Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tetrakis ($\mu_{3}-2-\{[1,1-b i s($ hydroxymethyl)-2-oxidoethyl]iminomethyl\}-6-nitrophenolato)tetracopper(II)

Eduard N. Chygorin, ${ }^{\text {a }}$ Yuri O. Smal, ${ }^{\text {a }}$ Vladimir N. Kokozay ${ }^{\text {a* }}$ and Irina V. Omelchenko ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, $64 \backslash 13$ Volodymyrska St, Kyiv 01601, Ukraine, and ${ }^{\mathbf{b}}$ STC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
Correspondence e-mail: kokozay@univ.kiev.ua
Received 11 December 2013; accepted 13 January 2014

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$; R factor $=0.075 ; w R$ factor $=0.184 ;$ data-to-parameter ratio $=18.4$.

The title cluster, $\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{4}\right]$, was obtained from the $\mathrm{Cu}^{0}-\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{4} L-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{DMF}$ reaction system (in air), where $\mathrm{H}_{4} L$ is 2-hydroxymethyl-2\{[(2-hydroxy-3-nitrophen-yl)methylidene]amino\}propane-1,3-diol and DMF is dimethylformamide. The asymmetric unit consists of one Cu^{2+} ion and one dianionic ligand; a $\overline{4}$ symmetry element generates the cluster, which contains a $\left\{\mathrm{Cu}_{4} \mathrm{O}_{4}\right\}$ cubane-like core. The metal ion has an elongated square-based pyramidal CuNO_{4} coordination geometry with the N atom in a basal site. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is observed. The solvent molecules were found to be highly disordered and their contribution to the scattering was removed with the SQUEEZE procedure in PLATON [Spek (2009). Acta Cryst. D65, 148-155], which indicated a solvent cavity of volume $3131 \AA^{3}$ containing approximately 749 electrons. These solvent molecules are not considered in the given chemical formula.

Related literature

For general background to direct synthesis (DS), see: Kokozay \& Shevchenko (2005). For related structures, see: Dey et al. (2002); Dong et al. (2007); Guo et al. (2008). For successful realisation of DS, see: Chygorin et al. (2012); Nesterov et al. (2012).

Experimental

Crystal data
$\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{4}\right]$
$M_{r}=1327.06$
Tetragonal, $I 4_{1} / a$
$Z=4$
$a=20.5587(14) \AA$
Mo $K \alpha$ radiation
$a=20.5587(14) \AA$
$c=18.010(2) \AA$
$V=7612.0(11) \AA^{3}$
$7 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.40 \times 0.40 \times 0.30 \mathrm{~mm}$

Data collection

Agilent Xcalibur Sapphire3 3349 measured reflections diffractometer 3349 independent reflections
Absorption correction: multi-scan 1395 reflections with $I>2 \sigma(I)$
(CrysAlis PRO; Agilent, 2012)
$T_{\text {min }}=0.653, T_{\text {max }}=0.721$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075$	182 parameters
$w R\left(F^{2}\right)=0.184$	H -atom parameters constrained
$S=0.80$	$\Delta \rho_{\max }=0.94 \mathrm{e}^{-3}$
3349 reflections	$\Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.892(5)$	$\mathrm{Cu} 1-\mathrm{O} 6$	$1.954(4)$
$\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$1.940(5)$	$\mathrm{Cu} 1-\mathrm{O}^{\mathrm{ii}}$	$2.524(5)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.952(6)$		

Symmetry codes: (i) $-y+\frac{5}{4}, x+\frac{1}{4},-z+\frac{1}{4}$; (ii) $-x+1,-y+\frac{3}{2}, z$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 4{ }^{\mathrm{ii}}$	0.78	1.96	$2.729(9)$	171

Symmetry code: (ii) $-x+1,-y+\frac{3}{2}$, z.
Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis RED (Agilent, 2012); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

This work was partly supported by the State Fund for Fundamental Research of Ukraine (project 54.3/005).

metal-organic compounds

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7174).

References

Agilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boca, R. \& Ozarowski, A. (2012). Inorg. Chem. 51, 386-396.
Dey, M., Rao, C. P., Saarenketo, P. K. \& Rissanen, K. (2002). Inorg. Chem. Comтии. 5, 380-383.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Dong, J.-F., Li, L.-Z., Xu, H.-Y. \& Wang, D.-Q. (2007). Acta Cryst. E63, m2300. Guo, Y., Li, L., Liu, Y., Dong, J. \& Wang, D. (2008). Acta Cryst. E64, m675-676. Kokozay, V. N. \& Shevchenko, D. V. (2005). Mater. Sci. Pol. 23, 287-312.
Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boca, R., Kozlov,
Y. N., Shul'pina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. \& Shul'pin, G. B. (2012). Inorg. Chem. 51, 9110-9122.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, m54-m55 [doi:10.1107/S1600536814000798]

Tetrakis(μ_{3}-2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-6-nitrophenolato)tetracopper(II)

Eduard N. Chygorin, Yuri O. Smal, Vladimir N. Kokozay and Irina V. Omelchenko

S1. Comment

In last few decades polynuclear complexes have been in focus of intense interest due to their relevance to the active sites of metaloenzimes, and their potential applications as magnetic materials. Thus development of synthetic approaches that could lead to new polynuclear compounds or improve their yields is quite important. Our research group is interested in employment of so-called "direct synthesis" (DS), a serendipitous self-assembling approach based on utilization of metal powders as starting materials to construct coordination compounds both homo- and heterometallic ones. Recently we have shown its ability to produce $\mathrm{Co} / \mathrm{Fe}$ complexes with Schiff base ligand (Chygorin et al., 2012; Nesterov et al., 2012). It should be noted that outcome of DS is not highly predictable and sometimes we can isolated homometallic or mononuclear complexes only. Such a case was observed in the investigated system: $\mathrm{Cu}^{0}-\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{4} \mathrm{~L}-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{dmf}$, where $\mathrm{H}_{4} \mathrm{~L}$ is 2-hydroxymethyl-2 \{[(2-hydroxy-3-nitrophenyl)methylene]amino\}propane-1,3-diol (Fig. 1). The Schiff base ligand, that is obtained by condencation of the salicylaldehyde derivative and tris(hydroxymethyl)aminomethane is typical hydroxy-rich ligand, which can coordinate to several metal centers and accepts various coordination modes, and thus it is an attractive ligand system for serendipitous self-assembling. Despite of this fact this Schiff base ligand has recived little attention to date [only 35 hits were found by searching via CSD (http://www.ccdc.cam.ac.uk/cgibin/catreq.cgi?)]. Herein we report the synthesis of a new tetranuclear cubane complex starting from potentially polydentate hydroxyl-rich ligand.

The reaction of copper powder with iron(II) chloride in dmf solution of the tetrapodal Schiff base ligand, formed in situ, in basic medium with free access of air leads to the isolation of the homometallic cuban complex $\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~N}_{2}\right)_{4}\right]$. The Schiff base ligand $\mathrm{H}_{4} \mathrm{~L}$ was obtained by condensation of 3-nitro-salicylaldehyde and tris(hydroxymethyl)aminomethane (Fig. 1). The molar ratio of starting materials $\left(\mathrm{Cu}^{0}: \mathrm{FeCl}_{2}\right.$: Schiff base ligand) was taken 1:1:2. The reaction was carried out in air with heating and stirring till total dissolution of metal powder was observed.
Tetranuclear molecular complex (Fig. 2) consists of the discrete $\left[\mathrm{Cu}_{4}\left(\mathrm{H}_{2} \mathrm{~L}\right)_{4}\right]$ moiety with a $\left\{\mathrm{Cu}_{4} \mathrm{O}_{4}\right\}$ cubane-like core. Eight alternately arranged netal centers and oxygen atoms from methoxy groups form a distorted $\left\{\mathrm{Cu}_{4} \mathrm{O}_{4}\right\}$ cube with local S_{4}-symmetry. Each of four ligands coordinates in a tridentate mode as an $\left(\mathrm{H}_{2} \mathrm{~L}\right)^{2-}$ dianion, with the phenoxyl and one of the alkoxyl groups deprotonated. The NO_{2} donor set from one ligand molecule together with O -atom from methoxy arm of another ligand forms distorted square coordination polyhedra around each metal center (with RMS deviation of atoms from square plane of $0.135 \AA$). Coordination lengths vary in the range of $1.892-1.955 \AA$, and $X-\mathrm{Cu}-\mathrm{Y}$ angles vary in the range of 84.8-94.9 ${ }^{\circ}$ that is comparable with the known literature data. The oxygen atom of the methoxy group of the third ligand molecule coordinates on this metal atom with $\mathrm{Cu}-\mathrm{O}$ length of $2.524 \AA$, so that can be threated as additional coordination. In crystal, weak $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2^{\prime}$ hydrogen bonds ($1.25-y, x-0.25, z-0.25 ; \mathrm{H}^{\prime} \cdots \mathrm{O}^{\prime} 2.51 \AA, \mathrm{C}-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\prime} 153^{\circ}$) form three-dimensional-connected network with channels along (111) crystallographic direction. Minimal channel
dimension is about $6.74 \AA$ ($\mathrm{O} 5 \cdots{ }^{\prime} 5^{\prime}$ distance). The crystal packing diagram is shown in Fig. 3.

S2. Experimental

$\operatorname{Tris}($ hydroxymethyl $)$ aminomethane ($0.303 \mathrm{~g}, 2.5 \mathrm{mmol}$), 3-Nitrosalicylaldehyde ($0.418 \mathrm{~g}, 2.5 \mathrm{mmol}$), and triethylamine $(0.35 \mathrm{ml}, 2.5 \mathrm{mmol})$ were dissolved in $\mathrm{dmf}(25 \mathrm{ml})$ in this order, forming an orange solution and magnetically stirred at $60-70^{\circ} \mathrm{C}(15 \mathrm{~min})$. Then, copper powder $(0.079 \mathrm{~g}, 1.25 \mathrm{mmol})$ and $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.248 \mathrm{~g}, 1.25 \mathrm{mmol})$ were successfully added to the hot orange solution with stirring about 3 h . Brown blocks were isolated by adding diethylether to the dark orange-brown solution after 2 days. Yield: $0.4 \mathrm{~g}, 48 \%$. The compound is sparingly soluble in dmso and dmf, and it is stable in air.

S3. Refinement

All H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA, \mathrm{O}-\mathrm{H}=0.84 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}=1.2 \mathrm{Ueq}$ (except $U_{\text {iso }}=1.5 \mathrm{Ueq}$ for hydroxyl groups). Hydrogen atom of the hydroxyl group O4H 4 was disordered over two sites with equal occupancy factors of 0.50 in order to fit the intramolecular hydrogen bond $\mathrm{O} 4-\mathrm{H} 4 \mathrm{~A} \cdots{ }^{\cdots}{ }^{\prime}$. Several isolated electron density peaks were located during the refinement, whose were believe to be a solvent molecules. Large displacement parameters were observed modeling the disordered oxygen, carbon, and sulfur atoms. SQUEEZE procedure of PLATON indicated a solvent cavity of volume $3131 \AA^{3}$ centered at $(0,0,0)$, containing approximately 749 electrons. In the final refinement, this contribution was removed from the intensity data that produced better refinement results. The hydroxyl group O5-H5A located near the void was believed to be H-bonded with one of the removed solvent molecules. Several reflections with great differences between calculated and observed F^{2} were omitted during the refinement. These reflections were believed to arise because of little impurities of the crystal under study.

Figure 1
Schiff base ligand: the product of condensation of 3-nitro-salicylaldehyde and tris(hydroxymethyl)aminomethane.

Figure 2
View of cubane tetranuclear complex $\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~N}_{2}\right)_{4}\right]$ (H atoms are omitted for clarity, the non-hydrogen atoms are shown as 30% thermal ellipsoids). Symmetry transformation used to generate equivalent atoms: ${ }^{a} 1-x, 1.5-y, z ;{ }^{b} x+$ $0.25,1.25-y, 0.25-z ;{ }^{c} 1.25-x, y-0.25,0.25-z$.

Figure 3
The crystal-packing diagram along the (001) direction.

Tetrakis(μ_{3}-2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-6-nitrophenolato)tetracopper(II)

Crystal data

$\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{4}\right]$
$M_{r}=1327.06$
Tetragonal, $I 4_{1} / a$
Hall symbol: -I 4ad
$a=20.5587$ (14) \AA
$c=18.010$ (2) \AA
$V=7612.0(11) \AA^{3}$
$Z=4$
$F(000)=2704$

Data collection

Agilent Xcalibur Sapphire3
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1827 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
$D_{\mathrm{x}}=1.158 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 462 reflections
$\theta=3.0-25.0^{\circ}$
$\mu=1.17 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, brown
$0.40 \times 0.40 \times 0.30 \mathrm{~mm}$
$T_{\text {min }}=0.653, T_{\text {max }}=0.721$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075$
$w R\left(F^{2}\right)=0.184$
$S=0.80$
3349 reflections
182 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Cu1	$0.48941(4)$	$0.66864(4)$	$0.06731(4)$	$0.0396(3)$	
O1	$0.5536(2)$	$0.6041(2)$	$0.0524(3)$	$0.0451(13)$	
N1	$0.4460(3)$	$0.6539(3)$	$-0.0276(3)$	$0.0406(16)$	
C1	$0.5204(4)$	$0.5693(4)$	$-0.0716(4)$	$0.047(2)$	
N2	$0.6541(4)$	$0.5153(3)$	$0.0538(4)$	$0.0542(19)$	
O2	$0.6303(3)$	$0.5101(3)$	$0.1159(3)$	$0.0611(17)$	
C2	$0.5608(4)$	$0.5690(4)$	$-0.0063(5)$	$0.047(2)$	$0.0751(19)$
O3	$0.7144(3)$	$0.5100(3)$	$0.0436(3)$	$0.050(2)$	
C3	$0.6141(4)$	$0.5230(4)$	$-0.0096(5)$	$0.0761(19)$	0.50
O4	$0.4358(3)$	$0.7332(3)$	$-0.1606(3)$	0.114^{*}	0.114^{*}
H4A	0.4728	0.7401	-0.1646	$0.061(2)$	0.073^{*}
H4C	0.4145	0.7014	-0.1769	$0.0732(18)$	
C4	$0.6276(4)$	$0.4875(4)$	$-0.0723(5)$	0.110^{*}	
H4B	0.6644	0.4596	-0.0728	$0.061(3)$	
O5	$0.2776(3)$	$0.7029(3)$	$-0.0736(4)$	0.073^{*}	
H5A	0.2430	0.6816	-0.0784	$0.0369(12)$	
C5	$0.5890(4)$	$0.4913(4)$	$-0.1342(5)$	$0.052(2)$	0.063^{*}
H5B	0.5991	0.4672	-0.1777	$0.048(2)$	0.057^{*}
O6	$0.4282(2)$	$0.7408(2)$	$0.0779(2)$	$0.047(2)$	$0.057(2)$
C6	$0.5353(4)$	$0.5310(4)$	$-0.1317(4)$		
H6A	0.5071	0.5320	-0.1735		
C7	$0.4659(4)$	$0.6122(4)$	$-0.0773(4)$	-0.1220	
H7A	0.4416	0.6101	$-0.0412(4)$	$-0.0911(4)$	
C8	$0.3906(4)$	$0.6972(4)$	$0.7530(4)$		
C9	$0.4121(4)$				

H9A	0.3747	0.7826	-0.0989	0.069^{*}
H9B	0.4465	0.7780	-0.0653	0.069^{*}
C10	$0.3319(4)$	$0.6594(4)$	$-0.0737(5)$	$0.058(2)$
H10A	0.3415	0.6448	-0.1249	0.069^{*}
H10B	0.3223	0.6206	-0.0430	0.069^{*}
C11	$0.3712(4)$	$0.7262(4)$	$0.0359(4)$	$0.0436(19)$
H11A	0.3454	0.7663	0.0285	0.052^{*}
H11B	0.3440	0.6945	0.0633	0.052^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0337(6)$	$0.0344(6)$	$0.0509(5)$	$0.0009(5)$	$-0.0021(5)$	$-0.0018(4)$
O1	$0.044(3)$	$0.029(3)$	$0.062(3)$	$-0.005(3)$	$-0.002(3)$	$-0.015(3)$
N 1	$0.039(4)$	$0.037(4)$	$0.046(3)$	$-0.005(3)$	$-0.001(3)$	$-0.006(3)$
C1	$0.032(5)$	$0.046(5)$	$0.064(5)$	$0.001(4)$	$0.007(4)$	$-0.004(5)$
N2	$0.053(5)$	$0.038(4)$	$0.071(5)$	$0.012(4)$	$-0.004(4)$	$-0.017(4)$
O2	$0.059(4)$	$0.040(4)$	$0.084(4)$	$0.008(3)$	$-0.019(4)$	$-0.004(3)$
C2	$0.034(5)$	$0.022(4)$	$0.084(6)$	$-0.001(4)$	$0.003(5)$	$-0.009(4)$
O3	$0.032(4)$	$0.077(5)$	$0.116(5)$	$0.013(3)$	$-0.001(3)$	$-0.026(4)$
C3	$0.039(5)$	$0.041(5)$	$0.071(5)$	$-0.023(4)$	$-0.002(5)$	$-0.018(5)$
O4	$0.082(5)$	$0.088(5)$	$0.059(3)$	$-0.014(4)$	$0.006(3)$	$0.006(3)$
C4	$0.039(5)$	$0.045(6)$	$0.098(6)$	$-0.004(5)$	$0.005(5)$	$-0.024(5)$
O5	$0.038(4)$	$0.065(4)$	$0.116(5)$	$0.001(3)$	$-0.020(4)$	$0.000(4)$
C5	$0.037(5)$	$0.051(6)$	$0.094(6)$	$-0.004(5)$	$0.020(5)$	$-0.033(5)$
O6	$0.019(3)$	$0.029(3)$	$0.063(3)$	$0.002(2)$	$-0.007(2)$	$0.004(2)$
C6	$0.040(5)$	$0.054(6)$	$0.062(5)$	$-0.012(5)$	$0.005(4)$	$-0.016(5)$
C7	$0.044(5)$	$0.048(5)$	$0.051(5)$	$-0.013(4)$	$-0.001(4)$	$0.010(4)$
C8	$0.032(5)$	$0.043(5)$	$0.067(5)$	$0.005(4)$	$-0.013(4)$	$0.004(4)$
C9	$0.048(6)$	$0.063(6)$	$0.062(5)$	$-0.010(5)$	$-0.017(4)$	$0.010(5)$
C10	$0.041(5)$	$0.061(6)$	$0.071(5)$	$0.005(5)$	$0.000(5)$	$-0.007(5)$
C11	$0.030(5)$	$0.041(5)$	$0.059(4)$	$0.000(4)$	$0.003(4)$	$-0.002(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.892(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.371(11)$
$\mathrm{Cu} 1-\mathrm{O}^{\mathrm{i}}$	$1.940(5)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9500
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.952(6)$	$\mathrm{O} 5-\mathrm{C} 10$	$1.430(9)$
$\mathrm{Cu} 1-\mathrm{O} 6$	$1.954(4)$	$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A}$	0.8400
$\mathrm{Cu} 1-\mathrm{O}^{\mathrm{ii}}$	$2.524(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.374(11)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.288(8)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9500
$\mathrm{~N} 1-\mathrm{C} 7$	$1.304(9)$	$\mathrm{O} 6-\mathrm{C} 11$	$1.428(8)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.467(9)$	$\mathrm{O} 6-\mathrm{Cu} 1^{\mathrm{iii}}$	$1.940(5)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.373(10)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9500
$\mathrm{C} 1-\mathrm{C} 7$	$1.428(10)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	$1.440(10)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.524(10)$
$\mathrm{N} 2-\mathrm{O} 2$	$1.224(8)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.551(10)$
$\mathrm{N} 2-\mathrm{O} 3$	$1.259(8)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.562(10)$

N2-C3	1.417 (10)
C2-C3	1.449 (10)
C3-C4	1.373 (10)
O4-C9	1.403 (9)
O4-H4A	0.7773
O4-H4C	0.8400
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	93.6 (2)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	94.9 (2)
O6i-Cu1-N1	164.4 (2)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 6$	174.8 (2)
O6- ${ }^{\text {i }} \mathrm{Cu} 1-\mathrm{O} 6$	87.9 (2)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{6 i}$	93.45 (18)
O6 ${ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O}^{\text {ii }}$	73.19 (17)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O}^{6 i}$	119.2 (2)
O6-Cu1-O6 ${ }^{\text {ii }}$	82.22 (17)
N1-Cu1-O6	84.8 (2)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{Cu} 1$	126.0 (5)
C7-N1-C8	121.9 (6)
C7-N1-Cu1	124.0 (5)
C8-N1-Cu1	114.0 (5)
C6-C1-C7	118.2 (8)
C6-C1-C2	120.9 (8)
C7- $\mathrm{C} 1-\mathrm{C} 2$	120.8 (7)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 3$	121.3 (7)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 3$	120.9 (7)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 3$	117.6 (7)
O1-C2- C 1	127.1 (7)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	119.0 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	113.9 (7)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2$	119.1 (8)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	122.3 (8)
N2-C3-C2	118.6 (7)
C9-O4-H4A	111.7
C9-O4- H 4 C	110.9
H4A-O4-H4C	128.4
C5-C4-C3	121.4 (8)
C5-C4-H4B	119.3
C3-C4-H4B	119.3
C10-O5-H5A	109.5
C4-C5-C6	118.2 (8)
C4-C5-H5B	120.9
$\mathrm{O} 6-\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 2$	170.0 (6)
N1-Cu1-O1-C2	3.0 (6)
O6-Cu1-O1-C2	-84 (2)
$\mathrm{O} 6{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 2$	-116.7 (6)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	-2.5 (6)

C9—H9A	0.9900
C9—H9B	0.9900
C10-H10A	0.9900
C10-H10B	0.9900
C11-H11A	0.9900
C11-H11B	0.9900

120.9
118.5 (4)
108.5 (4)
108.6 (2)
123.1 (8)
118.5
118.5
127.0 (7)
116.5
116.5
109.3 (6)
111.3 (6)
112.3 (6)
106.4 (6)
108.1 (7)
109.2 (6)
114.1 (7)
108.7
108.7
108.7
108.7
107.6
107.0 (6)
110.3
110.3
110.3
110.3
108.6
110.0 (6)
109.7
109.7
109.7
109.7
108.2

$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 6-\mathrm{C} 11$	$-139.6(4)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 6-\mathrm{C} 11$	$26.7(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6-\mathrm{Cu} 1^{\mathrm{iii}}$	$-116(2)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O}-\mathrm{Cu} 1^{\mathrm{iii}}$	$-9.5(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 6-\mathrm{Cu} 1^{\mathrm{iii}}$	$156.7(3)$

O 6 - $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	-125.4 (8)	C7- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	175.5 (7)
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	172.3 (6)	C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-0.9 (12)
$\mathrm{O}^{\mathbf{i i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 7$	94.2 (6)	C4-C5-C6-C1	3.4 (13)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8$	-178.6 (5)	C8-N1-C7-C1	177.6 (7)
O6- ${ }^{\text {Cu}} 1-\mathrm{N} 1-\mathrm{C} 8$	58.5 (11)	Cu1-N1-C7-C1	1.8 (11)
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8$	-3.8 (5)	C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	-177.0 (7)
O6 ${ }^{\text {ii- }} \mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8$	-81.9 (5)	C2-C1-C7-N1	-0.6 (12)
$\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	-2.8(11)	C7-N1-C8-C9	-77.3 (8)
$\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	178.0 (5)	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	98.9 (6)
C6- $12-\mathrm{C} 2-\mathrm{O} 1$	177.4 (7)	C7-N1-C8-C10	47.3 (9)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	1.0 (12)	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 10$	-136.5 (5)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-3.4 (11)	C7-N1-C8-C11	166.2 (6)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.7 (7)	Cu1-N1-C8-C11	-17.6 (7)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	-135.5 (8)	N1-C8-C9-O4	59.8 (8)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	40.2 (11)	C10-C8-C9-O4	-64.2 (9)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	45.5 (10)	C11-C8-C9-O4	175.3 (6)
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	-138.8 (8)	N1-C8-C10-O5	170.8 (6)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-175.1 (7)	C9-C8-C10-O5	-66.3 (8)
C1-C2-C3-C4	5.5 (11)	C11-C8-C10-O5	53.6 (8)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	3.8 (11)	$\mathrm{Cu} 1{ }^{\text {iii }}-\mathrm{O} 6-\mathrm{C} 11-\mathrm{C} 8$	-167.6 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	-175.5 (7)	$\mathrm{Cu}-\mathrm{O} 6-\mathrm{C} 11-\mathrm{C} 8$	-43.2 (6)
N2-C3-C4-C5	177.6 (8)	N1-C8-C11-O6	39.5 (8)
C2-C3-C4-C5	-3.5 (13)	C9-C8-C11-O6	-77.8 (7)
C3-C4-C5-C6	-1.2 (13)	C10-C8-C11-O6	159.8 (6)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6-\mathrm{C} 11$	114 (2)		

Symmetry codes: (i) $-y+5 / 4, x+1 / 4,-z+1 / 4$; (ii) $-x+1,-y+3 / 2, z$; (iii) $y-1 / 4,-x+5 / 4,-z+1 / 4$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.78	1.96	$2.729(9)$	171

Symmetry code: (ii) $-x+1,-y+3 / 2, z$.

