organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-[2-(2-Nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]propan-1-one

J. Kanchanadevi,^a G. Anbalagan,^b V. Saravanan,^c A. K. Mohanakrishnan,^c B. Gunasekaran^{d*} and V. Manivannan^e*

^aDepartment of Physics, Velammal Institute of Technology, Panchetty, Chennai 601 204, India, ^bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, ^dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India, and ^eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India Correspondence e-mail: phdguna@gmail.com, crystallography2010@gmail.com

Received 3 January 2014; accepted 8 January 2014

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.151; data-to-parameter ratio = 17.9.

In the title compound, $C_{25}H_{20}N_2O_5S$, the phenyl ring makes dihedral angles of 89.88 (8) and 13.98 (8)°, respectively, with the indole ring system and the nitrobenzene ring. The dihedral angle between the indole ring system and the nitrobenzene ring is 88.48 (11)°. The molecular structure is stabilized by a weak intramolecular C-H···O interaction. In the crystal, π - π interactions, with centroid–centroid distances of 3.6741 (18) and 3.8873 (17) Å, link the molecules into layers parallel to the *ab* plane.

Related literature

For biological activity of indole derivatives, see: Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981); Singh et al. (2000). For related structures, see: Umadevi et al. (2013); Kanchanadevi et al. (2014).

Experimental

Crystal data

•	
$C_{25}H_{20}N_2O_5S$	V = 4299.1 (7) Å ³
$M_r = 460.49$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 21.6100 (18) Å	$\mu = 0.19 \text{ mm}^{-1}$
b = 8.3072 (7) Å	T = 295 K
c = 25.898 (3) Å	$0.30 \times 0.25 \times 0.25$ mm
$\beta = 112.379 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.945, T_{\rm max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	299 parameters
$vR(F^2) = 0.151$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
343 reflections	$\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2−H2···O1	0.93	2.32	2.912 (3)	121

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5331).

References

- Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug Des. 16, 167 - 174
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Kanchanadevi, J., Anbalagan, G., Saravanan, V., Mohanakrishnan, A. K., Gunasekaran, B. & Manivannan, V. (2014). Acta Cryst. E70, o149.
- Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696-700.
- Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Umadevi, M., Saravanan, V., Yamuna, R., Mohanakrishnan, A. K. & Chakkaravarthi, G. (2013). Acta Cryst. E69, o1784.

40633 measured reflections 5343 independent reflections

 $R_{\rm int} = 0.044$

3700 reflections with $I > 2\sigma(I)$

supporting information

Acta Cryst. (2014). E70, o148 [doi:10.1107/S1600536814000506]

(E)-1-[2-(2-Nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]propan-1-one

J. Kanchanadevi, G. Anbalagan, V. Saravanan, A. K. Mohanakrishnan, B. Gunasekaran and V. Manivannan

S1. Comment

Indole derivatives exhibits antibacterial, antifungal (Singh *et al.*, 2000) and antitumour activities (Andreani *et al.*, 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic and antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay *et al.*, 1981).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Umadevi *et al.*, 2013). The phenyl ring makes a dihedral angles of 89.88 (8) and 13.98 (8)° with the indole ring system and the nitro benzene ring, respectively. The sum of bond angles around the atom N1 [356.03°] indicates sp^2 hybridized. The molecular structure is stabilized by a weak intramolecular C—H…O interaction.

S2. Experimental

A solution of 1-[2-(bromomethyl)-1-(phenylsulfonyl)-1*H*-indol-3-yl] propan-1-one (5 g, 12.31 mmol) and triphenylphosphine (3.5 g, 13.54 mmol) in dry THF (100 ml) was refluxed for 6 h. After consumption of the starting material, the solvent was removed under vaccum and the solid was washed with diethyl ether to give the phosphonium salt. Then, the mixture of phosphonium salt (8 g, 11.97 mmol), 2-nitrobenzaldehydes (1.99 g, 13.17 mmol) and K₂CO₃ (3.30 g, 23.95 mmol) in DCM (70 ml) was stirred at room temperature for 24 h. After completion of the reaction (monitored by TLC), it was diluted using DCM (30 ml), washed with water (2 × 100 ml) and dried (Na₂SO₄). Removal of solvent followed by trituration of the crude product with MeOH (20 ml) afforded (*E*)-1-[2-(2-nitrostyryl)-1-(phenylsulfonyl)-1*H*- indol-3yl]propan-1-one as yellow solid (4.30 g, 76%) with melting point 168–170 °C.

S3. Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic CH, C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃.

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

(E)-1-[2-(2-Nitrostyryl)-1-phenylsulfonyl-1H-indol-3-yl]propan-1-one

Crystal data

 $C_{25}H_{20}N_2O_5S$ $M_r = 460.49$ Monoclinic, C2/cHall symbol: -C 2yc a = 21.6100 (18) Å*b* = 8.3072 (7) Å c = 25.898 (3) Å $\beta = 112.379 \ (2)^{\circ}$ V = 4299.1 (7) Å³ Z = 8

Data collection

Bruker APEXII CCD 40633 measured reflections diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $R_{\rm int} = 0.044$ $\theta_{\text{max}}^{\text{m}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ $h = -28 \rightarrow 28$ Detector resolution: 0 pixels mm⁻¹ ω and φ scans $k = -11 \rightarrow 11$ Absorption correction: multi-scan $l = -32 \rightarrow 34$ (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.945, \ T_{\rm max} = 0.955$

F(000) = 1920 $D_{\rm x} = 1.423 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5350 reflections $\theta = 2.0-28.3^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 295 KBlock, yellow $0.30 \times 0.25 \times 0.25 \text{ mm}$

5343 independent reflections 3700 reflections with $I > 2\sigma(I)$ Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from
$wR(F^2) = 0.151$	neighbouring sites
S = 1.04	H-atom parameters constrained
5343 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 6.0066P]$
299 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.67 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.15190 (11)	-0.0496 (3)	0.50378 (9)	0.0411 (5)	
C2	0.08840 (13)	-0.1098 (3)	0.47316 (10)	0.0544 (7)	
H2	0.0544	-0.1071	0.4869	0.065*	
C3	0.07820 (16)	-0.1738 (3)	0.42139 (11)	0.0649 (8)	
H3	0.0364	-0.2157	0.3997	0.078*	
C4	0.12856 (17)	-0.1769 (3)	0.40107 (11)	0.0647 (8)	
H4	0.1199	-0.2207	0.3659	0.078*	
C5	0.19136 (15)	-0.1172 (3)	0.43131 (10)	0.0561 (7)	
H5	0.2249	-0.1208	0.4171	0.067*	
C6	0.20352 (12)	-0.0506 (3)	0.48417 (9)	0.0433 (5)	
C7	0.26149 (11)	0.0260 (3)	0.52583 (9)	0.0400 (5)	
C8	0.24458 (10)	0.0690 (3)	0.56984 (8)	0.0356 (5)	
C9	0.28201 (11)	0.1582 (3)	0.62103 (9)	0.0384 (5)	
H9	0.2654	0.2575	0.6262	0.046*	
C10	0.33832 (11)	0.1058 (3)	0.66058 (8)	0.0384 (5)	
H10	0.3533	0.0032	0.6568	0.046*	
C11	0.37820 (10)	0.2010 (3)	0.71009 (9)	0.0374 (5)	
C12	0.37603 (13)	0.3685 (3)	0.70753 (11)	0.0503 (6)	
H12	0.3482	0.4178	0.6746	0.060*	
C13	0.41344 (15)	0.4635 (4)	0.75177 (14)	0.0651 (8)	
H13	0.4098	0.5749	0.7487	0.078*	
C14	0.45614 (14)	0.3952 (4)	0.80052 (12)	0.0661 (8)	
H14	0.4814	0.4598	0.8304	0.079*	
C15	0.46118 (13)	0.2320 (4)	0.80475 (10)	0.0566 (7)	
H15	0.4906	0.1847	0.8374	0.068*	
C16	0.42243 (11)	0.1363 (3)	0.76039 (9)	0.0415 (5)	
C17	0.16595 (11)	-0.1823 (3)	0.63322 (9)	0.0372 (5)	
C18	0.22218 (12)	-0.1958 (3)	0.68196 (10)	0.0479 (6)	
H18	0.2470	-0.1051	0.6987	0.057*	
C19	0.24071 (14)	-0.3460 (3)	0.70527 (11)	0.0578 (7)	
H19	0.2782	-0.3571	0.7381	0.069*	
C20	0.20406 (15)	-0.4794 (3)	0.68021 (11)	0.0549 (7)	
H20	0.2169	-0.5802	0.6964	0.066*	
C21	0.14871 (15)	-0.4656 (3)	0.63161 (11)	0.0548 (7)	

H21	0.1243	-0.5567	0.6149	0.066*	
C22	0.12933 (12)	-0.3159 (3)	0.60758 (10)	0.0473 (6)	
H22	0.0920	-0.3055	0.5745	0.057*	
C23	0.32263 (14)	0.0616 (4)	0.51526 (11)	0.0565 (7)	
C25	0.43883 (15)	0.1576 (5)	0.53443 (13)	0.0788 (10)	
H25A	0.4556	0.0538	0.5299	0.118*	
H25B	0.4744	0.2201	0.5605	0.118*	
H25C	0.4216	0.2120	0.4991	0.118*	
N1	0.17663 (9)	0.0287 (2)	0.55666 (7)	0.0387 (4)	
N2	0.42953 (12)	-0.0372 (3)	0.76957 (9)	0.0551 (6)	
01	0.07086 (8)	0.0081 (2)	0.57260 (8)	0.0582 (5)	
02	0.16992 (9)	0.1277 (2)	0.64547 (7)	0.0495 (4)	
03	0.38239 (11)	-0.1241 (2)	0.74363 (8)	0.0685 (6)	
04	0.48249 (12)	-0.0875 (3)	0.80380 (10)	0.0950 (8)	
05	0.32135 (15)	0.0336 (6)	0.46959 (12)	0.1606 (19)	
C24	0.38311 (13)	0.1372 (4)	0.55629 (11)	0.0596 (7)	
H24A	0.3994	0.0716	0.5898	0.072*	
H24B	0.3714	0.2420	0.5664	0.072*	
S1	0.14097 (3)	0.00862 (7)	0.60389 (2)	0.04073 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0433 (12)	0.0396 (12)	0.0310 (10)	0.0040 (9)	0.0034 (9)	0.0030 (9)
C2	0.0478 (14)	0.0557 (15)	0.0461 (13)	-0.0036 (12)	0.0025 (11)	0.0019 (12)
C3	0.0667 (18)	0.0546 (16)	0.0486 (15)	-0.0027 (14)	-0.0058 (14)	-0.0016 (13)
C4	0.089 (2)	0.0498 (15)	0.0366 (13)	0.0053 (15)	0.0028 (14)	-0.0063 (11)
C5	0.0748 (18)	0.0494 (14)	0.0405 (13)	0.0120 (13)	0.0180 (13)	-0.0017 (11)
C6	0.0512 (13)	0.0389 (12)	0.0339 (11)	0.0084 (10)	0.0095 (10)	0.0037 (9)
C7	0.0407 (12)	0.0423 (12)	0.0352 (11)	0.0064 (9)	0.0123 (9)	0.0031 (9)
C8	0.0356 (11)	0.0343 (10)	0.0332 (10)	0.0040 (8)	0.0090 (8)	0.0050 (8)
C9	0.0389 (11)	0.0376 (11)	0.0385 (11)	0.0001 (9)	0.0145 (9)	-0.0019 (9)
C10	0.0428 (12)	0.0363 (11)	0.0347 (10)	0.0010 (9)	0.0131 (9)	0.0001 (9)
C11	0.0344 (10)	0.0423 (12)	0.0367 (11)	-0.0020 (9)	0.0147 (9)	-0.0035 (9)
C12	0.0466 (13)	0.0431 (13)	0.0569 (15)	-0.0023 (11)	0.0149 (11)	-0.0004 (11)
C13	0.0616 (18)	0.0473 (15)	0.086 (2)	-0.0141 (13)	0.0275 (16)	-0.0191 (14)
C14	0.0574 (17)	0.078 (2)	0.0618 (17)	-0.0217 (15)	0.0214 (14)	-0.0309 (16)
C15	0.0452 (14)	0.085 (2)	0.0363 (12)	-0.0074 (13)	0.0113 (11)	-0.0076 (13)
C16	0.0363 (11)	0.0537 (14)	0.0349 (11)	-0.0011 (10)	0.0141 (9)	-0.0005 (10)
C17	0.0365 (11)	0.0407 (11)	0.0379 (11)	-0.0014 (9)	0.0182 (9)	-0.0015 (9)
C18	0.0489 (13)	0.0472 (13)	0.0415 (12)	-0.0043 (11)	0.0105 (11)	0.0003 (10)
C19	0.0615 (16)	0.0576 (16)	0.0476 (14)	0.0064 (13)	0.0131 (12)	0.0084 (12)
C20	0.0778 (19)	0.0422 (13)	0.0542 (15)	0.0059 (13)	0.0358 (14)	0.0061 (11)
C21	0.0716 (18)	0.0438 (14)	0.0562 (15)	-0.0095 (12)	0.0324 (14)	-0.0099 (11)
C22	0.0475 (13)	0.0507 (14)	0.0432 (13)	-0.0071 (11)	0.0168 (11)	-0.0063 (11)
C23	0.0539 (15)	0.0727 (18)	0.0490 (14)	0.0045 (13)	0.0263 (12)	-0.0045 (13)
C25	0.0535 (17)	0.117 (3)	0.071 (2)	-0.0062 (18)	0.0306 (15)	0.0107 (19)
N1	0.0353 (9)	0.0444 (10)	0.0335 (9)	-0.0002 (8)	0.0096 (7)	0.0003 (8)

supporting information

N2 O1 O2	0.0550 (13) 0.0334 (9) 0.0594 (10)	0.0605 (14) 0.0724 (12) 0.0413 (9)	0.0427 (11) 0.0652 (11) 0.0533 (10)	0.0093 (11) 0.0094 (8) 0.0017 (8)	0.0106 (10) 0.0146 (8) 0.0276 (8)	0.0101 (10) 0.0086 (10) -0.0066 (7)
03	0.0716 (13)	0.0500 (11)	0.0676 (12)	-0.0019 (10)	0.0083 (10)	0.0098 (10)
O4	0.0792 (15)	0.0911 (17)	0.0785 (15)	0.0235 (13)	-0.0106 (12)	0.0267 (13)
05	0.099 (2)	0.318 (5)	0.0942 (19)	-0.081 (3)	0.0701 (17)	-0.103 (3)
C24	0.0500 (15)	0.0769 (19)	0.0548 (15)	-0.0035 (13)	0.0232 (12)	0.0066 (14)
S 1	0.0360 (3)	0.0430 (3)	0.0434 (3)	0.0043 (2)	0.0154 (2)	0.0012 (2)

Geometric parameters (Å, °)

C1—C6	1.390 (3)	C15—C16	1.386 (3)	
C1—C2	1.390 (3)	C15—H15	0.9300	
C1—N1	1.424 (3)	C16—N2	1.460 (3)	
С2—С3	1.380 (4)	C17—C22	1.378 (3)	
С2—Н2	0.9300	C17—C18	1.384 (3)	
C3—C4	1.378 (5)	C17—S1	1.753 (2)	
С3—Н3	0.9300	C18—C19	1.378 (4)	
C4—C5	1.376 (4)	C18—H18	0.9300	
C4—H4	0.9300	C19—C20	1.373 (4)	
C5—C6	1.405 (3)	C19—H19	0.9300	
С5—Н5	0.9300	C20—C21	1.372 (4)	
C6—C7	1.452 (3)	C20—H20	0.9300	
C7—C8	1.370 (3)	C21—C22	1.382 (4)	
C7—C23	1.478 (4)	C21—H21	0.9300	
C8—N1	1.415 (3)	C22—H22	0.9300	
C8—C9	1.464 (3)	C23—O5	1.195 (3)	
C9—C10	1.331 (3)	C23—C24	1.475 (4)	
С9—Н9	0.9300	C25—C24	1.523 (4)	
C10-C11	1.474 (3)	C25—H25A	0.9600	
C10—H10	0.9300	C25—H25B	0.9600	
C11—C12	1.393 (3)	C25—H25C	0.9600	
C11—C16	1.397 (3)	N1—S1	1.6838 (19)	
C12—C13	1.372 (4)	N2—O3	1.220 (3)	
C12—H12	0.9300	N2—O4	1.224 (3)	
C13—C14	1.371 (4)	O1—S1	1.4204 (17)	
C13—H13	0.9300	O2—S1	1.4198 (17)	
C14—C15	1.361 (4)	C24—H24A	0.9700	
C14—H14	0.9300	C24—H24B	0.9700	
C6—C1—C2	123.0 (2)	C11—C16—N2	121.6 (2)	
C6C1N1	107.12 (19)	C22—C17—C18	121.2 (2)	
C2-C1-N1	129.8 (2)	C22—C17—S1	119.64 (17)	
C3—C2—C1	116.8 (3)	C18—C17—S1	119.14 (17)	
С3—С2—Н2	121.6	C19—C18—C17	118.7 (2)	
C1—C2—H2	121.6	C19—C18—H18	120.6	
C4—C3—C2	121.4 (3)	C17—C18—H18	120.6	
С4—С3—Н3	119.3	C20-C19-C18	120.3 (2)	

С2—С3—Н3	119.3	C20-C19-H19	119.8
C5—C4—C3	121.8 (3)	C18—C19—H19	119.8
C5—C4—H4	119.1	C21—C20—C19	120.7 (2)
C3—C4—H4	119.1	C21—C20—H20	119.6
C4—C5—C6	118.3 (3)	C19-C20-H20	119.6
C4—C5—H5	120.8	C_{20} C_{21} C_{22}	119.8 (2)
C6-C5-H5	120.0	$C_{20} = C_{21} = C_{22}$	120.1
$C_1 C_6 C_5$	120.0 118.6(2)	$C_{20} = C_{21} = H_{21}$	120.1
C1 - C6 - C7	118.0(2) 108.1(2)	$C_{22} = C_{21} = H_{21}$	120.1 110.2 (2)
$C_1 = C_0 = C_7$	100.1(2)	C17 = C22 = C21	119.2 (2)
	133.2 (2)	C1/-C22-H22	120.4
	107.7 (2)	C21—C22—H22	120.4
C8—C7—C23	130.0 (2)	05-023-024	118.4 (3)
C6—C7—C23	122.0 (2)	05	117.3 (3)
C7—C8—N1	108.57 (18)	C24—C23—C7	124.2 (2)
C7—C8—C9	130.9 (2)	C24—C25—H25A	109.5
N1—C8—C9	120.19 (19)	C24—C25—H25B	109.5
С10—С9—С8	124.0 (2)	H25A—C25—H25B	109.5
С10—С9—Н9	118.0	C24—C25—H25C	109.5
С8—С9—Н9	118.0	H25A—C25—H25C	109.5
C9—C10—C11	123.7 (2)	H25B—C25—H25C	109.5
С9—С10—Н10	118.2	C8—N1—C1	108.36 (18)
С11—С10—Н10	118.2	C8—N1—S1	124.61 (14)
C12—C11—C16	115.3 (2)	C1—N1—S1	123.06 (16)
C12—C11—C10	119.8 (2)	O3—N2—O4	123.5 (3)
C16-C11-C10	124 8 (2)	$03 - N^2 - C_{16}$	1187(2)
C_{13} C_{12} C_{11}	12 (2) 122 4 (3)	$04 - N^2 - C16$	117.8(2)
C_{13} C_{12} H_{12}	118.8	C^{23} C^{24} C^{25}	117.0(2) 112.9(2)
C_{11} C_{12} H_{12}	118.8	C_{23} C_{24} C_{23} C_{24} H_{24}	109.0
$C_{11} = C_{12} = 1112$	120.4(2)	$C_{25} = C_{24} = H_{24A}$	109.0
C14 - C13 - C12	120.4 (3)	$C_{23} = C_{24} = H_{24} = H_{24}$	109.0
$C_{12} = C_{12} = H_{12}$	119.0	C_{25} C_{24} H_{24B}	109.0
C12—C13—H13	119.8	C25—C24—H24B	109.0
	119.4 (3)	H24A - C24 - H24B	107.8
С15—С14—Н14	120.3	02-51-01	120.06 (11)
C13—C14—H14	120.3	02—S1—N1	106.89 (10)
C14—C15—C16	120.0 (3)	01—S1—N1	105.65 (10)
C14—C15—H15	120.0	O2—S1—C17	109.13 (10)
C16—C15—H15	120.0	O1—S1—C17	109.28 (11)
C15—C16—C11	122.4 (2)	N1—S1—C17	104.71 (10)
C15—C16—N2	116.0 (2)		
C6—C1—C2—C3	0.6 (4)	C17—C18—C19—C20	0.4 (4)
N1—C1—C2—C3	177.1 (2)	C18—C19—C20—C21	0.2 (4)
C1—C2—C3—C4	-0.3 (4)	C19—C20—C21—C22	-0.2 (4)
C2—C3—C4—C5	0.2 (4)	C18—C17—C22—C21	1.0 (4)
C3—C4—C5—C6	-0.4(4)	S1—C17—C22—C21	-178.78 (19)
$C_2 - C_1 - C_6 - C_5$	-0.8(4)	C20-C21-C22-C17	-0.4 (4)
N1-C1-C6-C5	-1780(2)	C8-C7-C23-O5	-1679(4)
$C_2 - C_1 - C_6 - C_7$	178.1 (2)	C6-C7-C23-O5	4.3 (5)
$\sim = \circ \cdot \circ \circ \circ \circ \circ$	- / U++ (#)		

N1—C1—C6—C7	0.9 (2)	C8—C7—C23—C24	8.5 (4)
C4—C5—C6—C1	0.7 (4)	C6—C7—C23—C24	-179.2 (3)
C4—C5—C6—C7	-177.9 (2)	C7—C8—N1—C1	3.1 (2)
C1—C6—C7—C8	1.0 (3)	C9—C8—N1—C1	177.08 (18)
C5—C6—C7—C8	179.7 (2)	C7—C8—N1—S1	161.12 (16)
C1—C6—C7—C23	-172.8 (2)	C9—C8—N1—S1	-24.9 (3)
C5—C6—C7—C23	5.9 (4)	C6-C1-N1-C8	-2.4 (2)
C6—C7—C8—N1	-2.5(2)	C2-C1-N1-C8	-179.3 (2)
C23—C7—C8—N1	170.6 (2)	C6—C1—N1—S1	-160.86 (16)
C6—C7—C8—C9	-175.6 (2)	C2-C1-N1-S1	22.2 (3)
C23—C7—C8—C9	-2.5 (4)	C15—C16—N2—O3	152.5 (2)
C7—C8—C9—C10	-64.8 (3)	C11—C16—N2—O3	-26.4 (4)
N1-C8-C9-C10	122.7 (2)	C15-C16-N2-O4	-26.3 (4)
C8—C9—C10—C11	175.6 (2)	C11—C16—N2—O4	154.8 (2)
C9-C10-C11-C12	-27.0 (3)	O5—C23—C24—C25	-4.3 (5)
C9—C10—C11—C16	156.7 (2)	C7—C23—C24—C25	179.3 (3)
C16—C11—C12—C13	-1.6 (4)	C8—N1—S1—O2	36.9 (2)
C10-C11-C12-C13	-178.2 (2)	C1—N1—S1—O2	-168.17 (17)
C11—C12—C13—C14	1.4 (4)	C8—N1—S1—O1	165.85 (18)
C12—C13—C14—C15	0.0 (5)	C1-N1-S1-01	-39.2 (2)
C13—C14—C15—C16	-1.2 (4)	C8—N1—S1—C17	-78.81 (19)
C14—C15—C16—C11	1.1 (4)	C1—N1—S1—C17	76.13 (19)
C14—C15—C16—N2	-177.9 (2)	C22—C17—S1—O2	159.83 (18)
C12-C11-C16-C15	0.3 (3)	C18—C17—S1—O2	-20.0 (2)
C10-C11-C16-C15	176.8 (2)	C22—C17—S1—O1	26.7 (2)
C12-C11-C16-N2	179.2 (2)	C18—C17—S1—O1	-153.07 (19)
C10-C11-C16-N2	-4.4 (3)	C22—C17—S1—N1	-86.0(2)
C22-C17-C18-C19	-1.0 (4)	C18—C17—S1—N1	94.2 (2)
S1—C17—C18—C19	178.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2…O1	0.93	2.32	2.912 (3)	121