

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(6-Chloro-1-methyl-1*H*-imidazo-[4,5-c]pyridin-4-yl)-3-(2-chlorophenyl)urea

Venkatesh B. Devaru,^a M. Vinduvahini,^b M. Madaiah,^c H. D. Revanasiddappa^c and H. C. Devarajegowda^d*

^aP. G. Department of Physics, LVD College, Raichur 584 103, Karnataka, India, ^bDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, ^cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, Karnataka, India, and ^dDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India

Correspondence e-mail: devarajegowda@yahoo.com

Received 8 January 2014; accepted 11 January 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.112; data-to-parameter ratio = 12.9.

In the title compound, $C_{14}H_{11}Cl_2N_5O$, the plane of the 1*H*imidazo[4,5-c]pyridine ring system [r.m.s. deviation = 0.087 (19) Å] makes a dihedral angle of 4.87 (10)° with the terminal phenyl ring. An intramolecular N-H···N hydrogen bond stabilizes the molecular conformation. In the crystal, N-H···O hydrogen bonds link the molecules into inversion dimers. These dimers are connected by $\pi - \pi$ interactions between imidazole rings [shortest centroid-centroid distance = 3.4443 (14) Å].

Related literature

For biological applications of imidazopyridines, see: Cappelli et al. (2006); Weier et al. (1994); Barraclough et al. (1990); Bavetsias et al. (2007); Cooper et al. (1992); Temple et al. (1987); Janssens et al. (1985); Kulkarni & Newman (2007). For a related structure, see: Kandri Rodi et al. (2013).

11425 measured reflections

 $R_{\rm int} = 0.023$

2576 independent reflections

2175 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

	8.0
$C_{14}H_{11}Cl_2N_5O$	V = 1458.33 (7) A ³
$M_r = 336.18$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.9368 (3) Å	$\mu = 0.45 \text{ mm}^{-1}$
b = 17.2369 (4) Å	T = 293 K
c = 10.3805 (3) Å	$0.24 \times 0.20 \times 0.12 \text{ mm}$
$\beta = 114.216 \ (4)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
$T_{\min} = 0.770, \ T_{\max} = 1.000$

Refinement

D-N7 N8

$R[F^2 > 2\sigma(F^2)] = 0.039$	199 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
2576 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$-H7 \cdot \cdot \cdot O3^{i}$	0.86	2.07	2.862 (3)	153
−H8···N6	0.86	2.03	2.723 (2)	136
	1.1	1.0		

Symmetry code: (i) -x + 1, -y, -z + 2.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

VBD acknowledges the VGST (Vision Group of Science & Technology, Department. IT, BT and S & T, Govt. of Karnataka) for financial support (No. VGST/P-15/K-FIST Level-1 / 2010-11/744 dated 21/03/2011).

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6956).

References

- Barraclough, P., Black, J. W., Cambridge, D., Collard, D., Firmin, D., Gerskowitch, V. P., Glen, R. C., Giles, H., Hill, A. P., Hull, R. A. D., Iyer, R., King, W. R., Kneen, C. O., Lindon, J. C., Nobbs, M. S., Randall, P., Shah, G. P., Smith, S., Vine, S. J., Whiting, M. V. & Williams, J. M. (1990). J. Med. Chem. 33, 2231-2239.
- Bavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. 17, 6567-6571.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cappelli, A., Mohr, G. P., Giuliani, G., Galeazzi, S., Anzini, M., Mennuni, L., Ferrari, F., Macoves, F., Krienrath, E. M., Langer, T., Valoti, M., Giorgi, G. & Vomero, S. (2006). J. Med. Chem. 49, 6451-6464.
- Cooper, K., Fray, M. J., Parry, J. M., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115-3120.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Janssens, F., Torremans, J., Janssen, M., Stokbroekx, R. A., Luyckx, M. & Janssen, P. A. J. (1985). J. Med. Chem. 28, 1943–1947.
- Kandri Rodi, Y., Haoudi, A., Capet, F., Mazzah, A., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1029–o1030.
- Kulkarni, S. S. & Newman, A. H. (2007). Bioorg. Med. Chem. Lett. 17, 2987–2991.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
 - Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
 - Temple, J. C., Rose, J. D., Comber, R. N. & Rener, G. A. (1987). J. Med. Chem. 30, 1746–1751.
 - Weier, R. M., Khanna, I. K., Lentz, K., Stealey, M. A. & Julien, J. (1994). (Searle) US Patent No. 5359073.

supporting information

Acta Cryst. (2014). E70, o155-o156 [doi:10.1107/S1600536814000695]

1-(6-Chloro-1-methyl-1*H*-imidazo[4,5-c]pyridin-4-yl)-3-(2-chlorophenyl)urea Venkatesh B. Devaru, M. Vinduvahini, M. Madaiah, H. D. Revanasiddappa and H. C. Devarajegowda

S1. Comment

The identification of chemotherapeutic targets could lead to new therapeutic approaches and may be a key for the discovery of really effective drugs. The imidazopyridine (Cappelli *et al.*, 2006; Weier *et al.*, 1994; Barraclough *et al.*, 1990; Bavetsias *et al.*, 2007) moieties are important pharmacophores, which have proven to be useful for a number of biologically relevant targets. The compounds derived from the imidazopyridine system have recently been evaluated as antagonists of various biological receptors, including angiotensin-II and platelet activating factor (Cooper *et al.*, 1992). Substituted imidazo[4,5]pyridines have also been tested for their potential as anticancer (Temple *et al.*, 1987) and selective antihistamine (H1) agents (Janssens *et al.*, 1985). Imidazo[4,5]pyridine derivatives were also reported as inhibitors of Mitogen and stress-activated protein kinases and Aurora kinases (Kulkarni & Newman, 2007). The bond lengths and bond angles are good agreement with a related structure (Kandri Rodi *et al.*, 2013)

The asymmetric unit of 1-(6-chloro-1-methyl-1*H*-imidazo [4,5-c]pyridin-4-yl)-3-(2-chlorophenyl)urea is shown in Fig. 1. The 1*H*-imidazo[4,5-c]pyridine ring (N4/N5/N6/C10–C15) system makes a dihedral angle of 4.87 (10)° with the terminal phenyl ring.

An intramolecular N-H···N hydrogen bond stabilizes the molecular conformation. Intermolecular N-H···O hydrogen bonds link the molecules to centrosymmetric dimers. These dimers are further connected by intermolecular π - π interactions between imidazole rings [shortest centroid–centroid distance = 3.4443 (14) Å]. A view of the crystal packing is given in Figure 2.

S2. Experimental

A mixture of 2,4,6-trichloropyridene, methylamine in ethanol was heated and filtered to get pure product. To this sulfuric acid and fuming nitric acid was added, then it was stirred and cooled. A solution of iron powder and ammonium chloride in methanol/water was added and heated. Then triethylorthoformate in ethanol was added and continued the heating. Amination of reaction product was achieved by adding benzophenone imine, potassium carbonate, palladium complex, in dioxane, and then it was heated. The obtained product was dissolved in HCl, stirred, and concentrated *in vacuo* to give the product. A mixture of obtained product, sodium hydride, 6-chloro-1-methyl-1*H*-imidazol [4,5-*c*]pyridin-4-amine and carbonyl/sulfonyl chlorides in tetahydrofuran was stirred and concentrated *in vacuo* to give the expected products. After completion of each step of the reaction TLC was monitored. The compound is recrystallized by ethanol- chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield: 122 mg, 66.27%; m p: 380; IR cm-1 (KBr) 3431, 1669; Anal. Calcd for $C_{14}H_{11}Cl_2N_5O$ C,50.02; H, 3.30; N, 20.83%; Found, C, 49.45; H, 3.25; N, 20.44%.

S3. Refinement

All H atoms were positioned geometrically; N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, and C—H = 0.96 Å for methyl H, and refined using a riding model with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Hydrogen bonds are shown as open dashed bonds.

Figure 2

The packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

1-(6-Chloro-1-methyl-1H-imidazo[4,5-c]pyridin-4-yl)-3-(2-chlorophenyl)urea

Crystal data

C₁₄H₁₁Cl₂N₅O $M_r = 336.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.9368 (3) Å b = 17.2369 (4) Å c = 10.3805 (3) Å $\beta = 114.216$ (4)° V = 1458.33 (7) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	11425 measured reflections
diffractometer	2576 independent reflections
Radiation source: fine-focus sealed tube	2175 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.023$
ω and φ scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2007)	$k = -20 \rightarrow 20$
$T_{\min} = 0.770, \ T_{\max} = 1.000$	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 1.06	H-atom parameters constrained
2576 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 + 0.5893P]$
199 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. IR cm-1 (KBr) 3431, 1669; Anal. Calcd for $C_{14}H_{11}Cl_2N_5O$ C,50.02; H, 3.30; N, 20.83%; Found, C, 49.45; H, 3.25; N, 20.44%.

F(000) = 688

 $\theta = 2.4 - 25.0^{\circ}$

 $\mu = 0.45 \text{ mm}^{-1}$

Plate, colourless

 $0.24 \times 0.20 \times 0.12 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.531 {\rm Mg} {\rm m}^{-3}$

Melting point: 380 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2576 reflections

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.98140 (8)	0.21079 (4)	0.85698 (7)	0.0611 (2)	
Cl2	1.28185 (8)	0.14285 (4)	1.18265 (7)	0.0693 (2)	

03	0.50876 (19)	0.04206 (11)	0.86633 (16)	0.0599 (5)	
N4	1.1433 (2)	-0.06979 (11)	1.47101 (19)	0.0457 (5)	
N5	0.8783 (2)	-0.07679 (11)	1.31848 (19)	0.0474 (5)	
N6	1.0050 (2)	0.07252 (10)	1.12745 (18)	0.0424 (4)	
N7	0.7418 (2)	0.01864 (11)	1.05733 (18)	0.0447 (5)	
H7	0.6847	-0.0136	1.0818	0.054*	
N8	0.7379 (2)	0.10758 (10)	0.88673 (17)	0.0389 (4)	
H8	0.8420	0.1107	0.9357	0.047*	
C9	1.2941 (3)	-0.08685 (16)	1.5946 (2)	0.0587 (6)	
H9A	1.3816	-0.0553	1.5925	0.088*	
H9B	1.3215	-0.1406	1.5937	0.088*	
H9C	1.2783	-0.0758	1.6789	0.088*	
C10	0.9933 (3)	-0.10224 (14)	1.4362 (2)	0.0502 (6)	
H10	0.9738	-0.1398	1.4919	0.060*	
C11	0.9608 (3)	-0.02290 (12)	1.2725 (2)	0.0386 (5)	
C12	0.9041 (2)	0.02356 (12)	1.1512 (2)	0.0379 (5)	
C13	1.1616 (3)	0.07603 (13)	1.2225 (2)	0.0451 (5)	
C14	1.2320 (3)	0.03333 (13)	1.3434 (2)	0.0461 (5)	
H14	1.3418	0.0380	1.4053	0.055*	
C15	1.1242 (3)	-0.01774 (12)	1.3656 (2)	0.0397 (5)	
C16	0.6546 (3)	0.05620 (13)	0.9311 (2)	0.0408 (5)	
C17	0.6706 (3)	0.15605 (11)	0.7687 (2)	0.0389 (5)	
C18	0.5051 (3)	0.15738 (14)	0.6761 (2)	0.0472 (5)	
H18	0.4318	0.1235	0.6897	0.057*	
C19	0.4496 (3)	0.20893 (14)	0.5640 (3)	0.0545 (6)	
H19	0.3389	0.2093	0.5032	0.065*	
C20	0.5541 (4)	0.25923 (15)	0.5406 (3)	0.0621 (7)	
H20	0.5148	0.2933	0.4646	0.075*	
C21	0.7172 (4)	0.25902 (14)	0.6304 (3)	0.0599 (7)	
H21	0.7893	0.2929	0.6152	0.072*	
C22	0.7742 (3)	0.20852 (12)	0.7430 (2)	0.0444 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0526 (4)	0.0597 (4)	0.0696 (4)	-0.0158 (3)	0.0237 (3)	-0.0005 (3)
C12	0.0440 (4)	0.0822 (5)	0.0688 (4)	-0.0224 (3)	0.0101 (3)	0.0153 (3)
O3	0.0347 (9)	0.0818 (12)	0.0484 (9)	-0.0163 (8)	0.0022 (7)	0.0204 (8)
N4	0.0397 (10)	0.0505 (11)	0.0404 (10)	0.0087 (8)	0.0100 (8)	0.0054 (8)
N5	0.0400 (10)	0.0526 (11)	0.0467 (11)	0.0006 (9)	0.0147 (9)	0.0106 (9)
N6	0.0363 (10)	0.0455 (10)	0.0408 (10)	-0.0063 (8)	0.0112 (8)	-0.0004 (8)
N7	0.0341 (10)	0.0529 (11)	0.0387 (10)	-0.0093 (8)	0.0065 (8)	0.0110 (8)
N8	0.0336 (9)	0.0449 (10)	0.0351 (9)	-0.0055 (8)	0.0111 (7)	0.0019 (8)
C9	0.0453 (14)	0.0688 (16)	0.0477 (14)	0.0113 (12)	0.0047 (11)	0.0098 (12)
C10	0.0472 (13)	0.0525 (13)	0.0499 (13)	0.0054 (11)	0.0188 (11)	0.0130 (11)
C11	0.0343 (11)	0.0416 (11)	0.0379 (11)	0.0012 (9)	0.0126 (9)	0.0003 (9)
C12	0.0327 (11)	0.0422 (11)	0.0362 (11)	-0.0005 (9)	0.0114 (9)	-0.0016 (9)
C13	0.0357 (11)	0.0494 (13)	0.0465 (12)	-0.0066 (10)	0.0131 (10)	-0.0024 (10)

supporting information

C14	0.0315 (11)	0.0536 (13)	0.0450 (12)	-0.0006 (10)	0.0074 (10)	-0.0022 (10)
C15	0.0378 (11)	0.0415 (11)	0.0365 (11)	0.0041 (9)	0.0119 (9)	-0.0026 (9)
C16	0.0363 (12)	0.0457 (12)	0.0363 (11)	-0.0043 (9)	0.0108 (9)	0.0019 (9)
C17	0.0470 (12)	0.0365 (11)	0.0353 (10)	-0.0009 (9)	0.0191 (10)	-0.0032 (9)
C18	0.0472 (13)	0.0524 (13)	0.0402 (12)	-0.0004 (11)	0.0162 (10)	0.0034 (10)
C19	0.0591 (15)	0.0563 (15)	0.0422 (13)	0.0083 (12)	0.0146 (12)	0.0050 (11)
C20	0.084 (2)	0.0523 (14)	0.0493 (14)	0.0061 (14)	0.0261 (14)	0.0143 (12)
C21	0.0801 (19)	0.0470 (14)	0.0592 (16)	-0.0078 (13)	0.0351 (15)	0.0056 (12)
C22	0.0544 (14)	0.0394 (11)	0.0433 (12)	-0.0050 (10)	0.0239 (11)	-0.0041 (9)

Geometric parameters (Å, °)

Cl1—C22	1.741 (2)	С9—Н9С	0.9600
Cl2—C13	1.737 (2)	C10—H10	0.9300
O3—C16	1.221 (2)	C11—C15	1.384 (3)
N4	1.357 (3)	C11—C12	1.399 (3)
N4—C15	1.371 (3)	C13—C14	1.366 (3)
N4—C9	1.460 (3)	C14—C15	1.391 (3)
N5—C10	1.309 (3)	C14—H14	0.9300
N5—C11	1.387 (3)	C17—C18	1.395 (3)
N6—C12	1.330 (3)	C17—C22	1.396 (3)
N6—C13	1.343 (3)	C18—C19	1.384 (3)
N7—C12	1.379 (3)	C18—H18	0.9300
N7—C16	1.381 (3)	C19—C20	1.366 (4)
N7—H7	0.8600	C19—H19	0.9300
N8—C16	1.353 (3)	C20—C21	1.371 (4)
N8—C17	1.399 (3)	C20—H20	0.9300
N8—H8	0.8600	C21—C22	1.377 (3)
С9—Н9А	0.9600	C21—H21	0.9300
С9—Н9В	0.9600		
C10—N4—C15	105.76 (18)	C14—C13—Cl2	118.66 (17)
C10—N4—C9	127.3 (2)	C13—C14—C15	113.8 (2)
C15—N4—C9	127.0 (2)	C13—C14—H14	123.1
C10—N5—C11	102.76 (18)	C15—C14—H14	123.1
C12—N6—C13	118.28 (18)	N4—C15—C11	105.38 (18)
C12—N7—C16	131.50 (18)	N4—C15—C14	132.7 (2)
C12—N7—H7	114.3	C11—C15—C14	121.92 (19)
C16—N7—H7	114.3	O3—C16—N8	123.74 (19)
C16—N8—C17	126.16 (18)	O3—C16—N7	119.21 (19)
C16—N8—H8	116.9	N8—C16—N7	117.06 (18)
C17—N8—H8	116.9	C18—C17—C22	117.2 (2)
N4—C9—H9A	109.5	C18—C17—N8	124.54 (19)
N4—C9—H9B	109.5	C22—C17—N8	118.3 (2)
H9A—C9—H9B	109.5	C19—C18—C17	120.2 (2)
N4—C9—H9C	109.5	C19—C18—H18	119.9
Н9А—С9—Н9С	109.5	C17—C18—H18	119.9
Н9В—С9—Н9С	109.5	C20—C19—C18	121.4 (3)

N5—C10—N4	115.0 (2)	С20—С19—Н19	119.3
N5—C10—H10	122.5	C18—C19—H19	119.3
N4—C10—H10	122.5	C19—C20—C21	119.4 (2)
C15—C11—N5	111.13 (18)	С19—С20—Н20	120.3
C15—C11—C12	118.69 (19)	C21—C20—H20	120.3
N5—C11—C12	130.18 (19)	C20—C21—C22	119.9 (2)
N6—C12—N7	120.29 (18)	C20—C21—H21	120.0
N6—C12—C11	120.47 (19)	C22—C21—H21	120.0
N7—C12—C11	119.24 (18)	C21—C22—C17	121.9 (2)
N6-C13-C14	126.8 (2)	C21—C22—C11	118.86 (18)
N6-C13-Cl2	114.53 (16)	C17—C22—C11	119.23 (17)
C11—N5—C10—N4	0.0 (3)	C12—C11—C15—N4	-179.29 (18)
C15—N4—C10—N5	0.2 (3)	N5-C11-C15-C14	-179.01 (19)
C9—N4—C10—N5	-179.6 (2)	C12-C11-C15-C14	1.4 (3)
C10—N5—C11—C15	-0.2 (2)	C13—C14—C15—N4	-179.8 (2)
C10—N5—C11—C12	179.3 (2)	C13—C14—C15—C11	-0.7 (3)
C13—N6—C12—N7	179.27 (19)	C17—N8—C16—O3	5.1 (3)
C13—N6—C12—C11	0.0 (3)	C17—N8—C16—N7	-174.47 (18)
C16—N7—C12—N6	1.5 (4)	C12—N7—C16—O3	-179.5 (2)
C16—N7—C12—C11	-179.2 (2)	C12—N7—C16—N8	0.1 (4)
C15—C11—C12—N6	-1.1 (3)	C16—N8—C17—C18	-1.4 (3)
N5-C11-C12-N6	179.5 (2)	C16—N8—C17—C22	176.71 (19)
C15—C11—C12—N7	179.66 (19)	C22-C17-C18-C19	0.3 (3)
N5-C11-C12-N7	0.2 (3)	N8—C17—C18—C19	178.4 (2)
C12—N6—C13—C14	0.8 (4)	C17—C18—C19—C20	0.2 (4)
C12—N6—C13—Cl2	-179.04 (15)	C18-C19-C20-C21	-0.3 (4)
N6-C13-C14-C15	-0.5 (3)	C19—C20—C21—C22	-0.2 (4)
Cl2—C13—C14—C15	179.40 (16)	C20-C21-C22-C17	0.8 (4)
C10—N4—C15—C11	-0.3 (2)	C20-C21-C22-Cl1	-178.9 (2)
C9—N4—C15—C11	179.5 (2)	C18—C17—C22—C21	-0.8 (3)
C10—N4—C15—C14	178.9 (2)	N8—C17—C22—C21	-179.0 (2)
C9—N4—C15—C14	-1.3 (4)	C18—C17—C22—Cl1	178.84 (16)
N5-C11-C15-N4	0.3 (2)	N8—C17—C22—Cl1	0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
N7—H7…O3 ⁱ	0.86	2.07	2.862 (3)	153
N8—H8…N6	0.86	2.03	2.723 (2)	136

Symmetry code: (i) -x+1, -y, -z+2.