

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Methoxybenzoyl)-2-methylbenzenesulfonamide

S. Sreenivasa,^a B. S. Palakshamurthy,^b S. Madankumar,^c N. K. Lokanath^c and P. A. Suchetan^d*

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, ^bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, ^cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India, and ^dDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India

Correspondence e-mail: pasuchetan@yahoo.co.in

Received 19 January 2014; accepted 20 January 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.122; data-to-parameter ratio = 12.4.

In the title compound, $C_{15}H_{15}NO_4S$, the dihedral angle between the aromatic rings is 80.81 (1)° and the dihedral angle between the planes defined by the S–N–C=O fragment and the sulfonyl benzene ring is 86.34 (1)°. In the extended structure, dimers related by a crystallographic twofold axis are connected by pairs of both N–H···O hydrogen bonds and C–H···O interactions, which generate $R_2^2(8)$ and $R_2^2(14)$ loops, respectively. A weak aromatic π – π stacking interaction is also observed [centroid–centroid separation = 3.7305 (3) Å].

Related literature

For related structures, see: Gowda *et al.* (2010); Suchetan *et al.* (2010*a*,*b*, 2011); Sreenivasa *et al.* (2013, 2014).

Experimental

Crystal data $C_{15}H_{15}NO_4S$ $M_r = 305.34$

Monoclinic, C2/ca = 21.807 (2) Å b = 7.3521 (8) Åc = 18.602 (2) Å $\beta = 101.211 (3)^{\circ}$ $V = 2925.4 (5) \text{ Å}^{3}$ Z = 8

Data collection

Bruker APEXII CCD	16411 measured reflections
diffractometer	2431 independent reflections
Absorption correction: multi-scan	2174 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.060$
$T_{\rm min} = 0.504, \ T_{\rm max} = 0.629$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.122$	independent and constrained
S = 0.92	refinement
2431 reflections	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
196 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N1-H1\cdots O2^i$ 0.81 (3)
 2.16 (3)
 2.917 (2)
 164 (3)

 $C13-H13\cdots O2^i$ 0.93 2.56 3.288 (3)
 136

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the IOE X-ray diffractometer facility, University of Mysore, Mysore, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7188).

References

- Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, 0747.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sreenivasa, S., Nanjundaswamy, M. S., Madankumar, S., Lokanath, N. K., Suresha, E. & Suchetan, P. A. (2014). Acta Cryst. E70, o192.
- Sreenivasa, S., Palakshamurthy, B. S., Tonannavar, J., Jayashree, Y., Sudha, A. G. & Suchetan, P. A. (2013). Acta Cryst. E69, 01664–01665.
- Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, 0929.
- Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, 01024.
- Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, 01997.

Cu $K\alpha$ radiation

 $0.38 \times 0.29 \times 0.22$ mm

 $\mu = 2.11 \text{ mm}^{-1}$

T = 293 K

supporting information

Acta Cryst. (2014). E70, o193 [doi:10.1107/S1600536814001354]

N-(4-Methoxybenzoyl)-2-methylbenzenesulfonamide

S. Sreenivasa, B. S. Palakshamurthy, S. Madankumar, N. K. Lokanath and P. A. Suchetan

S1. Introduction

As a part of our continued efforts to study the crystal structures of N-(aroyl)-arylsulfonamides (Sreenivasa *et al.*, 2014), we report here the crystal structure of the title compound (I) (Fig 1).

S2. Experimental

S2.1. Synthesis and crystallization

The title compound (I) was prepared by refluxing a mixture of 4-methoxybenzoic acid, 2-methylbenzenesulfonamide and phosphorous oxychloride (POCl₃) for 2 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The compound obtained was filtered and later dried (Melting point: 447 K).

Colorless prisms of (I) were obtained from a slow evaporation of its aqueous methanolic solution at room temperature.

S2.2. Refinement

The H atom of the NH group was located in a difference map and later refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93-0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the U eq of the parent atom).

S3. Results and discussion

In I, the dihedral angle between the two aromatic rings is 80.81 (1)°. Compared to this, the dihedral angle is 73.9 (1)° in N-(benzoyl)-2-methylbenzenesulfonamide (II, Suchetan *et al.*, 2010*a*), 89.4 (1)° and 82.4 (1)° respectively in the two molecules in the asymmetric unit of N-(4-chlorobenzoyl)-2-methylbenzenesulfonamide (III, Suchetan *et al.*, 2010*b*), 88.1 (1)° and 83.5 (1)° respectively in the two molecules in the asymmetric unit of N-(4-methylbenzoyl)-2-methylbenzenesulfonamide (IV, Gowda *et al.*, 2010) and 83.8 (2)° in N-(4-nitrobenzoyl)-2-methylbenzenesulfonamide (V, Suchetan *et al.*, 2011). This shows that introducing a substituent into the para position of the benzoyl ring of II correlates with a increase of the dihedral angle between the aromatic rings. In contrast to this, the dihedral angle is small in N-(4-methoxybenzoyl)-benzenesulfonamide (VI, Sreenivasa *et al.*, 2014) and N-(4-methoxybenzoyl)-4-methylbenzene-sulfonamide (VII, Sreenivasa *et al.*, 2013), the dihedral angle between the planes defined by the S—N—C=O segment in the central chain and the sulfonyl benzene ring being 86.34 (1)°.

The supramolecular architecture of I is built in three stages. In the first stage, the molecules are linked into dimers by a crystallographic twofold axis through strong N1—H1···O2 hydrogen bonds, thus generating $R_2^2(8)$ rings (Figure 2). These dimers in the second stage are linked through an additional C13—H13···O2 interaction (Figure 2) forming $R_2^2(14)$ ring

motif. In the third stage, π (methylphenyl) $\dots \pi$ (methylphenyl) interactions stabilize the structure, Cg(methylphenyl) \dots Cg(methylphenyl) distance being 3.7305 (3)Å (Figure 3). The geometries and symmetry operations of various interactions are shown in Table 1.

Figure 1

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

Formation of $R_2^2(8)$ and $R_2^2(14)$ rings in I.

Figure 3

 $\pi \cdots \pi$ interaction observed in the crystal structure. Cg is the centroid of the methylphenyl ring.

N-(4-Methoxybenzoyl)-2-methylbenzenesulfonamide

Crystal data

C₁₅H₁₅NO₄S $M_r = 305.34$ Monoclinic, C2/c Hall symbol: -C 2yc a = 21.807 (2) Å b = 7.3521 (8) Å c = 18.602 (2) Å $\beta = 101.211$ (3)° V = 2925.4 (5) Å³ Z = 8F(000) = 1280

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator

Prism

 $D_x = 1.387 \text{ Mg m}^{-3}$ Melting point: 447 K Cu *Ka* radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 25 reflections $\theta = 4.1-64.7^{\circ}$ $\mu = 2.11 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.38 \times 0.29 \times 0.22 \text{ mm}$

phi and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.504, T_{\max} = 0.629$

$\theta_{\text{max}} = 64.7^{\circ}, \theta_{\text{min}} = 4.1^{\circ}$
$h = -25 \rightarrow 24$
$k = -7 \rightarrow 8$
$l = -20 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0923P)^2 + 2.3453P]$ where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.51 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement

Refinement on F^2

 $wR(F^2) = 0.122$

2431 reflections

196 parameters

direct methods

0 restraints

S = 0.92

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.046$

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
H1	0.0708 (12)	0.197 (3)	0.2813 (15)	0.051 (7)*	
S1	0.02647 (2)	0.20056 (7)	0.37394 (2)	0.0326 (2)	
O2	-0.02356 (6)	0.2872 (2)	0.32370 (7)	0.0408 (4)	
01	0.01308 (8)	0.0360 (2)	0.40868 (8)	0.0499 (4)	
03	0.15501 (7)	0.0483 (2)	0.41305 (7)	0.0464 (4)	
C8	0.17364 (9)	0.0372 (3)	0.29109 (9)	0.0335 (4)	
N1	0.07872 (7)	0.1589 (2)	0.32300 (8)	0.0346 (4)	
O4	0.28653 (7)	-0.0475 (2)	0.13921 (8)	0.0512 (4)	
C13	0.14633 (9)	0.0201 (3)	0.21740 (10)	0.0395 (5)	
H13	0.1031	0.0286	0.2031	0.047*	
C6	0.07042 (10)	0.2955 (3)	0.51353 (10)	0.0406 (5)	
H6	0.0606	0.1764	0.5238	0.049*	
C12	0.18241 (10)	-0.0093 (3)	0.16511 (10)	0.0399 (5)	
H12	0.1636	-0.0204	0.1160	0.048*	
C2	0.07397 (9)	0.5358 (3)	0.42381 (10)	0.0372 (5)	
C1	0.06024 (8)	0.3584 (3)	0.44137 (9)	0.0317 (4)	
C7	0.13675 (9)	0.0789 (3)	0.34846 (9)	0.0341 (4)	
C11	0.24672 (10)	-0.0224 (3)	0.18620 (10)	0.0372 (5)	
C10	0.27437 (10)	-0.0116 (3)	0.26017 (10)	0.0439 (5)	
H10	0.3175	-0.0233	0.2746	0.053*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C3	0.09891 (10)	0.6503 (3)	0.48231 (12)	0.0476 (5)	
Н3	0.1087	0.7699	0.4729	0.057*	
C4	0.10915 (10)	0.5888 (3)	0.55374 (11)	0.0488 (6)	
H4	0.1257	0.6677	0.5917	0.059*	
C9	0.23797 (10)	0.0164 (3)	0.31184 (10)	0.0402 (5)	
Н9	0.2566	0.0214	0.3612	0.048*	
C5	0.09543 (11)	0.4140 (4)	0.56954 (10)	0.0484 (6)	
Н5	0.1029	0.3744	0.6179	0.058*	
C14	0.06366 (13)	0.6127 (3)	0.34685 (11)	0.0543 (6)	
H14A	0.0891	0.5479	0.3188	0.082*	
H14B	0.0749	0.7392	0.3489	0.082*	
H14C	0.0204	0.5999	0.3240	0.082*	
C15	0.25999 (13)	-0.0489 (5)	0.06265 (12)	0.0653 (8)	
H15A	0.2278	-0.1398	0.0529	0.098*	
H15B	0.2920	-0.0762	0.0354	0.098*	
H15C	0.2423	0.0682	0.0483	0.098*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
S1	0.0365 (3)	0.0348 (3)	0.0268 (3)	-0.00716 (18)	0.00702 (19)	-0.00524 (15)
O2	0.0324 (7)	0.0554 (10)	0.0325 (6)	0.0007 (6)	0.0010 (5)	-0.0104 (6)
01	0.0681 (10)	0.0406 (10)	0.0444 (8)	-0.0208 (8)	0.0191 (7)	-0.0039 (6)
O3	0.0543 (9)	0.0550 (10)	0.0273 (7)	0.0034 (7)	0.0017 (6)	0.0049 (6)
C8	0.0386 (10)	0.0296 (11)	0.0303 (9)	0.0028 (8)	0.0019 (7)	-0.0019 (7)
N1	0.0392 (9)	0.0399 (10)	0.0253 (7)	0.0049 (7)	0.0074 (6)	0.0007 (6)
O4	0.0439 (8)	0.0725 (12)	0.0379 (7)	0.0054 (8)	0.0095 (6)	-0.0081 (7)
C13	0.0351 (10)	0.0450 (13)	0.0345 (10)	0.0073 (9)	-0.0032 (8)	-0.0057 (8)
C6	0.0489 (11)	0.0422 (13)	0.0307 (9)	-0.0017 (9)	0.0075 (8)	-0.0004 (8)
C12	0.0430 (11)	0.0445 (12)	0.0287 (9)	0.0080 (9)	-0.0013 (7)	-0.0074 (8)
C2	0.0403 (10)	0.0341 (12)	0.0357 (9)	0.0005 (9)	0.0034 (7)	-0.0032 (8)
C1	0.0326 (9)	0.0352 (11)	0.0266 (8)	-0.0011 (8)	0.0046 (6)	-0.0040 (7)
C7	0.0403 (10)	0.0304 (11)	0.0302 (9)	-0.0022 (8)	0.0035 (7)	-0.0012 (7)
C11	0.0396 (10)	0.0358 (12)	0.0356 (9)	0.0046 (8)	0.0059 (8)	-0.0039 (7)
C10	0.0332 (10)	0.0562 (15)	0.0388 (10)	0.0049 (9)	-0.0020 (8)	-0.0069 (9)
C3	0.0514 (12)	0.0351 (12)	0.0534 (12)	-0.0048 (10)	0.0030 (9)	-0.0116 (9)
C4	0.0499 (12)	0.0511 (15)	0.0420 (11)	-0.0006 (11)	0.0004 (9)	-0.0205 (9)
C9	0.0414 (11)	0.0449 (13)	0.0301 (9)	0.0061 (9)	-0.0039 (7)	-0.0031 (8)
C5	0.0545 (12)	0.0619 (16)	0.0267 (9)	0.0014 (11)	0.0027 (8)	-0.0083 (9)
C14	0.0776 (16)	0.0396 (14)	0.0432 (11)	-0.0074 (12)	0.0051 (10)	0.0074 (9)
C15	0.0629 (15)	0.099 (2)	0.0353 (11)	0.0046 (15)	0.0129 (10)	-0.0059(11)

Geometric parameters (Å, °)

<u>S1—01</u>	1.4283 (15)	C2—C1	1.391 (3)
S1—O2	1.4398 (14)	C2—C3	1.399 (3)
S1—N1	1.6461 (16)	C2—C14	1.515 (3)
S1—C1	1.7613 (18)	C11—C10	1.393 (3)

supporting information

O3—C7	1.211 (2)	C10—C9	1.376 (3)
C8—C13	1.390 (2)	C10—H10	0.9300
C8—C9	1.389 (3)	C3—C4	1.380 (3)
C8—C7	1.488 (3)	С3—Н3	0.9300
N1—C7	1.392 (2)	C4—C5	1.364 (4)
N1—H1	0.81 (3)	C4—H4	0.9300
O4—C11	1.359 (2)	С9—Н9	0.9300
O4—C15	1.429 (3)	С5—Н5	0.9300
C13—C12	1.382 (3)	C14—H14A	0.9600
С13—Н13	0.9300	C14—H14B	0.9600
C6—C5	1.386 (3)	C14—H14C	0.9600
C6—C1	1.396 (3)	C15—H15A	0.9600
С6—Н6	0.9300	C15—H15B	0.9600
C12—C11	1.384 (3)	C15—H15C	0.9600
C12—H12	0.9300		0.9000
	0.9500		
01—\$1—02	118.20 (10)	O4—C11—C12	124.46 (17)
O1—S1—N1	109.14 (9)	O4—C11—C10	115.78 (18)
O2—S1—N1	103.34 (8)	C12—C11—C10	119.75 (18)
01 - S1 - C1	109.25 (9)	C9—C10—C11	120.05 (19)
02-81-C1	109.27 (9)	C9—C10—H10	120.0
N1 - S1 - C1	107.00(8)	$C_{11} - C_{10} - H_{10}$	120.0
C13 - C8 - C9	118 68 (18)	C4-C3-C2	120.0 121.2(2)
$C_{13} = C_{8} = C_{7}$	122 57 (18)	C4-C3-H3	119.4
C9 - C8 - C7	118 75 (16)	C_{2} C_{3} H_{3}	119.4
C7 N1 S1	124.60 (13)	$C_2 = C_3 = H_3$	120.08 (10)
C7 N1 H1	124.00(13) 118.8(10)	$C_{5} = C_{4} = C_{5}$	120.98 (19)
C/NI	116.0(19) 116.2(10)	$C_3 = C_4 = H_4$	119.5
SI = NI = HI	110.3(19)	C_{3}	119.5
C12 - C12 - C13	11/.14(1/) 121.00(18)	C10 - C9 - C8	120.75 (17)
C12 - C13 - C8	121.00 (18)	C10—C9—H9	119.0
С12—С13—Н13	119.5	C8—C9—H9	119.6
C8—C13—H13	119.5	C4—C5—C6	120.05 (19)
C5-C6-C1	118.7 (2)	С4—С5—Н5	120.0
С5—С6—Н6	120.6	C6—C5—H5	120.0
C1—C6—H6	120.6	C2—C14—H14A	109.5
C13—C12—C11	119.69 (17)	C2—C14—H14B	109.5
C13—C12—H12	120.2	H14A—C14—H14B	109.5
C11—C12—H12	120.2	C2—C14—H14C	109.5
C1—C2—C3	116.76 (18)	H14A—C14—H14C	109.5
C1—C2—C14	124.95 (17)	H14B—C14—H14C	109.5
C3—C2—C14	118.3 (2)	O4—C15—H15A	109.5
C2—C1—C6	122.33 (17)	O4—C15—H15B	109.5
C2-C1-S1	121.98 (13)	H15A—C15—H15B	109.5
C6—C1—S1	115.67 (16)	O4—C15—H15C	109.5
O3—C7—N1	121.18 (17)	H15A—C15—H15C	109.5
O3—C7—C8	123.64 (18)	H15B—C15—H15C	109.5
N1—C7—C8	115.18 (15)		

		a , , , , , a , , , , , , , , , , , , , , , , , , ,	
01—S1—N1—C7	-55.03 (19)	S1—N1—C7—C8	174.04 (14)
O2—S1—N1—C7	178.35 (16)	C13—C8—C7—O3	159.9 (2)
C1—S1—N1—C7	63.07 (19)	C9—C8—C7—O3	-20.8 (3)
C9—C8—C13—C12	-2.7 (3)	C13—C8—C7—N1	-20.8 (3)
C7—C8—C13—C12	176.6 (2)	C9—C8—C7—N1	158.54 (19)
C8—C13—C12—C11	0.1 (3)	C15-04-C11-C12	4.1 (3)
C3—C2—C1—C6	0.1 (3)	C15—O4—C11—C10	-176.6 (2)
C14—C2—C1—C6	-179.6 (2)	C13—C12—C11—O4	-178.6 (2)
C3—C2—C1—S1	178.06 (16)	C13-C12-C11-C10	2.1 (3)
C14—C2—C1—S1	-1.6 (3)	O4—C11—C10—C9	179.1 (2)
C5—C6—C1—C2	-0.4 (3)	C12—C11—C10—C9	-1.6 (4)
C5-C6-C1-S1	-178.41 (16)	C1—C2—C3—C4	0.0 (3)
O1—S1—C1—C2	-175.20 (16)	C14—C2—C3—C4	179.7 (2)
O2—S1—C1—C2	-44.48 (18)	C2—C3—C4—C5	0.2 (4)
N1—S1—C1—C2	66.76 (18)	C11—C10—C9—C8	-1.1 (4)
O1—S1—C1—C6	2.85 (18)	C13—C8—C9—C10	3.2 (3)
O2—S1—C1—C6	133.58 (15)	C7—C8—C9—C10	-176.1 (2)
N1—S1—C1—C6	-115.18 (16)	C3—C4—C5—C6	-0.4 (3)
S1—N1—C7—O3	-6.6 (3)	C1—C6—C5—C4	0.5 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H…A	$D \cdots A$	D—H··· A
N1— $H1$ ···O2 ⁱ	0.81 (3)	2.16 (3)	2.917 (2)	164 (3)
C13—H13···O2 ⁱ	0.93	2.56	3.288 (3)	136

Symmetry code: (i) -x, y, -z+1/2.