

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-2-Phenyl-1-[(2,4,6-triisopropyl-benzene)sulfonyl]aziridine

Christopher Golz, Hans Preut and Carsten Strohmann*

Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Received 9 December 2013; accepted 6 January 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.107; data-to-parameter ratio = 17.3.

In the title compound, $C_{23}H_{31}NO_2S$, the geometry of the triisopropylphenyl group is slightly distorted, with elongated C-C bonds at the *ipso*-C atom, and an S atom which deviates from the benzene ring plane by 0.228 (2) Å. This distortion is caused by the bulky substituents and, in comparison, an unbent geometry is observed in *N*-toluenesulfonylaziridine [Zhu *et al.* (2006). *Acta Cryst.* E62, o1507–o1508]. π – π interactions between adjacent benzene rings [centroid–centroid distance = 3.7928 (11) Å] and are observed.

Related literature

For structures containing the triisopropylbenzenesulfonyl group with detailed discussion of the geometry, see: Sandrock *et al.* (2004); Laba *et al.* (2009). For the lithiation of activated aziridines, see: Huang *et al.* (2009) and for a general review on aziridinylanions, see: Florio & Luisi (2010). For the most recent synthesis of the title compound, see: Kavanagh *et al.* (2013). For deprotonation reactions of aziridinyl anions to amines, see: Gessner & Strohmann (2007, 2008*a*,*b*); Unkelbach *et al.* (2012).

Experimental

Crystal data C₂₃H₃₁NO₂S

 $M_r = 385.55$

organic compounds

Triclinic, $P\overline{1}$ V = 1098.11 (10) Å³ a = 6.3037 (3) Å 7 - 2b = 9.6995 (5) Å Mo $K\alpha$ radiation c = 18.6675(9) Å $\mu = 0.16 \text{ mm}^{-1}$ $\alpha = 75.280 (4)^{\circ}$ T = 173 K $\beta = 86.842 \ (4)^{\circ}$ $0.31 \times 0.05 \times 0.04 \text{ mm}$ $\gamma = 84.404 (4)^{\circ}$ Data collection Agilent Xcalibur Sapphire3 17550 measured reflections 4314 independent reflections diffractometer Absorption correction: multi-scan 3633 reflections with $I > 2\sigma(I)$ (CrysAlis PRO; Oxford Diffrac- $R_{\rm int} = 0.045$ tion. 2012) $T_{\min} = 0.952, \ T_{\max} = 1.000$ Refinement 250 parameters

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.042 & 250 \text{ parameters} \\ wR(F^2) = 0.107 & H\text{-atom parameters constrained} \\ S = 1.06 & \Delta\rho_{\max} = 0.34 \text{ e } \text{\AA}^{-3} \\ 4314 \text{ reflections} & \Delta\rho_{\min} = -0.35 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2012); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FK2077).

References

Florio, S. & Luisi, R. (2010). Chem. Rec. 110, 5128-5157.

- Gessner, V. H. & Strohmann, C. (2007). Angew. Chem. Int. Ed. 46, 4566–4569.
 Gessner, V. H. & Strohmann, C. (2008a). Angew. Chem. Int. Ed. 46, 8281–8283.
 Gessner, V. H. & Strohmann, C. (2008b). J. Am. Chem. Soc. 130, 14412–14413.
 Huang, J., Moore, S. P., O'Brien, P., Whitwood, A. C. & Gilday, J. (2009). Org. Biomol. Chem. 7, 335–345.
- Kavanagh, S. A., Piccini, A. & Connon, S. J. (2013). Org. Biomol. Chem. 11, 3535–3540.
- Laba, V. I., Sviridova, A. V. & Nesterov, V. N. (2009). Kristallografiya, 54, 44–47.
- Oxford Diffraction (2012). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Sandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, 0544–0546.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Unkelbach, C., Rosenbaum, H. S. & Strohmann, C. (2012). *Chem. Commun.* **48**, 10612–10614.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhu, J., Zhang, M.-J., Liu, Q.-W. & Pan, Z.-H. (2006). Acta Cryst. E62, o1507-01508.

supporting information

Acta Cryst. (2014). E70, o153 [doi:10.1107/S1600536814000257]

rac-2-Phenyl-1-[(2,4,6-triisopropylbenzene)sulfonyl]aziridine

Christopher Golz, Hans Preut and Carsten Strohmann

S1. Comment

In the past 10 years, interest in aziridinyl anions generated by direct deprotonation grew steadily (Florio & Luisi, 2010). In our group, deprotonation reactions in α - or β -position to amines are a frequent research topic (Gessner & Strohmann, 2007; Gessner & Strohmann, 2008*a*,*b*; Unkelbach *et al.*, 2012). We synthesized the compound with the intention to study the deprotonation of the aziridine moiety, which features both the α - and β -position on the same carbon, as well as ringstrain specific effects. The knowledge of the exact structure of the deprotonation substrate is usefull for further discussions of metalleted or substituted derivatives. The succesful deprotonation of such aziridines similar to the title compound were already reported by Huang *et al.*, 2009. The synthesis of the title compound via sulfonium ylide transfer was most recently reported by Kavanagh *et al.*, 2013.

 π — π -Interactions between parallel phenyl groups of adjacent molecules are indicated by a plane-to-plane distance of 3.76 (1) Å, whereas the distance between the isopropyl substituted benzene rings is far longer with 6.30 (1) Å (distance of the centroids). Additionally, interactions between the phenyl ring and the perpendicular aziridine group of an adjacent molecule are possible, with a distance between the *ipso*-carbon (C9) and the aziridine carbon C1 of 3.43 (1) Å. Thus, a T-shaped π -interaction between the aromat and the aziridin moiety are supposable. The C—C-bonds in the triisopropyl substituted benzene ring are not equidistant, but show slight deviations, similar to those found in other structures containing that group (Sandrock *et al.*, 2004, Laba *et al.*, 2009). Longer C—C-bonds were observed at the *ipso*-carbon [C9—C10 1.416 (2) Å and C9—C14 1.415 (2) Å] than for the other [C10—C11 1.396 (2) Å, C11—C12 1.385 (2) Å and C12—C13 1.384 (2) Å]. In addition, C—O-distances [C16—O2 2.83 (1) Å and C22—O1 2.98 (1) Å] shorter than the sum of the corresponding van-der-waals radii suggest strong steric repulsion between the isopropyl groups and the sulfonyl oxygen atoms, causing the sulfur atom to bend out of the aromatic plane (defined by C9-C10-C11-C12-C13-C14) of which it deviates by 0.228 (2) Å.

S2. Refinement

All H atoms were placed in calculated positions (aromatic C-H = 0.95 Å, primary C-H = 0.98 Å, secondary C-H = 0.99 Å, tertiary C-H = 1.00 Å) and allowed to ride in the refinement with $U_{iso}(H) = 1.2 U_{eq}(C)$ and $U_{iso}(H) = 1.5 U_{eq}(C)$ for terminal groups.

Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

Figure 2

Molecular packing viewed along the *a* axis with H atoms omitted. Dashed lines indicate π - π -interactions.

rac-2-Phenyl-1-[(2,4,6-triisopropylbenzene)sulfonyl]aziridine

Crystal data

C₂₃H₃₁NO₂S $M_r = 385.55$ Triclinic, $P\overline{1}$ a = 6.3037 (3) Å b = 9.6995 (5) Å c = 18.6675 (9) Å a = 75.280 (4)° $\beta = 86.842$ (4)° $\gamma = 84.404$ (4)° V = 1098.11 (10) Å³ Z = 2 F(000) = 416 $D_x = 1.166 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 5958 reflections $\theta = 2.7-28.8^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 173 KNeedle, colourless $0.31 \times 0.05 \times 0.04 \text{ mm}$ Data collection

Agilent Xcalibur Sapphire3 diffractometer	17550 measured reflections 4314 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3633 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.045$
Detector resolution: 16.0560 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
φ and ω scans	$h = -7 \rightarrow 7$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(CrysAlis PRO; Oxford Diffraction, 2012)	$l = -22 \rightarrow 22$
$T_{\min} = 0.952, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
<i>S</i> = 1.06	H-atom parameters constrained
4314 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0409P)^2 + 0.5494P]$
250 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
0 constraints	$\Delta ho_{ m max} = 0.34 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.35 \ { m e} \ { m \AA}^{-3}$
direct methods	

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	11	7	II. */II
	λ	<i>y</i>	2	U _{iso} / U _{eq}
S	0.05721 (6)	0.42978 (4)	0.83601 (2)	0.02251 (13)
Ν	0.2890 (2)	0.41306 (14)	0.87676 (7)	0.0216 (3)
01	0.01403 (19)	0.28743 (12)	0.83621 (7)	0.0304 (3)
O2	-0.10310 (19)	0.51063 (13)	0.87007 (7)	0.0319 (3)
C1	0.3327 (3)	0.52186 (18)	0.91561 (10)	0.0292 (4)
H1A	0.2270	0.6057	0.9118	0.035*
H1B	0.4829	0.5424	0.9172	0.035*
C2	0.2698 (3)	0.38042 (18)	0.95994 (9)	0.0247 (4)
H2	0.1206	0.3805	0.9811	0.030*
C3	0.4221 (3)	0.26355 (17)	1.00030 (9)	0.0228 (4)
C4	0.6286 (3)	0.24228 (19)	0.97333 (10)	0.0298 (4)
H4	0.6741	0.3024	0.9277	0.036*
C5	0.7692 (3)	0.1342 (2)	1.01235 (11)	0.0349 (4)
Н5	0.9114	0.1220	0.9939	0.042*
C6	0.7035 (3)	0.0440 (2)	1.07802 (11)	0.0382 (5)
H6	0.7998	-0.0303	1.1047	0.046*

C7	0.4971 (4)	0.0628 (2)	1.10443 (11)	0.0419 (5)
H7	0.4508	0.0002	1.1492	0.050*
C8	0.3560 (3)	0.1726 (2)	1.06619 (10)	0.0322 (4)
H8	0.2144	0.1853	1.0851	0.039*
С9	0.1211 (3)	0.52378 (17)	0.74302 (9)	0.0205 (3)
C10	0.0207 (3)	0.66079 (17)	0.71038 (9)	0.0238 (4)
C11	0.0609 (3)	0.71662 (18)	0.63479 (9)	0.0282 (4)
H11	-0.0067	0.8077	0.6116	0.034*
C12	0.1947 (3)	0.64572 (19)	0.59189 (9)	0.0286 (4)
C13	0.2961 (3)	0.51463 (18)	0.62672 (9)	0.0272 (4)
H13	0.3914	0.4663	0.5981	0.033*
C14	0.2649 (3)	0.45043 (17)	0.70157 (9)	0.0222 (4)
C15	-0.0578(5)	0.9059 (2)	0.73340 (15)	0.0609 (7)
H15A	-0.0836	0.9553	0.6815	0.091*
H15B	0.0946	0.9011	0.7426	0.091*
H15C	-0.1392	0.9585	0.7658	0.091*
C16	-0.1279(3)	0.75541 (18)	0.74931 (10)	0.0309 (4)
H16	-0.1170	0.7129	0.8038	0.037*
C17	-0.3564 (4)	0.7547 (3)	0.73040 (19)	0.0728 (9)
H17A	-0.3732	0.7958	0.6771	0.109*
H17B	-0.4484	0.8118	0.7581	0.109*
H17C	-0.3968	0.6562	0.7436	0.109*
C18	0.3517 (5)	0.8457 (3)	0.49803 (14)	0.0692 (8)
H18A	0.2633	0.9177	0.5174	0.104*
H18B	0.3815	0.8837	0.4450	0.104*
H18C	0.4862	0.8219	0.5241	0.104*
C19	0.2340 (3)	0.7118 (2)	0.50981 (10)	0.0397 (5)
H19	0.3278	0.6407	0.4894	0.048*
C20	0.0285 (4)	0.7429 (3)	0.46754 (13)	0.0653 (7)
H20A	-0.0443	0.6551	0.4762	0.098*
H20B	0.0615	0.7777	0.4144	0.098*
H20C	-0.0642	0.8160	0.4847	0.098*
C21	0.6302 (3)	0.3192 (2)	0.71540 (13)	0.0451 (5)
H21A	0.6587	0.3397	0.6618	0.068*
H21B	0.7101	0.2292	0.7397	0.068*
H21C	0.6746	0.3971	0.7342	0.068*
C22	0.3917 (3)	0.30635 (18)	0.73179 (10)	0.0258 (4)
H22	0.3678	0.2782	0.7868	0.031*
C23	0.3133 (4)	0.1912 (2)	0.69989 (12)	0.0403 (5)
H23A	0.1611	0.1835	0.7123	0.060*
H23B	0.3933	0.0992	0.7209	0.060*
H23C	0.3352	0.2168	0.6459	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
S	0.0209 (2)	0.0214 (2)	0.0226 (2)	-0.00145 (16)	-0.00392 (16)	-0.00021 (16)
N	0.0227 (7)	0.0221 (7)	0.0195 (7)	-0.0023 (6)	-0.0030 (6)	-0.0038 (5)

supporting information

01	0.0315 (7)	0.0229 (6)	0.0347 (7)	-0.0073 (5)	-0.0106 (5)	0.0006 (5)
O2	0.0262 (7)	0.0321 (7)	0.0301 (7)	0.0046 (5)	0.0039 (5)	0.0017 (5)
C1	0.0376 (10)	0.0233 (9)	0.0285 (9)	-0.0014 (8)	-0.0108 (8)	-0.0080 (7)
C2	0.0295 (9)	0.0259 (9)	0.0188 (8)	0.0015 (7)	-0.0014 (7)	-0.0071 (7)
C3	0.0278 (9)	0.0220 (8)	0.0205 (8)	-0.0016 (7)	-0.0050 (7)	-0.0080 (7)
C4	0.0303 (10)	0.0259 (9)	0.0311 (10)	-0.0029 (7)	-0.0014 (8)	-0.0027 (7)
C5	0.0295 (10)	0.0320 (10)	0.0425 (11)	0.0035 (8)	-0.0042 (8)	-0.0094 (8)
C6	0.0482 (13)	0.0290 (10)	0.0352 (11)	0.0106 (9)	-0.0145 (9)	-0.0066 (8)
C7	0.0572 (14)	0.0366 (11)	0.0245 (10)	0.0046 (10)	-0.0016 (9)	0.0027 (8)
C8	0.0372 (11)	0.0354 (10)	0.0223 (9)	0.0011 (8)	0.0012 (8)	-0.0059 (8)
C9	0.0227 (8)	0.0200 (8)	0.0189 (8)	-0.0029 (6)	-0.0058 (6)	-0.0038 (6)
C10	0.0259 (9)	0.0193 (8)	0.0260 (9)	0.0001 (7)	-0.0035 (7)	-0.0056 (7)
C11	0.0333 (10)	0.0205 (8)	0.0265 (9)	0.0056 (7)	-0.0045 (7)	-0.0003 (7)
C12	0.0339 (10)	0.0282 (9)	0.0219 (9)	0.0017 (8)	-0.0053 (7)	-0.0038 (7)
C13	0.0293 (9)	0.0276 (9)	0.0253 (9)	0.0053 (7)	-0.0040 (7)	-0.0097 (7)
C14	0.0230 (9)	0.0201 (8)	0.0247 (8)	-0.0001 (7)	-0.0083 (7)	-0.0065 (7)
C15	0.0812 (19)	0.0319 (12)	0.0736 (17)	-0.0089 (12)	0.0258 (14)	-0.0251 (12)
C16	0.0393 (11)	0.0205 (9)	0.0295 (9)	0.0048 (8)	0.0035 (8)	-0.0037 (7)
C17	0.0355 (13)	0.084 (2)	0.117 (3)	0.0111 (13)	-0.0003 (14)	-0.0659 (19)
C18	0.087 (2)	0.0712 (18)	0.0413 (14)	-0.0245 (15)	0.0178 (13)	0.0033 (12)
C19	0.0517 (13)	0.0381 (11)	0.0227 (9)	0.0129 (9)	0.0010 (9)	-0.0022 (8)
C20	0.0744 (18)	0.0837 (19)	0.0292 (12)	0.0079 (15)	-0.0155 (12)	-0.0012 (12)
C21	0.0329 (11)	0.0404 (12)	0.0580 (14)	0.0097 (9)	-0.0171 (10)	-0.0066 (10)
C22	0.0306 (9)	0.0219 (9)	0.0253 (9)	0.0054 (7)	-0.0095 (7)	-0.0073 (7)
C23	0.0517 (13)	0.0244 (10)	0.0470 (12)	0.0056 (9)	-0.0197 (10)	-0.0126 (9)

Geometric parameters (Å, °)

S-01	1.4322 (12)	C13—C14	1.389 (2)
S—O2	1.4382 (13)	С13—Н13	0.9500
S—N	1.6597 (14)	C14—C22	1.530 (2)
S—C9	1.7880 (16)	C15—C16	1.518 (3)
N—C1	1.478 (2)	C15—H15A	0.9800
N—C2	1.504 (2)	C15—H15B	0.9800
C1—C2	1.489 (2)	C15—H15C	0.9800
C1—H1A	0.9900	C16—C17	1.503 (3)
C1—H1B	0.9900	C16—H16	1.0000
C2—C3	1.486 (2)	C17—H17A	0.9800
С2—Н2	1.0000	С17—Н17В	0.9800
C3—C4	1.385 (2)	С17—Н17С	0.9800
C3—C8	1.389 (2)	C18—C19	1.519 (3)
C4—C5	1.384 (3)	C18—H18A	0.9800
C4—H4	0.9500	C18—H18B	0.9800
С5—С6	1.382 (3)	C18—H18C	0.9800
С5—Н5	0.9500	C19—C20	1.519 (3)
C6—C7	1.378 (3)	С19—Н19	1.0000
С6—Н6	0.9500	C20—H20A	0.9800
С7—С8	1.390 (3)	C20—H20B	0.9800

supporting information

С7—Н7	0.9500	C20—H20C	0.9800
С8—Н8	0.9500	C21—C22	1.528 (3)
C9—C14	1.415 (2)	C21—H21A	0.9800
C9-C10	1.416(2)	C_{21} H21B	0.9800
C_{10}	1.410(2)	C21_H21C	0.9800
	1.590 (2)		0.9800
C10—C16	1.531 (2)	C22—C23	1.525 (2)
C11—C12	1.385 (2)	C22—H22	1.0000
C11—H11	0.9500	С23—Н23А	0.9800
C12—C13	1.384 (2)	С23—Н23В	0.9800
C12—C19	1.520 (2)	С23—Н23С	0.9800
01 \$ 02	116 50 (8)	C_{0} C_{14} C_{22}	125 01 (15)
01 - 5 - 02	110.59(0)	$C_{1} = C_{1} = C_{2}$	125.91 (15)
UI—S—N	105.00 (7)		109.5
02—S—N	111.07 (7)	C16—C15—H15B	109.5
O1—S—C9	108.62 (7)	H15A—C15—H15B	109.5
O2—S—C9	111.50 (7)	C16—C15—H15C	109.5
N—S—C9	102.29 (7)	H15A—C15—H15C	109.5
C1—N—C2	59.91 (11)	H15B—C15—H15C	109.5
C1—N—S	118.58 (11)	C17—C16—C15	112.2 (2)
$C_{2} = N_{2}$	113 79 (11)	C17 - C16 - C10	111 28 (16)
N - C1 - C2	60.94 (10)	C_{15} C_{16} C_{10}	111.20 (10)
N C1 H1A	117.7	$C_{12} = C_{10} = C_{10}$	107.2
$N \rightarrow C I \rightarrow H I A$	117.7		107.2
C2—CI—HIA	11/./		107.2
N—CI—HIB	117.7	C10—C16—H16	107.2
C2—C1—H1B	117.7	C16—C17—H17A	109.5
H1A—C1—H1B	114.8	C16—C17—H17B	109.5
C3—C2—C1	124.07 (16)	H17A—C17—H17B	109.5
C3—C2—N	115.58 (13)	С16—С17—Н17С	109.5
C1—C2—N	59.15 (10)	H17A—C17—H17C	109.5
C3—C2—H2	115.3	H17B-C17-H17C	109.5
C1 $C2$ $H2$	115.3	C10 C18 H18A	109.5
N C2 112	115.2	C_{10} C_{10} C_{10} U_{10}	109.5
$N = C_2 = H_2$	110.00 (16)		109.5
C4—C3—C8	119.08 (16)	H18A—C18—H18B	109.5
C4—C3—C2	121.46 (15)	C19—C18—H18C	109.5
C8—C3—C2	119.45 (16)	H18A—C18—H18C	109.5
C5—C4—C3	120.59 (17)	H18B—C18—H18C	109.5
C5—C4—H4	119.7	C20-C19-C18	111.1 (2)
C3—C4—H4	119.7	C20—C19—C12	111.87 (18)
C6—C5—C4	120.28 (18)	C18—C19—C12	110.91 (17)
С6—С5—Н5	110.0	C_{20} C_{19} H_{19}	107.6
$C_4 C_5 H_5$	110.0	C_{18} C_{10} H_{10}	107.6
C4 - C5 - HS	119.9		107.0
	119.45 (18)	C12—C19—H19	107.6
	120.3	C19—C20—H20A	109.5
С5—С6—Н6	120.3	C19—C20—H20B	109.5
C6—C7—C8	120.63 (18)	H20A—C20—H20B	109.5
С6—С7—Н7	119.7	C19—C20—H20C	109.5
С8—С7—Н7	119.7	H20A—C20—H20C	109.5
C3—C8—C7	119.96 (18)	H20B-C20-H20C	109.5

С3—С8—Н8	120.0	C22—C21—H21A	109.5
С7—С8—Н8	120.0	C22—C21—H21B	109.5
C14—C9—C10	121.29 (15)	H21A—C21—H21B	109.5
C14—C9—S	116.84 (12)	C22—C21—H21C	109.5
C10—C9—S	121.69 (12)	H21A—C21—H21C	109.5
C11—C10—C9	117.04 (15)	H21B—C21—H21C	109.5
C11—C10—C16	116.07 (14)	C23—C22—C21	111.22 (16)
C9—C10—C16	126.88 (15)	C23—C22—C14	110.57 (14)
C12—C11—C10	123.22 (15)	C21—C22—C14	110.51 (15)
C12—C11—H11	118.4	С23—С22—Н22	108.1
C10—C11—H11	118.4	C21—C22—H22	108.1
C13—C12—C11	117.74 (16)	C14—C22—H22	108.1
C13—C12—C19	121.16 (16)	С22—С23—Н23А	109.5
C11—C12—C19	121.07 (16)	С22—С23—Н23В	109.5
C12—C13—C14	123.04 (16)	H23A—C23—H23B	109.5
C12—C13—H13	118.5	С22—С23—Н23С	109.5
C14—C13—H13	118.5	H23A—C23—H23C	109.5
C13—C14—C9	117.56 (15)	H23B—C23—H23C	109.5
C13—C14—C22	116.53 (15)		