

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# N-Ethyl-2,2-dimethyl-N-(3-methylphenyl)propanamide

### B. S. Palakshamurthy,<sup>a</sup> P. A. Suchetan,<sup>b</sup> S Sreenivasa,<sup>c\*</sup> N. K. Lokanath<sup>d</sup> and T Madhu Chakrapani Rao<sup>e</sup>

<sup>a</sup>Department of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, <sup>b</sup>Department of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, <sup>c</sup>Department of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, <sup>d</sup>Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India, and <sup>e</sup>Tadimety Aromatics Pyt Ltd, Hirehally Industrial Area, Tumkur, Karnataka 572 168, India Correspondence e-mail: drsreenivasa@yahoo.co.in

Received 24 December 2013; accepted 23 January 2014

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.057; wR factor = 0.160; data-to-parameter ratio = 11.7.

In the title compound, C<sub>14</sub>H<sub>21</sub>NO, the conformation across the N-C(O) bond is syn-periplanar, the C-N-C-C torsion being  $-5.9(5)^{\circ}$ . The atoms of the ethyl group attached to the N atom are disordered over two sets of sites with occupancy ratios of 0.65 (2):0.35 (2) (CH<sub>2</sub>) and 0.689 (14):0.311 (14)  $(CH_3)$  are linked by very weak  $C-H \cdots O$  interactions forming C(8) chains along [001].  $C-H\cdots\pi$  interactions link the molecules along the *c*-axis direction.

#### **Related literature**

For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological activity of amides, see: Manojkumar et al. (2013a,b). Amide groups can provide structural rigidity to molecules, see: Sreenivasa et al. (2013).



a = 7.631 (4) Å

b = 10.878 (7) Å c = 8.350 (3) Å

## **Experimental**

| Crystal data                       |  |
|------------------------------------|--|
| C <sub>14</sub> H <sub>21</sub> NO |  |
| $M_r = 219.32$                     |  |
| Monoclinic, P2,                    |  |

 $\beta = 105.60 \ (2)^{\circ}$ V = 667.6 (6) Å<sup>3</sup> Z = 2Cu Ka radiation

#### Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.893, T_{\max} = 0.921$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$  $wR(F^2) = 0.160$ S = 1.062016 reflections 172 parameters

 $\mu = 0.52 \text{ mm}^{-1}$ T - 294 K $0.22 \times 0.20 \times 0.16 \text{ mm}$ 

3786 measured reflections 2016 independent reflections 1883 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.034$ 

55 restraints H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centoid of the benzene ring.

| $D - H \cdots A$                             | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------|----------------|-------------------------|--------------|--------------------------------------|
| $C1-H1\cdots O^{i}$ $C14-H14A\cdots Cg^{ii}$ | 0.93           | 2.62                    | 3.481 (2)    | 153                                  |
|                                              | 0.96           | 2.85                    | 3.769 (8)    | 161                                  |

Symmetry codes: (i) x + 1, y, z + 1; (ii) x, y, z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

The authors acknowledge the IOE X-ray diffractometer facility, University of Mysore, Mysore, for the data collection. BSPM thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his support and guidence.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5371).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem. 2, 730-737.
- Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, M803, doi:10.3390/M803.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sreenivasa, S., ManojKumar, K. E., Kempaiah, A., Suchetan, P. A. & Palakshamurthy, B. S. (2013). Acta Cryst. E69, 0761.

organic compounds

# supporting information

## Acta Cryst. (2014). E70, o223 [doi:10.1107/S1600536814001718]

# N-Ethyl-2,2-dimethyl-N-(3-methylphenyl)propanamide

# B. S. Palakshamurthy, P. A. Suchetan, S Sreenivasa, N. K. Lokanath and T Madhu Chakrapani Rao

### S1. Comment

Amides are very common in nature, formed easily and provides structural rigidity to the molecules (Sreenivasa *et al.* 2013). Amides show a broad spectrum of pharmacological properties, including antibacterial (Manojkumar *et al.* 2013*a*), anti-inflammatory, antioxidant, analgesic and antiviral activity (Manojkumar *et al.* 2013*b*). Keeping this in mind, the crystal structure of the title compound was determined.

### **S2. Experimental**

N-Ethyl-3-methylaniline (1.00g,7.4 mmol) was taken in dry dichloromethane (10 mL) and the solution was cooled to 0 °C. To this reaction mixture 2,2-dimethylpropanoyl chloride (0.888 g, 7.4 mmol) in dichloromethane and triethylamine (1.49g, 1.48 mmol) were added slowly and the mixture was heated to 50°C for 4 hours. Reaction was monitored by TLC. Reaction mixture was cooled and washed with 10% NaHCO<sub>3</sub> solution. The organic layer was separated, dried and concentrated to obtained crude product which was purified by column chromatography using petroleum ether: ethyl acetate (7:3) as eluent. Yellow prisms of the title compound were obtained from slow evapouration of the solution of the compound in petroleum ether: ethyl acetate (7:3).

### **S3. Refinement**

The H atoms were positioned with idealized geometry using a riding model with C-H = 0.93-0.96Å. All H atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the Ueq of the parent atom). Flack parameter value (Flack, 1983) of 0.5 (5) was obtained in the final structure factor calculation, the presence of pseudosymmetry can lead to uncertainties about the correct space group, especially in the presence of twinning.

The C8 and C9 atoms of the ethyl group attached to N atom are disordered with site occupation factors of 0.65 (2):0.35 (2) and 0.689 (14):0.311 (14) respectively.



### Figure 1

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Only the major components of the disordered atoms are shown.



#### Figure 2

Molecular packing foming C(8) chains with hydrogen bonding shown as dashed lines.



Figure 3

Stacking of molecules along c axis through C—H···Cg interactions. Cg is the centroid of the benzene ring. H-atoms not involved in H-bonding are ommitted for clarity.

*N*-Ethyl-2,2-dimethyl-*N*-(3-methylphenyl)propanamide

#### Crystal data

C<sub>14</sub>H<sub>21</sub>NO  $M_r = 219.32$ Monoclinic, P2<sub>1</sub> Hall symbol: P 2yb a = 7.631 (4) Å b = 10.878 (7) Å c = 8.350 (3) Å  $\beta = 105.60$  (2)° V = 667.6 (6) Å<sup>3</sup> Z = 2F(000) = 240

#### Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{\min} = 0.893$ ,  $T_{\max} = 0.921$ 3786 measured reflections

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.057$  $wR(F^2) = 0.160$ S = 1.062016 reflections 172 parameters 55 restraints 0 constraints Primary atom site location: structure-invariant direct methods Prism  $D_x = 1.091 \text{ Mg m}^{-3}$ Melting point: 492 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 172 reflections  $\theta = 5.5-65.5^{\circ}$   $\mu = 0.52 \text{ mm}^{-1}$  T = 294 KPrism, yellow  $0.22 \times 0.20 \times 0.16 \text{ mm}$ 

2016 independent reflections 1883 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.034$   $\theta_{max} = 65.5^{\circ}, \ \theta_{min} = 5.5^{\circ}$   $h = -8 \rightarrow 8$   $k = -11 \rightarrow 12$   $I = -9 \rightarrow 9$ 1012 standard reflections every 2 reflections intensity decay: 1%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.093P)^2 + 0.1495P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.34$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.16$  e Å<sup>-3</sup> Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc<sup>2</sup>\lambda<sup>3</sup>/sin(2\theta)]<sup>-1/4</sup> Extinction coefficient: 0.018 (4)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|-------------|-------------|-----------------------------|-----------|
| 0    | 0.2284 (2)  | 0.7636 (3)  | 0.6964 (2)  | 0.0725 (7)                  |           |
| Ν    | 0.4145 (3)  | 0.7530 (3)  | 0.9461 (2)  | 0.0670 (8)                  |           |
| C11  | 0.5373 (3)  | 0.7418 (3)  | 0.6942 (3)  | 0.0489 (6)                  |           |
| C6   | 0.8300 (4)  | 0.8185 (3)  | 1.2843 (3)  | 0.0494 (6)                  |           |
| C10  | 0.3855 (3)  | 0.7522 (3)  | 0.7806 (3)  | 0.0452 (6)                  |           |
| C4   | 0.5820 (3)  | 0.7342 (3)  | 1.0730 (3)  | 0.0487 (7)                  |           |
| C5   | 0.6765 (4)  | 0.8340 (3)  | 1.1519 (3)  | 0.0520 (7)                  |           |
| H5   | 0.6374      | 0.9128      | 1.1164      | 0.062*                      |           |
| C3   | 0.6371 (4)  | 0.6191 (3)  | 1.1298 (3)  | 0.0586 (8)                  |           |
| H3   | 0.5716      | 0.5510      | 1.0789      | 0.070*                      |           |
| C2   | 0.7875 (4)  | 0.6028 (3)  | 1.2607 (4)  | 0.0602 (8)                  |           |
| H2   | 0.8249      | 0.5239      | 1.2975      | 0.072*                      |           |
| C1   | 0.8829 (4)  | 0.7029 (3)  | 1.3376 (3)  | 0.0520(7)                   |           |
| H1   | 0.9848      | 0.6916      | 1.4271      | 0.062*                      |           |
| C7   | 0.9325 (5)  | 0.9283 (4)  | 1.3690 (5)  | 0.0834 (11)                 |           |
| H7A  | 0.9820      | 0.9109      | 1.4851      | 0.125*                      |           |
| H7B  | 0.8515      | 0.9974      | 1.3563      | 0.125*                      |           |
| H7C  | 1.0295      | 0.9472      | 1.3200      | 0.125*                      |           |
| C14  | 0.4518 (6)  | 0.7552 (8)  | 0.5111 (5)  | 0.129 (2)                   |           |
| H14A | 0.5454      | 0.7608      | 0.4542      | 0.193*                      |           |
| H14B | 0.3787      | 0.8283      | 0.4908      | 0.193*                      |           |
| H14C | 0.3766      | 0.6849      | 0.4710      | 0.193*                      |           |
| C13  | 0.6307 (11) | 0.6209 (5)  | 0.7262 (9)  | 0.136 (3)                   |           |
| H13A | 0.5417      | 0.5564      | 0.7079      | 0.205*                      |           |
| H13B | 0.7044      | 0.6178      | 0.8392      | 0.205*                      |           |
| H13C | 0.7066      | 0.6103      | 0.6523      | 0.205*                      |           |
| C12  | 0.6785 (8)  | 0.8393 (6)  | 0.7487 (7)  | 0.135 (3)                   |           |
| H12A | 0.7324      | 0.8325      | 0.8663      | 0.202*                      |           |
| H12B | 0.6230      | 0.9187      | 0.7237      | 0.202*                      |           |
| H12C | 0.7708      | 0.8293      | 0.6910      | 0.202*                      |           |
| C8A  | 0.2598 (9)  | 0.7879 (9)  | 1.0135 (7)  | 0.052 (2)                   | 0.65 (2)  |
| H8A1 | 0.1744      | 0.8395      | 0.9348      | 0.063*                      | 0.65 (2)  |
| H8A2 | 0.3035      | 0.8329      | 1.1169      | 0.063*                      | 0.65 (2)  |
| C8B  | 0.2459 (15) | 0.7104 (19) | 1.0046 (14) | 0.059 (4)                   | 0.35 (2)  |
| H8B1 | 0.1529      | 0.6742      | 0.9142      | 0.070*                      | 0.35 (2)  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| H8B2 | 0.2801      | 0.6522      | 1.0958      | 0.070*    | 0.35 (2)   |  |
|------|-------------|-------------|-------------|-----------|------------|--|
| C9A  | 0.1691 (10) | 0.6700 (7)  | 1.0428 (8)  | 0.087 (2) | 0.689 (14) |  |
| H9A1 | 0.1289      | 0.6256      | 0.9400      | 0.131*    | 0.689 (14) |  |
| H9A2 | 0.0664      | 0.6887      | 1.0843      | 0.131*    | 0.689 (14) |  |
| H9A3 | 0.2542      | 0.6207      | 1.1226      | 0.131*    | 0.689 (14) |  |
| C9B  | 0.1877 (19) | 0.8243 (14) | 1.0567 (15) | 0.071 (4) | 0.311 (14) |  |
| H9B1 | 0.2883      | 0.8636      | 1.1337      | 0.107*    | 0.311 (14) |  |
| H9B2 | 0.0925      | 0.8096      | 1.1096      | 0.107*    | 0.311 (14) |  |
| H9B3 | 0.1429      | 0.8765      | 0.9617      | 0.107*    | 0.311 (14) |  |
|      |             |             |             |           |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 0   | 0.0395 (10) | 0.130 (2)   | 0.0405 (9)  | 0.0096 (12)  | -0.0029 (8)  | -0.0003 (11) |
| Ν   | 0.0294 (10) | 0.136 (2)   | 0.0338 (10) | 0.0065 (14)  | 0.0055 (8)   | 0.0032 (14)  |
| C11 | 0.0481 (13) | 0.0608 (15) | 0.0394 (12) | 0.0028 (13)  | 0.0147 (10)  | 0.0013 (11)  |
| C6  | 0.0429 (14) | 0.0613 (17) | 0.0417 (12) | -0.0053 (13) | 0.0072 (10)  | 0.0004 (12)  |
| C10 | 0.0375 (12) | 0.0603 (14) | 0.0343 (11) | -0.0002 (12) | 0.0038 (9)   | -0.0004 (11) |
| C4  | 0.0336 (12) | 0.0806 (19) | 0.0298 (10) | 0.0034 (13)  | 0.0051 (9)   | 0.0036 (12)  |
| C5  | 0.0456 (15) | 0.0645 (17) | 0.0427 (13) | 0.0073 (13)  | 0.0063 (11)  | 0.0077 (12)  |
| C3  | 0.0559 (17) | 0.0689 (19) | 0.0469 (15) | -0.0075 (15) | 0.0067 (13)  | -0.0085 (13) |
| C2  | 0.0631 (18) | 0.0565 (17) | 0.0542 (15) | 0.0061 (14)  | 0.0040 (14)  | 0.0069 (13)  |
| C1  | 0.0417 (15) | 0.0677 (18) | 0.0404 (12) | 0.0050 (13)  | 0.0003 (11)  | 0.0069 (12)  |
| C7  | 0.079 (2)   | 0.073 (2)   | 0.083 (3)   | -0.0182 (19) | -0.0049 (19) | -0.0069 (18) |
| C14 | 0.086 (3)   | 0.254 (7)   | 0.0529 (18) | 0.027 (4)    | 0.0323 (19)  | 0.021 (3)    |
| C13 | 0.189 (6)   | 0.118 (4)   | 0.150 (5)   | 0.083 (4)    | 0.126 (5)    | 0.052 (3)    |
| C12 | 0.134 (4)   | 0.178 (5)   | 0.125 (4)   | -0.087 (4)   | 0.091 (4)    | -0.062 (4)   |
| C8A | 0.038 (3)   | 0.075 (5)   | 0.045 (2)   | 0.006 (3)    | 0.0115 (19)  | -0.008 (3)   |
| C8B | 0.037 (5)   | 0.083 (10)  | 0.054 (5)   | -0.014 (6)   | 0.009 (4)    | 0.001 (5)    |
| C9A | 0.066 (4)   | 0.110 (5)   | 0.101 (4)   | -0.013 (3)   | 0.049 (3)    | 0.001 (4)    |
| C9B | 0.057 (7)   | 0.095 (8)   | 0.073 (7)   | 0.006 (6)    | 0.035 (5)    | 0.003 (6)    |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| O-C10   | 1.222 (3)  | C7—H7C   | 0.9600     |  |
|---------|------------|----------|------------|--|
| N-C10   | 1.339 (3)  | C14—H14A | 0.9600     |  |
| N—C4    | 1.439 (3)  | C14—H14B | 0.9600     |  |
| N—C8A   | 1.488 (7)  | C14—H14C | 0.9600     |  |
| N—C8B   | 1.564 (12) | C13—H13A | 0.9600     |  |
| C11—C13 | 1.486 (5)  | C13—H13B | 0.9600     |  |
| C11—C12 | 1.493 (5)  | C13—H13C | 0.9600     |  |
| C11—C14 | 1.499 (5)  | C12—H12A | 0.9600     |  |
| C11—C10 | 1.525 (3)  | C12—H12B | 0.9600     |  |
| C6—C1   | 1.359 (4)  | C12—H12C | 0.9600     |  |
| C6—C5   | 1.388 (4)  | C8A—C9A  | 1.508 (13) |  |
| С6—С7   | 1.497 (5)  | C8A—H8A1 | 0.9700     |  |
| C4—C3   | 1.364 (4)  | C8A—H8A2 | 0.9700     |  |
| C4—C5   | 1.370 (4)  | C8B—C9B  | 1.42 (3)   |  |
|         |            |          |            |  |

# supporting information

| С5—Н5                      | 0.9300                | C8B—H8B1                                             | 0.9700     |
|----------------------------|-----------------------|------------------------------------------------------|------------|
| C3—C2                      | 1.367 (4)             | C8B—H8B2                                             | 0.9700     |
| С3—Н3                      | 0.9300                | С9А—Н9А1                                             | 0.9600     |
| C2—C1                      | 1.370 (4)             | C9A—H9A2                                             | 0.9600     |
| C2—H2                      | 0.9300                | C9A—H9A3                                             | 0.9600     |
| C1—H1                      | 0.9300                | C9B—H9B1                                             | 0.9600     |
| C7—H7A                     | 0.9600                | C9B-H9B2                                             | 0.9600     |
| C7—H7B                     | 0.9600                | C9B—H9B3                                             | 0.9600     |
|                            | 0.9000                |                                                      | 0.9000     |
| C10—N—C4                   | 128.83 (19)           | H7B—C7—H7C                                           | 109.5      |
| C10—N—C8A                  | 117.7 (3)             | C11—C14—H14A                                         | 109.5      |
| C4 - N - C8A               | 117.7(3)              | C11—C14—H14B                                         | 109.5      |
| C10-N-C8B                  | 113.5 (5)             | H14A—C14—H14B                                        | 109.5      |
| C4 - N - C8B               | 113.3(3)              | C11 - C14 - H14C                                     | 109.5      |
| C13-C11-C12                | 107.6(5)              | H14A— $C14$ — $H14C$                                 | 109.5      |
| C13 - C11 - C12            | 107.0(3)<br>109.0(4)  | H14B-C14-H14C                                        | 109.5      |
| C12 - C11 - C14            | 109.0(1)<br>108.8(4)  | C11—C13—H13A                                         | 109.5      |
| C13 - C11 - C10            | 100.0(4)<br>111.7(3)  | C11—C13—H13B                                         | 109.5      |
| C12 - C11 - C10            | 111.7(3)<br>112.4(3)  | H13A - C13 - H13B                                    | 109.5      |
| C14 - C11 - C10            | 112.4(3)<br>107 3 (2) | C11_C13_H13C                                         | 109.5      |
| C1 - C6 - C5               | 107.5(2)<br>119.1(3)  | H13A_C13_H13C                                        | 109.5      |
| C1 - C6 - C7               | 119.1(3)<br>120.8(3)  | H13B_C13_H13C                                        | 109.5      |
| $C_{1} = C_{0} = C_{7}$    | 120.0(3)<br>120.1(3)  | C11_C12_H12A                                         | 109.5      |
| $C_{10} = C_{10} = C_{10}$ | 120.1(3)<br>117.2(2)  | C11 C12 H12R                                         | 109.5      |
| O = C10 = N                | 117.2(2)<br>110.2(2)  | $H_{12A} = C_{12} = H_{12B}$                         | 109.5      |
| V = C10 = C11              | 119.2(2)<br>122.6(2)  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5      |
| $\Gamma_{10}$              | 123.0(2)              | $H_{12A} C_{12} H_{12C}$                             | 109.5      |
| $C_3 = C_4 = C_3$          | 119.1(2)<br>121.1(2)  | H12A - C12 - H12C                                    | 109.5      |
| $C_{3}$ — $C_{4}$ —N       | 121.1(3)<br>110.2(2)  | $\mathbf{H12B} = \mathbf{C12} = \mathbf{H12C}$       | 109.5      |
| $C_3 - C_4 - N$            | 119.5 (3)             | $N = C \delta A = C \delta A$                        | 100.8 (0)  |
| C4 - C5 - U5               | 120.0 (5)             | N = COA = OA = HOA I                                 | 110.4      |
| С4—С5—П5                   | 119.7                 | C9A = C8A = H8A2                                     | 110.4      |
| $C_0 - C_3 - H_3$          | 119.7                 | $N = C \delta A = H \delta A 2$                      | 110.4      |
| C4 - C3 - C2               | 120.7 (3)             | $U_{A} = C_{A} = H_{A} Z$                            | 110.4      |
| C4 - C3 - H3               | 119.6                 | H8A1 - C8A - H8A2                                    | 108.6      |
| $C_2 = C_3 = H_3$          | 119.0                 | C9B - C8B - N                                        | 100.9 (13) |
| $C_3 = C_2 = C_1$          | 119.9 (3)             | C9B - C8B - H8B1                                     | 111.6      |
| $C_3 - C_2 - H_2$          | 120.1                 | N = C8B = H8B1                                       | 111.6      |
| CI - C2 - H2               | 120.1                 | C9B - C8B - H8B2                                     | 111.6      |
| $C_{0}$                    | 120.6 (2)             | N = C8B = H8B2                                       | 111.6      |
| C6—C1—HI                   | 119.7                 | H8B1—C8B—H8B2                                        | 109.4      |
| C2—C1—H1                   | 119.7                 | C8A—C9A—H9A1                                         | 109.5      |
| С6—С/—Н/А                  | 109.5                 | С8А—С9А—Н9А2                                         | 109.5      |
| С6—С7—Н7В                  | 109.5                 | H9A1—C9A—H9A2                                        | 109.5      |
| H/A—C/—H7B                 | 109.5                 | C8A—C9A—H9A3                                         | 109.5      |
| С6—С/—Н7С                  | 109.5                 | H9A1—C9A—H9A3                                        | 109.5      |
| H/A—C/—H7C                 | 109.5                 | Н9А2—С9А—Н9А3                                        | 109.5      |
| C4—N—C10—O                 | 175 9 (3)             | C8B-N-C4-C5                                          | -109 8 (9) |
|                            |                       |                                                      | 107.0(7)   |

| $C_{A}$ N $C_{10}$ O | -0.8(6)    | $C^2$ $C^4$ $C^5$ $C^6$         | 22(4)      |
|----------------------|------------|---------------------------------|------------|
| CoA = N = C I 0 = 0  | -9.8 (0)   | $C_{3} - C_{4} - C_{3} - C_{0}$ | 2.2 (4)    |
| C8B—N—C10—O          | 25.7 (9)   | N—C4—C5—C6                      | 174.5 (2)  |
| C4—N—C10—C11         | -5.9 (5)   | C1—C6—C5—C4                     | -1.7 (4)   |
| C8A—N—C10—C11        | 168.3 (5)  | C7—C6—C5—C4                     | 179.8 (3)  |
| C8B-N-C10-C11        | -156.1 (9) | C5—C4—C3—C2                     | -1.8 (4)   |
| C13—C11—C10—O        | -116.5 (5) | N—C4—C3—C2                      | -174.0 (3) |
| C12—C11—C10—O        | 122.5 (4)  | C4—C3—C2—C1                     | 0.9 (5)    |
| C14—C11—C10—O        | 2.9 (5)    | C5—C6—C1—C2                     | 0.8 (4)    |
| C13—C11—C10—N        | 65.3 (5)   | C7—C6—C1—C2                     | 179.3 (3)  |
| C12-C11-C10-N        | -55.7 (5)  | C3—C2—C1—C6                     | -0.4 (4)   |
| C14—C11—C10—N        | -175.2 (4) | C10—N—C8A—C9A                   | 94.8 (5)   |
| C10—N—C4—C3          | -88.2 (4)  | C4—N—C8A—C9A                    | -90.0 (5)  |
| C8A—N—C4—C3          | 97.3 (5)   | C8B—N—C8A—C9A                   | 4.1 (8)    |
| C8B—N—C4—C3          | 62.4 (9)   | C10—N—C8B—C9B                   | -107.2 (7) |
| C10—N—C4—C5          | 99.6 (4)   | C4—N—C8B—C9B                    | 97.4 (8)   |
| C8A—N—C4—C5          | -74.9 (5)  | C8A—N—C8B—C9B                   | -2.2 (6)   |
|                      |            |                                 |            |

# Hydrogen-bond geometry (Å, °)

Cg is the centoid of the benzene ring.

| D—H···A                    | D—H  | H···A | $D \cdots A$ | D—H···A |
|----------------------------|------|-------|--------------|---------|
| C1—H1···O <sup>i</sup>     | 0.93 | 2.62  | 3.481 (2)    | 153     |
| C14—H14 $A$ ···· $Cg^{ii}$ | 0.96 | 2.85  | 3.769 (8)    | 161     |

Symmetry codes: (i) *x*+1, *y*, *z*+1; (ii) *x*, *y*, *z*+1.