Structure Reports

Online
ISSN 1600-5368

2-Bromo-4-phenyl-1,3-thiazole

Alexander S. Bunev, ${ }^{\text {a* }}$ Yana I. Rudakova, ${ }^{\text {a }}$ Vladimir E. Statsyuk, ${ }^{\text {a }}$ Gennady I. Ostapenko ${ }^{\text {a }}$ and Victor N. Khrustalev ${ }^{\text {b }}$

${ }^{\text {a D Department }}$ of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, and ${ }^{\text {b }}$ X-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation Correspondence e-mail: a.s.bunev@gmail.com

Received 5 January 2014; accepted 10 January 2014

Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.029 ; w R$ factor $=0.068$; data-to-parameter ratio $=25.5$.

In the title molecule, $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrNS}$, the planes of the 2-bromo-1,3-thiazole and phenyl rings are inclined at $7.45(10)^{\circ}$ with respect to each other. In the crystal, molecules related by a centre of symmetry are held together via $\pi-\pi$ interactions, with a short distance of 3.815 (2) \AA between the centroids of the five- and six-membered rings. The crystal packing exhibits short intermolecular $\mathrm{S} \cdot \cdots \mathrm{Br}$ contacts of 3.5402 (6) Å.

Related literature

For syntheses and properties of compounds containing a thiazole fragment, see: Kelly \& Lang (1995); Nicolaou et al. (1999); Cosford et al. (2003); Fyfe et al. (2004); Hamill et al. (2005). For the crystal structures of related compounds, see: Abbenante et al. (1996); Zhao et al. (2011); Ghabbour, Chia et al. (2012); Ghabbour, Kadi et al. (2012).

Experimental

$$
\begin{aligned}
& \text { Crystal data } \\
& \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrNS}
\end{aligned} \quad M_{r}=240.12
$$

Monoclinic, $P 2_{1} / n$
$a=5.8934$ (3) A
$b=10.6591$ (6) \AA
$c=13.8697$ (7) \AA
$\beta=90.812(1)^{\circ}$
$V=871.18(8) \AA^{3}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.527, T_{\text {max }}=0.591$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.068$
$S=1.03$
2780 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=4.89 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.15 \times 0.12 \times 0.12 \mathrm{~mm}$

12144 measured reflections 2780 independent reflections 2258 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

109 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168 .2011).

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5440).

References

Abbenante, G., Fairlie, D. P., Gahan, L. R., Hanson, G. R., Pierens, G. K. \& van den Brenk, A. L. (1996). J. Am. Chem. Soc. 118, 10384-10388.
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosford, N. D. P., Tehrani, L., Roppe, J., Schweiger, E., Smith, N. D., Anderson, J. J., Bristow, L., Brodkin, J., Jiang, X. H., McDonald, I., Rao, S., Washburn, M. \& Varney, M. A. (2003). J. Med. Chem. 46, 204-206.

Fyfe, F. M. C. T., Gardner, L. S., Nawano, M., Procter, J. M., Rasamison, C. M., Shofield, K. L., Shah, V. K. \& Yasuda, K. (2004). WO2004/072031.
Ghabbour, H. A., Chia, T. S. \& Fun, H.-K. (2012). Acta Cryst. E68, o1631o1632.
Ghabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. \& Fun, H.-K. (2012). Acta Cryst. E68, o1738-o1739.

Hamill, T. G., Krause, S., Ryan, C., Bonnefous, C., Govek, S., Seiders, T. J., Cosford, N. D. P., Roppe, J., Kamenecka, T., Patel, S., Gibson, R. E., Sanabria, S., Riffel, K., Eng, W., King, C., Yang, X., Green, M. D., O’Malley, S. S., Hargreaves, R. \& Burns, H. D. (2005). Synapse, 56, 205-216.

Kelly, T. R. \& Lang, F. (1995). Tetrahedron Lett. 36, 5319-5322.
Nicolaou, K. C., King, N. P., Finlay, M. R. V., He, Y., Roshangar, F., Vourloumis, D., Vallberg, H., Sarabia, F., Ninkovic, S. \& Hepworth, D. (1999). Bioorg. Med. Chem. 7, 665-697.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhao, L.-L., Cheng, W.-H. \& Cai, Z.-S. (2011). Acta Cryst. E67, o1531.

supporting information

Acta Cryst. (2014). E70, o139 [doi:10.1107/S160053681400066X]

2-Bromo-4-phenyl-1,3-thiazole

Alexander S. Bunev, Yana I. Rudakova, Vladimir E. Statsyuk, Gennady I. Ostapenko and Victor N. Khrustalev

S1. Comment

1,3-Thiazole rings appear in many compounds that exhibit important biological and pharmacological activities. For example, these rings feature in all the potent epothilones (Nicolaou et al., 1999) used aganist multidrug-resistant tumor cell lines. They are also found among pharmaceuticals used for the treatment of type 2 diabetes (Fyfe et al., 2004), antibiotic-like compounds (Kelly et al., 1995), and metabotropic glutamate receptor subtype (mGluR5) antagonists (Cosford et al., 2003; Hamill et al., 2005). Herewith we present the title compound (I) prepared by the reaction of 2-amino-4-phenylthiazole with n-butyl nintrine and CuBr (Figure 1).
In I (Fig. 2), the bond lengths and angles are in a good agreement with those found in the related compounds (Abbenante et al., 1996; Zhao et al., 2011; Ghabbour, Chia et al., 2012; Ghabbour, Kadi et al., 2012). The 2-bromo-1,3thiazole mean plane and phenyl ring are twisted by $7.45(10)^{\circ}$.
In the crystal, the molecules related by center of symmetry held together via $\pi \cdots \pi$ interactions proved by short $C g^{5} \cdots C g^{6 i}$ distance of 3.815 (2) \AA between the centroids of five-membered $\left(C g^{5}\right)$ and six-membered ($C g^{6}$) rings [symmetry code: (i) $-x, 1-y, 1-z]$. The crystal packing exhibits short intermolecular $S \cdots r^{\text {rii }}$ contacts of 3.5402 (6) \AA (Figure 3) [symmetry code: (ii) $-1+x, y, z]$.

S2. Experimental

The 4 -phenyl-2-aminothiazole $(8.1 \mathrm{~g}, 46.9 \mathrm{mmol})$ and $\mathrm{CuBr}(10.7 \mathrm{~g}, 74.6 \mathrm{mmol})$ were dissolved in acetonitrile at room temperature. n-Butyl nitrite ($8.7 \mathrm{ml}, 7.69 \mathrm{~g}, 74.6 \mathrm{mmol}$) was added with stirring, and the solution was heated to 333 K . The reaction completed after 15 min . The reaction mixture was then evaporated to dryness in vacuo. The residue was dissolved in ethyl acetate (50 ml) and washed with ammonia solution ($0.1 \mathrm{M}, 2 \times 50$). The organic layer was dried over MgSO_{4} and evaporated to dryness in vacuo. The residue was purified by chromatography on silica gel (heptane-ethylacetate; $70: 3, v / v$). The residue crystallized from 5% soluition in heptane. Yield is 53%. The single-crystal of the product I was obtained by slow crystallization from hexane. M.p. $=327-328 \mathrm{~K} . \mathrm{IR}(\mathrm{KBr}), v / \mathrm{cm}^{-1}: 3098,3063,1476,1420,1263$, 1070, 1010, 836, 730, 689. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}, 304 \mathrm{~K}$): 7.40-6.37 (m, 1H, Ph), 7.46 (t, 2H, $J=7.63$, Ph), 7.92 (d, 2H, $J=7.32, \mathrm{Ph}), 8.16$ (s, 1H, thiazole). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrNS}: \mathrm{C}, 45.02 ; \mathrm{H}, 2.52$. Found: C, 45.09; H, 2.57.

S3. Refinement

All hydrogen atoms were placed in the calculated positions $\left[\mathrm{C}-\mathrm{H}=0.95 \AA\right.$] and refined in the riding model, with $U_{\text {iso }}(\mathrm{H})$ $\left.=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$.

Figure 1
Synthesis of 2-bromo-4-phenylthiazole.

Figure 2
Molecular structure of I. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.

Figure 3
The crystal packing of I viewed along the a axis. Dashed lines indicate the intermolecular secondary $\mathrm{S} \cdots \mathrm{Br}$ interactions.

2-Bromo-4-phenyl-1,3-thiazole

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{BrNS}$

$M_{r}=240.12$
Monoclinic, $P 2{ }_{1} / n$
Hall symbol: -P 2 yn
$a=5.8934$ (3) \AA
$b=10.6591$ (6) \AA
$c=13.8697$ (7) \AA
$\beta=90.812(1)^{\circ}$
$V=871.18(8) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=472 \\
& D_{\mathrm{x}}=1.831 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3185 \text { reflections } \\
& \theta=2.4-29.5^{\circ} \\
& \mu=4.89 \mathrm{~mm}^{-1} \\
& T=120 \mathrm{~K} \\
& \text { Prism, yellow } \\
& 0.15 \times 0.12 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\min }=0.527, T_{\text {max }}=0.591$
12144 measured reflections
2780 independent reflections
2258 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=31.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-8 \rightarrow 8$
$k=-15 \rightarrow 15$
$l=-20 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.068$
$S=1.03$
2780 reflections
109 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0323 P)^{2}+0.1245 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.40$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} / U_{\mathrm{eq}}$
Br1	$0.21824(3)$	$0.90020(2)$	$0.576233(15)$	$0.02238(7)$
S1	$-0.24024(8)$	$0.75866(5)$	$0.55984(4)$	$0.01975(11)$
C2	$0.0322(3)$	$0.77659(19)$	$0.52049(14)$	$0.0165(4)$
N3	$0.0960(3)$	$0.70330(16)$	$0.45150(11)$	$0.0161(3)$
C4	$-0.0825(3)$	$0.62475(17)$	$0.42443(14)$	$0.0144(4)$
C5	$-0.2768(3)$	$0.64278(19)$	$0.47549(14)$	$0.0178(4)$
H5	-0.4135	0.5972	0.4655	0.021^{*}
C6	$-0.0500(3)$	$0.53485(18)$	$0.34463(14)$	$0.0151(4)$
C7	$-0.2155(3)$	$0.4453(2)$	$0.32167(14)$	$0.0184(4)$
H7	-0.3508	0.4419	0.3580	0.022^{*}
C8	$-0.1849(4)$	$0.3613(2)$	$0.24652(14)$	$0.0214(4)$
H8	-0.2988	0.3009	0.2318	0.026^{*}
C9	$0.0134(4)$	$0.3655(2)$	$0.19254(15)$	$0.0213(4)$
H9	0.0354	0.3080	0.1411	0.026^{*}
C10	$0.1778(4)$	$0.4544(2)$	$0.21484(15)$	$0.0208(4)$
H10	0.3130	0.4576	0.1784	0.025^{*}
C11	$0.1471(3)$	$0.53900(19)$	$0.28978(14)$	$0.0174(4)$
H11	0.2605	0.5999	0.3038	0.021^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.02065(11)$	$0.02080(11)$	$0.02561(12)$	$-0.00021(8)$	$-0.00253(8)$	$-0.00725(8)$
S1	$0.0181(2)$	$0.0210(3)$	$0.0202(2)$	$0.00233(19)$	$0.00358(19)$	$-0.00361(19)$
C2	$0.0156(9)$	$0.0158(9)$	$0.0181(9)$	$0.0006(7)$	$-0.0012(7)$	$-0.0013(7)$

N3	$0.0167(8)$	$0.0160(8)$	$0.0155(8)$	$-0.0008(6)$	$-0.0005(6)$	$-0.0006(6)$
C4	$0.0162(9)$	$0.0129(9)$	$0.0142(8)$	$0.0009(7)$	$-0.0008(7)$	$0.0015(7)$
C5	$0.0173(9)$	$0.0173(9)$	$0.0190(10)$	$0.0002(7)$	$0.0009(7)$	$-0.0011(8)$
C6	$0.0187(9)$	$0.0137(9)$	$0.0129(8)$	$0.0020(7)$	$-0.0013(7)$	$0.0015(7)$
C7	$0.0194(9)$	$0.0182(9)$	$0.0176(9)$	$-0.0013(8)$	$0.0002(7)$	$0.0010(8)$
C8	$0.0264(10)$	$0.0180(10)$	$0.0198(10)$	$-0.0019(8)$	$-0.0054(8)$	$-0.0004(8)$
C9	$0.0307(11)$	$0.0180(10)$	$0.0153(9)$	$0.0045(8)$	$-0.0019(8)$	$-0.0026(7)$
C10	$0.0224(10)$	$0.0225(10)$	$0.0175(9)$	$0.0041(8)$	$0.0028(8)$	$0.0006(8)$
C11	$0.0184(9)$	$0.0165(9)$	$0.0172(9)$	$-0.0013(7)$	$0.0019(7)$	$-0.0004(7)$

Geometric parameters ($\mathrm{A},{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 2$	1.874 (2)	C7-C8	1.388 (3)
S1-C5	1.713 (2)	C7-H7	0.9500
S1-C2	1.714 (2)	C8-C9	1.398 (3)
C2-N3	1.295 (2)	C8-H8	0.9500
N3-C4	1.392 (2)	C9-C10	1.388 (3)
C4-C5	1.368 (3)	C9-H9	0.9500
C4-C6	1.478 (3)	C10-C11	1.390 (3)
C5-H5	0.9500	C10-H10	0.9500
C6-C11	1.398 (3)	C11-H11	0.9500
C6-C7	1.398 (3)		
C5-S1-C2	88.40 (10)	C8-C7-H7	119.5
N3-C2-S1	116.81 (15)	C6-C7-H7	119.5
N3-C2-Br1	123.68 (15)	C7-C8-C9	120.0 (2)
S1-C2-Br1	119.49 (11)	C7-C8-H8	120.0
C2-N3-C4	109.64 (17)	C9-C8-H8	120.0
C5-C4-N3	114.24 (17)	C10-C9-C8	119.28 (19)
C5-C4-C6	126.63 (18)	C10-C9-H9	120.4
N3-C4-C6	119.11 (17)	C8-C9-H9	120.4
C4-C5-S1	110.91 (15)	C9-C10-C11	120.80 (19)
C4-C5-H5	124.5	C9-C10-H10	119.6
S1-C5-H5	124.5	C11-C10-H10	119.6
C11-C6-C7	118.68 (18)	C10-C11-C6	120.30 (19)
C11-C6-C4	120.27 (17)	C10-C11-H11	119.9
C7-C6-C4	121.05 (17)	C6-C11-H11	119.9
C8-C7-C6	120.92 (19)		
C5-S1-C2-N3	-0.65 (17)	C5-C4-C6-C7	-8.5 (3)
C5-S1-C2-Br1	178.28 (13)	N3-C4-C6-C7	173.20 (18)
S1-C2-N3-C4	0.5 (2)	C11-C6-C7-C8	0.5 (3)
$\mathrm{Br} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	-178.35 (13)	C4- $66-\mathrm{C} 7-\mathrm{C} 8$	179.78 (19)
C2-N3-C4-C5	-0.1 (2)	C6-C7-C8-C9	0.0 (3)
C2-N3-C4-C6	178.41 (17)	C7-C8-C9-C10	-0.2 (3)
N3-C4-C5-S1	-0.4 (2)	C8-C9-C10-C11	-0.1 (3)
C6-C4-C5-S1	-178.74 (16)	C9-C10-C11-C6	0.6 (3)
C2-S1-C5-C4	0.56 (16)	C7-C6-C11-C10	-0.8 (3)

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 11$	$170.74(19)$	$\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 11-\mathrm{C} 10$
$\mathrm{~N} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 11$	$-7.5(3)$	$179.93(18)$

