\mathrm{i}}$	$1.7391(19)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{O} 1-\mathrm{C} 6$	$1.365(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.389(3)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.426(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.365(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.328(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.482(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9600
$\mathrm{C} 3-\mathrm{C} 4$	$1.387(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	0.9600
$\mathrm{C} 3-\mathrm{C} 8$	$1.397(3)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	0.9600
		$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.0
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 2^{\mathrm{i}}$	$99.97(12)$	$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$124.98(18)$
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{C} 1^{\mathrm{i}}$	$100.54(13)$		

$\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 9$	$116.92(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 2$	$124.07(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.0
$\mathrm{~S} 2-\mathrm{C} 1-\mathrm{H} 1$	118.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$124.65(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	$118.03(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$117.32(14)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$116.60(17)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.94(16)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$121.46(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.98(17)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.0
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.00(18)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.0
$\mathrm{C} 1 \mathrm{C}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 2$	$39.0(2)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-175.75(14)$
$\mathrm{S} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	$4.9(2)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 1$	$-48.1(2)$
$\mathrm{C} 2 \mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	$132.49(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-171.26(19)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$8.1(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$8.5(3)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$-172.18(14)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-1.7(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.07(17)$

$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7$	$115.96(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.06(18)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.36(18)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	119.8
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	119.8
C7-C8-C3	$121.97(18)$
C7-C8-H8	119.0
C3-C8-H8	119.0
O1-C9-H9A	109.5
O1-C9-H9B	109.5
H9A-C9-H9B	109.5
O1-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.6(3)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.4(3)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7$	$179.31(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{O} 1$	$-179.75(18)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.6(3)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$179.64(18)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.7(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$-0.5(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$1.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-178.16(18)$

Symmetry code: (i) $x,-y+1 / 2, z$.

