

open 👌 access

2,3-Diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one. Corrigendum

Hemant P. Yennawar^a and Lee J. Silverberg^{b*}

^aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and ^bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA. *Correspondence e-mail: ljs43@psu.edu

Received 29 November 2015; accepted 30 November 2015

In the paper by Yennawar & Silverberg [*Acta Cryst.* (2014), E**70**, o133], the conformation of the thiazine ring was reported incorrectly.

The authors of Yennawar & Silverberg (2014) have indicated that the conformation of the thiazine ring in the title compound should be an envelope, with the S atom forming the flap, and not half-chair as originally given.

References

Yennawar, H. P. & Silverberg, L. J. (2014). Acta Cryst. E70, o133.

organic compounds

Z = 4

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.07 \ \text{mm}$

 $\mu = 0.23 \text{ mm}^{-1}$

T = 298 K

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3thiazin-4-one

Hemant P. Yennawar^a and Lee J. Silverberg^{b*}

^aDepartment of Chemistry, Pennsylvania State University, University Park, PA 16802, USA, and ^bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA Correspondence e-mail: ljs43@psu.edu

Received 7 November 2013; accepted 6 January 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.140; data-to-parameter ratio = 19.4.

The six-membered thiazine ring in the title compound, C₁₆H₁₅NOS, adopts a half-chair conformation, with the S atom forming the back of the chair. The base of the chair has a slight twist reflected in the r.m.s. deviation (0.0756 Å) of those five atoms from the plane defined by them. The phenyl substituents are almost perpendicular to each other [dihedral angle $87.06 (9)^{\circ}$]. In the crystal, molecules are linked into chains parallel to the c axis through $C-H \cdots O$ interactions.

Related literature

For a review of 1,3-thiazin-4-ones, see: Ryabukhin et al. (1996). For an unsuccessful attempt to make the title compound, see: Surrey et al. (1958). For applications of 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) in the synthesis of amide bonds and heterocycles, see: Dunetz et al. (2011); Unsworth et al. (2013). For the synthesis and structures of related compounds, see: Yennawar et al. (2013); Yennawar & Silverberg (2013).

Experimental

Crystal data C₁₆H₁₅NOS

 $M_r = 269.35$

Monoclinic, $P2_1/c$
a = 13.745 (3) Å
b = 8.240 (2) Å
c = 12.151 (3) Å
$\beta = 100.079 \ (6)^{\circ}$
V = 1355.0 (6) Å ³

Data collection

Bruker SMART APEX CCD	12350 measured reflections
diffractometer	3342 independent reflections
Absorption correction: multi-scan	2558 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.041$
$T_{\min} = 0.956, \ T_{\max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	172 parameters
$vR(F^2) = 0.140$	H-atom parameters not refined
S = 1.13	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
3342 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdots O1^i$	0.98	2.33	3.265 (3)	159
Symmetry code: (i)	$r - \nu \perp \frac{1}{7} \perp \frac{1}{7}$			

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

We acknowledge NSF funding (CHEM-0131112) for the X-ray diffractometer. We also express gratitude to Euticals for gift of T3P in 2-methyltetrahydrofuran.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FY2109).

References

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dunetz, J. R., Xiang, Y., Baldwin, A. & Ringling, J. (2011). Org. Lett. 13, 5048-5051
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131-191.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.
- Unsworth, W. P., Kitsiou, C. & Taylor, R. J. K. (2013). Org. Lett. 15, 258-261.
- Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, 01659
- Yennawar, H. P., Silverberg, L. J., Minehan, M. J. & Tierney, J. (2013). Acta Cryst. E69, o1679.

supporting information

Acta Cryst. (2014). E70, o133 [doi:10.1107/S1600536814000324]

2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one

Hemant P. Yennawar and Lee J. Silverberg

S1. Comment

The 2,3,5,6-tetrahydro-1,3-thiazin-4-ones are an important class of heterocycle with substantial biological activity (Ryabukhin *et al.*, 1996). Surrey has reported that the title compound could not be prepared by condensation of *N*-benzylideneaniline with 3-mercaptopropionic acid in refluxing benzene, unlike when the imine was *N*-alkyl (Surrey *et al.*, 1958). Here we report the synthesis of the novel title molecule by condensation of *N*-benzylideneaniline with 3mercaptopropionic acid in the presence of 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide (T3P) and pyridine (Dunetz *et al.*, 2011). We have recently reported the syntheses of 2-(3-nitrophenyl)-3-phenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-one (Yennawar *et al.*, 2013) and 6,7-diphenyl-5-thia-7-azaspiro[2.6]nonan-8-one (Yennawar & Silverberg, 2013) by this method. A similar preparation of a 2,3-dialkyl-2,3-dihydro-1,3-benzothiazin-4-one was also recently reported (Unsworth *et al.*, 2013).

S2. Experimental

A two-necked 25 ml roundbottom flask was oven-dried, cooled under N₂, and charged with a stir bar and *N*-benzylideneaniline (1.087 g, 6 mmol). Tetrahydrofuran (2.3 ml) was added, the solid dissolved, and the solution was stirred. Pyridine (1.95 ml, 24 mmol) was added and then 3-mercaptopropionic acid (0.523 ml, 6 mmol) was added. Finally, 2,4,6tripropyl-1,3,5,2,4,6-trioxatriphosphorinane-2,4,6-trioxide in 2-methyltetrahydrofuran (50 weight percent; 7.1 ml, 12 mmol) was added. The reaction was stirred at room temperature for 23 h, then poured into a separatory funnel with dichloromethane (20 ml). The mixture was washed with water (10 ml). The aqueous was then extracted twice with dichloromethane (10 ml each). The organics were combined and washed with saturated sodium bicarbonate (10 ml) and saturated sodium chloride (10 ml). The organic was dried over sodium sulfate, concentrated *in vacuo* and chromatographed on 30 g flash silica gel, eluting with mixtures of ethyl acetate and hexanes (20% to 100% ethyl acetate). The product eluted with 60–100% EtOAc/hexanes and was concentrated *in vacuo* to pale yellow viscous oil (1.3720 g). Recrystallization from ethanol gave white solid (0.7669 g, 47.5%). m.p.: 95–96.5°C. R_f = 0.32 (50% EtOAc/hexanes). Crystals for X-ray crystallography were grown by dissolving the solid in ethanol, adding some water, and then allowing slow evaporation to occur. After crystals grew, the supernatant was decanted off, and the crystals were rinsed twice with 95% ethanol.

S3. Refinement

The C-bound H atoms were geometrically placed with C—H = 0.93–0.97 Å, and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 2 Crystal packing.

2,3-Diphenyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one

Crystal data

C₁₆H₁₅NOS $M_r = 269.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.745 (3) Å b = 8.240 (2) Å c = 12.151 (3) Å $\beta = 100.079$ (6)° V = 1355.0 (6) Å³ Z = 4

Data collection

Bruker SMART APEX CCD	12350 measured reflections
diffractometer	3342 independent reflections
Radiation source: fine-focus sealed tube	2558 reflections with $I > 2\sigma(I)$
Parallel, graphite monochromator	$R_{\rm int} = 0.041$
Detector resolution: 8.34 pixels mm ⁻¹	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
φ and ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(SADABS; Bruker, 2001)	$l = -16 \rightarrow 15$
$T_{\min} = 0.956, \ T_{\max} = 0.984$	

F(000) = 568 $D_x = 1.320 \text{ Mg m}^{-3}$ Melting point: 369 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2176 reflections $\theta = 2.9-24.6^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.20 \times 0.18 \times 0.07 \text{ mm}$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 1.13	H-atom parameters not refined
3342 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2 + 0.2756P]$
172 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.31 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.70658 (15)	0.2133 (3)	0.70023 (17)	0.0367 (5)
C2	0.59588 (16)	0.2058 (3)	0.66146 (19)	0.0443 (5)
H2A	0.5705	0.3158	0.6600	0.053*
H2B	0.5838	0.1664	0.5851	0.053*
C3	0.53595 (16)	0.1031 (3)	0.72800 (19)	0.0468 (6)
H3A	0.5481	-0.0110	0.7162	0.056*
H3B	0.4661	0.1239	0.7035	0.056*
C4	0.69656 (14)	0.0797 (2)	0.88595 (16)	0.0306 (4)
H4	0.7313	0.1214	0.9577	0.037*
C5	0.70157 (14)	-0.1039 (2)	0.89528 (16)	0.0317 (4)
C6	0.73750 (16)	-0.2034 (3)	0.8207 (2)	0.0433 (5)
H6	0.7584	-0.1587	0.7585	0.052*
C7	0.74288 (18)	-0.3710 (3)	0.8377 (3)	0.0586 (7)
H7	0.7670	-0.4376	0.7868	0.070*
C8	0.71254 (19)	-0.4369 (3)	0.9293 (3)	0.0625 (8)
H8	0.7166	-0.5484	0.9411	0.075*
C9	0.6762 (2)	-0.3388 (3)	1.0037 (2)	0.0606 (7)
H9	0.6550	-0.3840	1.0655	0.073*
C10	0.67093 (18)	-0.1745 (3)	0.98732 (19)	0.0475 (6)
H10	0.6465	-0.1091	1.0386	0.057*
C11	0.85580 (14)	0.1465 (3)	0.82879 (18)	0.0367 (5)
C12	0.91089 (17)	0.0689 (3)	0.7593 (2)	0.0535 (6)
H12	0.8796	0.0199	0.6936	0.064*
C13	1.0121 (2)	0.0647 (4)	0.7881 (3)	0.0781 (9)
H13	1.0492	0.0118	0.7420	0.094*

supporting information

C14	1.0589 (2)	0.1379 (5)	0.8843 (3)	0.0823 (11)	
H14	1.1274	0.1356	0.9028	0.099*	
C15	1.0044 (2)	0.2145 (4)	0.9531 (3)	0.0749 (9)	
H15	1.0362	0.2637	1.0185	0.090*	
C16	0.90219 (17)	0.2192 (3)	0.9258 (2)	0.0524 (6)	
H16	0.8653	0.2711	0.9727	0.063*	
N1	0.74904 (11)	0.14718 (19)	0.79997 (13)	0.0316 (4)	
01	0.75623 (12)	0.2813 (2)	0.64049 (14)	0.0575 (5)	
S1	0.57039 (4)	0.15171 (7)	0.87256 (5)	0.04271 (18)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0418 (11)	0.0387 (11)	0.0300 (10)	0.0028 (9)	0.0075 (9)	0.0028 (9)
C2	0.0424 (12)	0.0530 (13)	0.0352 (12)	0.0065 (10)	0.0006 (9)	0.0050 (10)
C3	0.0327 (11)	0.0543 (13)	0.0510 (14)	0.0016 (10)	0.0008 (10)	-0.0004 (11)
C4	0.0321 (10)	0.0345 (10)	0.0260 (9)	-0.0025 (8)	0.0073 (8)	-0.0002 (8)
C5	0.0271 (9)	0.0337 (10)	0.0324 (10)	-0.0023 (7)	-0.0001 (8)	0.0023 (8)
C6	0.0378 (11)	0.0417 (12)	0.0525 (14)	-0.0020 (9)	0.0138 (10)	-0.0028 (10)
C7	0.0433 (13)	0.0410 (13)	0.094 (2)	0.0012 (10)	0.0176 (13)	-0.0159 (14)
C8	0.0509 (14)	0.0345 (12)	0.096 (2)	-0.0045 (11)	-0.0033 (14)	0.0155 (14)
C9	0.0751 (19)	0.0483 (15)	0.0552 (16)	-0.0134 (13)	0.0024 (14)	0.0187 (13)
C10	0.0596 (15)	0.0456 (13)	0.0380 (12)	-0.0084 (11)	0.0105 (11)	0.0057 (10)
C11	0.0304 (10)	0.0388 (11)	0.0416 (12)	-0.0023 (8)	0.0079 (8)	0.0100 (9)
C12	0.0406 (13)	0.0620 (16)	0.0622 (16)	-0.0002 (11)	0.0210 (12)	0.0015 (13)
C13	0.0433 (15)	0.101 (2)	0.096 (2)	0.0096 (15)	0.0308 (16)	0.016 (2)
C14	0.0302 (13)	0.116 (3)	0.100 (3)	-0.0001 (15)	0.0103 (16)	0.032 (2)
C15	0.0471 (16)	0.099 (2)	0.071 (2)	-0.0182 (16)	-0.0107 (14)	0.0139 (17)
C16	0.0413 (13)	0.0632 (16)	0.0502 (14)	-0.0058 (11)	0.0010 (11)	0.0036 (12)
N1	0.0297 (8)	0.0362 (9)	0.0296 (8)	-0.0012 (7)	0.0073 (6)	0.0046 (7)
01	0.0549 (10)	0.0746 (12)	0.0447 (10)	-0.0011 (9)	0.0138 (8)	0.0237 (9)
S 1	0.0376 (3)	0.0476 (3)	0.0466 (3)	0.0076 (2)	0.0176 (2)	0.0004 (3)

Geometric parameters (Å, °)

C1-01	1.217 (2)	С7—Н7	0.9300
C1—N1	1.363 (3)	C8—C9	1.370 (4)
C1—C2	1.513 (3)	C8—H8	0.9300
С2—С3	1.511 (3)	C9—C10	1.368 (3)
C2—H2A	0.9700	С9—Н9	0.9300
C2—H2B	0.9700	C10—H10	0.9300
C3—S1	1.783 (2)	C11—C16	1.376 (3)
С3—НЗА	0.9700	C11—C12	1.385 (3)
С3—Н3В	0.9700	C11—N1	1.448 (2)
C4—N1	1.478 (2)	C12—C13	1.374 (4)
C4—C5	1.518 (3)	C12—H12	0.9300
C4—S1	1.813 (2)	C13—C14	1.371 (5)
C4—H4	0.9800	C13—H13	0.9300

С5—С6	1.377 (3)	C14—C15	1.370 (5)
C5—C10	1.390 (3)	C14—H14	0.9300
C6—C7	1.396 (3)	C15—C16	1.387 (4)
С6—Н6	0.9300	C15—H15	0.9300
С7—С8	1.368 (4)	C16—H16	0.9300
	101 10 (10)		100.0
OI-CI-NI	121.12 (19)	С/—С8—Н8	120.0
01	118.13 (19)	С9—С8—Н8	120.0
N1—C1—C2	120.75 (18)	C10—C9—C8	120.3 (2)
C3—C2—C1	117.96 (18)	С10—С9—Н9	119.9
C3—C2—H2A	107.8	С8—С9—Н9	119.9
C1—C2—H2A	107.8	C9—C10—C5	121.0 (2)
C3—C2—H2B	107.8	C9—C10—H10	119.5
C1—C2—H2B	107.8	C5-C10-H10	119.5
H2A—C2—H2B	107.2	C16-C11-C12	120.2 (2)
C2—C3—S1	109.00 (16)	C16—C11—N1	120.3 (2)
С2—С3—НЗА	109.9	C12—C11—N1	119.6 (2)
S1—C3—H3A	109.9	C13—C12—C11	119.6 (3)
С2—С3—Н3В	109.9	C13—C12—H12	120.2
S1—C3—H3B	109.9	C11—C12—H12	120.2
НЗА—СЗ—НЗВ	108.3	C14—C13—C12	120.6 (3)
N1-C4-C5	113.97 (16)	C14—C13—H13	119.7
N1-C4-S1	113.02 (13)	C12-C13-H13	119.7
$C_5 - C_4 - S_1$	111.29 (13)	C_{15} C_{14} C_{13}	119.7 119.9(3)
N1 - C4 - H4	105.9	C_{15} C_{14} H_{14}	120.1
$C_5 - C_4 - H_4$	105.9	C13 $C14$ $H14$	120.1
S1 C4 H4	105.9	C_{14} C_{15} C_{16}	120.1 120.4(3)
$51 - C_{4} - 11_{4}$	103.9 118 4 (2)	C14 $C15$ $H15$	120.4 (3)
C6 C5 C4	110.4(2) 124.14(10)	C14 - C15 - H15	119.8
$C_{0} - C_{3} - C_{4}$	124.14(19) 117.46(19)	C10 - C15 - H15	119.0
C10-C3-C4	117.40 (18)	C11 - C16 - C13	119.4 (5)
$C_{2} = C_{0} = C_{1}$	120.5 (2)		120.3
С5—С6—Н6	119.8	C15—C16—H16	120.3
С/—С6—Н6	119.8	CI—NI—CII	118.34 (16)
C8—C7—C6	119.8 (2)	CI—NI—C4	126.35 (16)
С8—С7—Н7	120.1	C11—N1—C4	115.27 (15)
С6—С7—Н7	120.1	C3—S1—C4	95.72 (10)
C7—C8—C9	120.0 (2)		
O1—C1—C2—C3	172.2 (2)	C13—C14—C15—C16	-0.3(5)
N1—C1—C2—C3	-8.5 (3)	C12-C11-C16-C15	0.2 (4)
C1 - C2 - C3 - S1	49.0 (2)	N1-C11-C16-C15	178.7(2)
N1 - C4 - C5 - C6	-9.7(3)	C14-C15-C16-C11	-0.1(4)
S1-C4-C5-C6	119 51 (19)	01-C1-N1-C11	-56(3)
N1 - C4 - C5 - C10	167 98 (17)	C2-C1-N1-C11	175 19 (19)
S1-C4-C5-C10	-62 8 (2)	01-C1-N1-C4	1720(2)
C10-C5-C6-C7	-0.1(3)	$C_2 - C_1 - N_1 - C_4$	-7.2(3)
C_{4}	177.6(2)	$C_1 = C_1 = C_1$	122(3)
$C_{1} = C_{2} = C_{1} = C_{1}$	-0.2(4)	$C_{10} = C_{11} = N_1 = C_1$	122.7(2)
$C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}$	-0.2 (4)	U12-U11-N1-U1	-38.8 (3)

supporting information

C6—C7—C8—C9	0.5 (4)	C16—C11—N1—C4	-55.1 (3)
C7—C8—C9—C10	-0.6 (4)	C12-C11-N1-C4	123.4 (2)
C8—C9—C10—C5	0.3 (4)	C5-C4-N1-C1	108.3 (2)
C6—C5—C10—C9	0.0 (3)	S1—C4—N1—C1	-20.1 (2)
C4—C5—C10—C9	-177.9 (2)	C5-C4-N1-C11	-74.1 (2)
C16-C11-C12-C13	0.2 (4)	S1—C4—N1—C11	157.54 (14)
N1-C11-C12-C13	-178.4 (2)	C2—C3—S1—C4	-64.60 (17)
C11—C12—C13—C14	-0.6 (4)	N1-C4-S1-C3	51.31 (16)
C12—C13—C14—C15	0.7 (5)	C5—C4—S1—C3	-78.43 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C4—H4···O1 ⁱ	0.98	2.33	3.265 (3)	159

Symmetry code: (i) x, -y+1/2, z+1/2.