organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1H-Benzimidazol-2-yl)phenol

S. M. Prakash,^{a,b} A. Thiruvalluvar,^c* S. Rosepriya^c and N. Srinivasan^{a,d}

^aResearch and Development Center, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, ^bDepartment of Chemistry, Annamaliar College of Engineering, Mudaiyur 606 902, Tamilnadu, India, ^cPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and ^dDepartment of Chemistry, S.K.P. Engineering College, Thiruvannamalai 606 611, Tamilnadu, India Correspondence e-mail: thiruvalluvar.a@gmail.com

Received 15 January 2014; accepted 20 January 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.067; wR factor = 0.131; data-to-parameter ratio = 15.6.

The title molecule, C₁₃H₁₀N₂O, is essentially planar, the maximum deviation from the plane of the non-H atoms being 0.016 (2) Å. The imidazole ring makes a dihedral angle of $0.37 (13)^{\circ}$ with the attached benzene ring. An intramolecular $O-H \cdots N$ hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked through N-H···O hydrogen bonds, forming chains propagating in [001]. The crystal packing also features four $\pi - \pi$ stacking interactions involving the imidazole ring, fused benzene ring and attached benzene ring system [centroid–centroid distances = 3.6106 (17), 3.6108 (17), 3.6666 (17) and 3.6668 (17) Å].

Related literature

For applications and general background to substituted benzimidazole derivatives, see: Nakamura et al. (2004); Su Han & Kim (2001); Roman et al. 2007; Congiu et al. 2008. For related crystal structures, see: Han (2010); Zhan et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). Note added in proof: a low temperature determination of the same structure has been reported [Konoshima, H., Nagao, S., Kiyota, I., Amimoto, K., Yamamoto, N., Sekine, M., Nakata, M., Furukawa, K. & Sekiya, H. (2012). Phys. Chem. Chem. Phys. 14, 16448-16457].

Monoclinic, $P2_1/c$

a = 16.864 (4) Å

Crystal data $C_{13}H_{10}N_2O$

 $M_r = 210.23$

b = 4.7431 (8) Å c = 12.952 (2) Å $\beta = 102.34 \ (2)^{\circ}$ V = 1012.1 (3) Å³ Z = 4

Data collection

4073 measured reflections
2338 independent reflections
1184 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.037$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	H atoms treated by a mixture of
$wR(F^2) = 0.131$	independent and constrained
S = 1.03	refinement
2338 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
150 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O26 ⁱ	0.91 (2)	1.96 (3)	2.851 (3)	169 (2)
O26−H26···N3	0.82	1.81	2.551 (3)	150

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 and PLATON.

SMP thanks Annamaliar College of Engineering, Mudaiyur, for providing constant support for this research study. NS is thankful to S·K.P. Engineering College, Thiruvannamalai, for providing constant support for this research work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5377).

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.
- Congiu, C., Cocco, M. T. & Onnis, V. (2008). Bioorg. Med. Chem. Lett. 18, 989-993
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Han, L.-L. (2010). Acta Cryst. E66, o2047.
- Nakamura, T., Kakinuma, H., Umemiya, H., Amada, H., Miyata, N., Taniguchi, K., Bando, K. & Sato, M. (2004). Bioorg. Med. Chem. Lett. 14, 333-336.
- Roman, G., Riley, J. G., Vlahakis, J. Z., Kinobe, R. T., Brien, J. F., Nakatsu, K. & Szarek, W. A. (2007). Bioorg. Med. Chem. 15, 3225-3234.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Su Han, M. & Kim, D. H. (2001). Bioorg. Med. Chem. Lett. 11, 1425-1427.
- Zhan, Q.-G., Liu, M.-S., Zeng, R.-H., Yang, D.-Q. & Cai, Y.-P. (2007). Acta Crvst. E63, 03470.

 $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-3}$

 $0.30 \times 0.30 \times 0.25 \text{ mm}$

T = 293 K

supporting information

Acta Cryst. (2014). E70, o184 [doi:10.1107/S1600536814001366]

2-(1H-Benzimidazol-2-yl)phenol

S. M. Prakash, A. Thiruvalluvar, S. Rosepriya and N. Srinivasan

S1. Comment

Imidazole derivatives have occupied a unique place in the field of medicinal chemistry. Many of the substituted imidazoles are known as inhibitors of P38 map kinase, fungicides and herbicides and therapeutic agents (Nakamura *et al.*, 2004; Su Han & Kim, 2001). Being a polar and ionisable aromatic compounds, it improves pharmacokinetic characteristics of lead molecules and thus used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine and nucleic acid (Roman *et al.*, 2007; Congiu *et al.*, 2008). Owing to the wide range of pharmacological and biological activities, the synthesis of imidazoles has become an important target in current years. We are interested to study the biological and photo physical properties of 2-(1*H*-benzimidazol-2-yl)phenol. The related compounds whose structures have been solved by X-ray are 2-(1*H*-Benzimidazol-2-yl)-4,6-dichlorophenol (Han, 2010) and 4-(1*H*-Benzo[*d*]imidazol-2-yl)phenol (Zhan *et al.*, 2007). As part of our research, we have synthesized the title compound and report its crystal structure here.

The title molecule, $C_{13}H_{10}N_2O$, (Fig. 1), is essentially planar, the maximum deviation from the plane of the non-H atoms being 0.016 (2) Å for O26. The imidazole ring (N1/C2/N3/C9/C8) makes dihedral angle of 0.37 (13)° with the attached benzene ring (C21—C26).

An intramolecular O26—H26···N3 hydrogen bond generates an S(6) ring motif (Bernstein *et al.*, 1995). In the crystal, symmetry-related molecules are linked through N1—H1···O26 hydrogen bonds, forming an one dimensional chains propagating in [001] (Fig. 2).

The crystal packing also features four π - π stacking interactions. [Cg1— $Cg2^i = 3.6668$ (17) Å, Cg1— $Cg3^{ii} = 3.6106$ (17) Å, Cg2— $Cg1^{ii} = 3.6666$ (17) Å and Cg3— $Cg1^i = 3.6108$ (17) Å, symmetry codes (i): x, 1 + y, z; (ii): x, -1 + y, z. Where, Cg1 is the centroid of the imidazole ring (N1/C2/N3/C9/C8), Cg2 is the centroid of the fused benzene ring (C4—C9) and Cg3 is the centroid of the attached benzene ring (C21—C26) respectively] (Fig. 3). The N—C, C=N, C_{ar}—C_{ar} and C—O bond lengths in (I) are within their normal ranges (Allen *et al.*, 1987).

S2. Experimental

To the pure *o*-phenylenediamine (1.6 g, 15 mmol) in ethanol (10 ml), 2-hydroxybenzaldehyde (1.6 g, 15 mmol) and ammonium acetate (3 g) was added about 1 h by maintaining the temperature at 353 K. The reaction mixture was refluxed for 48 hrs and extracted with dichloromethane. The solid separated was purified by column chromatography using benzene as the eluent. Yield: 1.89 g; 60%. The compound was dissolved in benzene and ethyl acetate (9:1) mixture and allowed to slow evaporation for two days, to obtain crystals suitable for X-ray diffraction studies.

S3. Refinement

The N-bound H atom was located in a difference Fourier map and refined freely; N1—H1 = 0.91 (2) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 and Csp^2 —H = 0.93 Å. $U_{iso}(H) = 1.5U_{eq}(O)$ and $1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the intramolecular O—H…N hydrogen bond.

Figure 2

The packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Figure 3

Part of the crystal structure of compound, showing the formation of π - π stacking interactions.

2-(1H-Benzimidazol-2-yl)phenol

Crystal data

C₁₃H₁₀N₂O $M_r = 210.23$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 16.864 (4) Å b = 4.7431 (8) Å c = 12.952 (2) Å $\beta = 102.34$ (2)° V = 1012.1 (3) Å³ Z = 4

Data collection

Agilent Xcalibur Eos Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.3291 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2013) $T_{\min} = 0.829, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.131$ S = 1.032338 reflections 150 parameters 0 restraints F(000) = 440 $D_x = 1.380 \text{ Mg m}^{-3}$ Melting point: 386 K Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 612 reflections $\theta = 4.8-23.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.30 \times 0.30 \times 0.25 \text{ mm}$

4073 measured reflections 2338 independent reflections 1184 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 29.2^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -23 \rightarrow 10$ $k = -3 \rightarrow 6$ $l = -15 \rightarrow 17$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement

$w = 1/[\sigma^2(F_o^2) + (0.0339P)^2]$	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O26	0.20929 (12)	0.7018 (4)	0.54707 (12)	0.0640 (8)	
N1	0.25872 (13)	0.5474 (4)	0.25071 (16)	0.0459 (8)	
N3	0.28328 (12)	0.4482 (4)	0.42170 (14)	0.0448 (7)	
C2	0.24046 (15)	0.6055 (5)	0.34606 (18)	0.0420 (8)	
C4	0.38923 (16)	0.0807 (5)	0.4149 (2)	0.0561 (10)	
C5	0.42862 (16)	-0.0543 (5)	0.3475 (2)	0.0603 (11)	
C6	0.41275 (17)	0.0093 (6)	0.2410 (2)	0.0621 (11)	
C7	0.35740 (17)	0.2089 (5)	0.1985 (2)	0.0554 (10)	
C8	0.31718 (15)	0.3444 (5)	0.26679 (19)	0.0438 (9)	
C9	0.33257 (15)	0.2825 (5)	0.37415 (18)	0.0434 (9)	
C21	0.18120 (15)	0.8077 (4)	0.36215 (19)	0.0424 (8)	
C22	0.13653 (15)	0.9671 (5)	0.28084 (19)	0.0512 (9)	
C23	0.08097 (17)	1.1585 (5)	0.2980 (2)	0.0614 (11)	
C24	0.06758 (18)	1.1945 (5)	0.3980 (3)	0.0640 (11)	
C25	0.11064 (18)	1.0406 (5)	0.4800 (2)	0.0617 (11)	
C26	0.16741 (16)	0.8493 (5)	0.4634 (2)	0.0485 (9)	
H1	0.2390 (15)	0.643 (5)	0.190 (2)	0.068 (9)*	
H4	0.40039	0.03737	0.48660	0.0673*	
Н5	0.46693	-0.19179	0.37380	0.0722*	
H6	0.44063	-0.08687	0.19714	0.0748*	
H7	0.34708	0.25216	0.12684	0.0666*	
H22	0.14474	0.94254	0.21266	0.0613*	
H23	0.05206	1.26504	0.24222	0.0737*	
H24	0.02909	1.32393	0.40988	0.0768*	
H25	0.10138	1.06568	0.54762	0.0741*	
H26	0.23899	0.58738	0.52659	0.0960*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

U^{23}
-0.0050 (9)
0.0028 (11)
-0.0010 (10)
-0.0032 (12)
-0.0017 (14)
-0.0089 (16)
-0.0132 (16)

supporting information

C7	0.067 (2)	0.0610 (17)	0.0436 (17)	-0.0111 (16)	0.0241 (15)	-0.0073 (14)
C8	0.0454 (16)	0.0462 (14)	0.0410 (15)	-0.0080 (13)	0.0122 (12)	-0.0022 (12)
C9	0.0443 (16)	0.0488 (14)	0.0370 (15)	-0.0055 (13)	0.0087 (12)	-0.0015 (12)
C21	0.0454 (16)	0.0424 (13)	0.0391 (15)	-0.0070 (12)	0.0087 (12)	-0.0033 (12)
C22	0.0537 (17)	0.0547 (15)	0.0440 (17)	-0.0030 (14)	0.0081 (13)	0.0020 (13)
C23	0.0558 (19)	0.0583 (17)	0.067 (2)	0.0025 (15)	0.0062 (16)	0.0056 (15)
C24	0.0547 (19)	0.0539 (16)	0.085 (2)	0.0048 (14)	0.0187 (17)	-0.0042 (17)
C25	0.067 (2)	0.0645 (18)	0.059 (2)	0.0004 (16)	0.0255 (16)	-0.0112 (15)
C26	0.0534 (18)	0.0508 (15)	0.0410 (16)	-0.0033 (13)	0.0092 (13)	-0.0051 (13)

Geometric parameters (Å, °)

O26—C26	1.355 (3)	C21—C26	1.394 (4)
O26—H26	0.8200	C21—C22	1.382 (3)
N1—C2	1.363 (3)	C22—C23	1.357 (4)
N1—C8	1.362 (3)	C23—C24	1.372 (5)
N3—C9	1.381 (3)	C24—C25	1.363 (4)
N3—C2	1.317 (3)	C25—C26	1.369 (4)
N1—H1	0.91 (2)	C4—H4	0.9300
C2—C21	1.432 (3)	С5—Н5	0.9300
C4—C9	1.376 (4)	С6—Н6	0.9300
C4—C5	1.364 (4)	С7—Н7	0.9300
C5—C6	1.381 (4)	С22—Н22	0.9300
C6—C7	1.361 (4)	С23—Н23	0.9300
C7—C8	1.383 (4)	C24—H24	0.9300
C8—C9	1.390 (3)	С25—Н25	0.9300
С26—О26—Н26	109.00	C22—C23—C24	119.8 (2)
C2—N1—C8	107.5 (2)	C23—C24—C25	120.1 (3)
C2—N3—C9	106.09 (19)	C24—C25—C26	120.4 (3)
C8—N1—H1	127.3 (16)	O26—C26—C21	121.1 (2)
C2—N1—H1	124.9 (16)	O26—C26—C25	118.6 (2)
N1—C2—N3	111.4 (2)	C21—C26—C25	120.3 (2)
N1—C2—C21	124.5 (2)	С5—С4—Н4	121.00
N3—C2—C21	124.0 (2)	С9—С4—Н4	121.00
C5—C4—C9	118.3 (2)	С4—С5—Н5	119.00
C4—C5—C6	121.3 (2)	С6—С5—Н5	119.00
C5—C6—C7	121.7 (3)	С5—С6—Н6	119.00
C6—C7—C8	116.9 (2)	С7—С6—Н6	119.00
N1—C8—C7	132.0 (2)	С6—С7—Н7	122.00
C7—C8—C9	122.0 (2)	С8—С7—Н7	122.00
N1—C8—C9	106.1 (2)	C21—C22—H22	119.00
C4—C9—C8	119.8 (2)	С23—С22—Н22	119.00
N3—C9—C8	108.9 (2)	С22—С23—Н23	120.00
N3—C9—C4	131.3 (2)	С24—С23—Н23	120.00
C2—C21—C22	122.6 (2)	C23—C24—H24	120.00
C2-C21-C26	119.6 (2)	C25—C24—H24	120.00
C22—C21—C26	117.8 (2)	C24—C25—H25	120.00

supporting information

C21—C22—C23	121.6 (2)	С26—С25—Н25	120.00
C8—N1—C2—N3	-0.8 (3)	C6—C7—C8—N1	-179.1 (3)
C8—N1—C2—C21	-179.7 (2)	C6—C7—C8—C9	0.5 (4)
C2—N1—C8—C7	180.0 (3)	N1-C8-C9-N3	0.1 (3)
C2—N1—C8—C9	0.4 (3)	N1—C8—C9—C4	179.5 (2)
C9—N3—C2—N1	0.8 (3)	C7—C8—C9—N3	-179.6 (2)
C9—N3—C2—C21	179.7 (2)	C7—C8—C9—C4	-0.1 (4)
C2—N3—C9—C4	-179.9 (3)	C2—C21—C22—C23	-179.7 (2)
C2—N3—C9—C8	-0.6 (3)	C26—C21—C22—C23	0.1 (4)
N1—C2—C21—C22	-0.4 (4)	C2-C21-C26-O26	0.1 (4)
N1-C2-C21-C26	179.9 (2)	C2-C21-C26-C25	-179.6 (2)
N3—C2—C21—C22	-179.2 (2)	C22—C21—C26—O26	-179.6 (2)
N3—C2—C21—C26	1.1 (4)	C22—C21—C26—C25	0.7 (4)
C9—C4—C5—C6	0.3 (4)	C21—C22—C23—C24	-0.7 (4)
C5—C4—C9—N3	179.0 (3)	C22—C23—C24—C25	0.7 (4)
C5—C4—C9—C8	-0.3 (4)	C23—C24—C25—C26	0.0 (4)
C4—C5—C6—C7	0.1 (4)	C24—C25—C26—O26	179.6 (2)
C5—C6—C7—C8	-0.4 (4)	C24—C25—C26—C21	-0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1…O26 ⁱ	0.91 (2)	1.96 (3)	2.851 (3)	169 (2)
O26—H26…N3	0.82	1.81	2.551 (3)	150

Symmetry code: (i) x, -y+3/2, z-1/2.