

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(1-Benzothiophen-2-yl)-4*H*-1,3,4-oxadiazin-5(6*H*)-one

Hong-Shun Sun,^{a,b}* Yu-Long Li,^a Ning Xu^a and Lin-Jiang Shen^b

^aChemical Engineering Department, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China, and ^bCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: njutshs@126.com

Received 27 November 2013; accepted 9 December 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.064; wR factor = 0.192; data-to-parameter ratio = 12.7.

In the title compound, $C_{11}H_8N_2O_2S$, the oxadiazinone ring is nearly planar [maximum deviation = 0.016 (4) Å], and is approximately coplanar with the benzothiophene ring system [dihedral angle = 3.1 (5)°]. In the crystal, molecules are linked by N-H···O hydrogen bonds, forming chains running along the *b*-axis direction.

Related literature

For applications of oxadiazin derivatives, see: De Sarro *et al.* (2005); Shigeki *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_8N_2O_2S\\ M_r=232.25\\ Monoclinic, P2_1/n\\ a=7.4950\ (15)\ \text{\AA}\\ b=6.0350\ (12)\ \text{\AA}\\ c=22.412\ (5)\ \text{\AA}\\ \beta=93.08\ (3)^\circ \end{array}$

 $V = 1012.3 (4) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.30 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.10 \text{ mm}$ 1848 independent reflections

 $R_{\rm int} = 0.064$

reflections

1167 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

intensity decay: 1%

Data collection

```
Enraf–Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.915, T_{\max} = 0.970
1999 measured reflections
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.064 & 1 \text{ restraint} \\ wR(F^2) &= 0.192 & H-\text{atom parameters constrained} \\ S &= 1.00 & \Delta\rho_{\text{max}} &= 0.39 \text{ e } \text{ Å}^{-3} \\ 1848 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.39 \text{ e } \text{ Å}^{-3} \\ 145 \text{ parameters} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
$N1 - H1A \cdots O2^{i}$	0.86	2.03	2.848 (5)	158		
Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{5}{2}$.						

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The work was supported by Nanjing College of Chemical Technology, China (NHKY-2013–02).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5757).

References

- De Sarro, G., Gitto, R., Russo, E., Ibbadu, G. F., Barreca, M. L., De Luca, L. & Chimirri, A. (2005). Curr. Top. Med. Chem. 5, 31–42.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shigeki, H., Koshi, U., Satoshi, N., Koki, K., Koichi, I., Yoshikiko, N., Osamu, T., Takahisa, H. & Masahiro, Y. (2012). J. Med. Chem. 55, 10584–10600.

supporting information

Acta Cryst. (2014). E70, o41 [https://doi.org/10.1107/S1600536813033291]

2-(1-Benzothiophen-2-yl)-4H-1,3,4-oxadiazin-5(6H)-one

Hong-Shun Sun, Yu-Long Li, Ning Xu and Lin-Jiang Shen

S1. Comment

Noncompetitive *a*-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonists have actively been explored, driven by the belief that such drugs would exercise effectiveness independent of glutamatelevels and the synaptic membrane polarization state, with minor influence on normal glutamatergic activity compared with competitive antagonists (De Sarro *et al.*, 2005). Commercially available 2,4-diphenyl-4*H*-1,3,4-oxadiazin-5-one was selected as a suitable starting compound with a novel structure *versus* other HTS (high throughput screening) hit compounds and known noncompetitive AMPA antagonists (Shigeki *et al.*, 2012). The title compound is a new oxadiazin compound with a similar structure to it. We synthesized it and report here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The benzothiophene ring makes a dihedral angle of $3.1 (5)^{\circ}$ to oxadiazin ring.

As shown in Figure 2, the molecules are linked by N—H…O and weak S…S (Table 1) bonds into a three-dimensional network, which consolidate the crystal packing.

S2. Experimental

N'-(2-chloroacetyl)benzo[b]thiophene-2-carbohydrazide (0.27 g, 1 mmol) was dissolved in 10 ml acetonitrile, after which potassium carbonate (0.28 g, 2.0 mmol) was added and the mixture was refluxed for 3 h under heating. The reaction solution was left and cooled to room temperature, evaporated, diluted with EtOAc, washed with water and brine, and then dried over MgSO₄. After the drying agent was filtered off, the product was evaporated and the resulting crystalline residues were recrystallized from n-hexane and EtOAc to give the compound (0.19 g, 0.8 mmol, 80.0%) as a yellow crystal suitable for X-ray analysis.

S3. Refinement

H atoms were positioned geometrically, with N— H = 0.86 Å and C—H = 0.93, and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figure 1

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Figure 2

A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.

2-(1-Benzothiophen-2-yl)-4H-1,3,4-oxadiazin-5(6H)-one

Crystal data $C_{11}H_8N_2O_2S$ $M_r = 232.25$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.4950 (15) Å b = 6.0350 (12) Å c = 22.412 (5) Å $\beta = 93.08 (3)^{\circ}$ $V = 1012.3 (4) Å^3$ Z = 4

F(000) = 480 $D_x = 1.524 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-12^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Enraf–Nonius CAD-4	1848 independent reflections
diffractometer	1167 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.064$
Graphite monochromator	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 9$
Absorption correction: ψ scan	$k = 0 \longrightarrow 7$
(North <i>et al.</i> , 1968)	$l = -27 \rightarrow 27$
$T_{\min} = 0.915, T_{\max} = 0.970$	3 standard reflections every 200 reflections
1999 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.192$	neighbouring sites
S = 1.00	H-atom parameters constrained

1848 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.650P]$
145 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Special details	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S	0.66885 (16)	0.2027 (2)	0.99910 (5)	0.0507 (4)	
O2	0.8714 (5)	0.7881 (6)	1.23337 (14)	0.0632 (10)	
01	0.8545 (5)	0.7527 (5)	1.07326 (14)	0.0606 (10)	
C1	0.6558 (5)	0.2443 (8)	0.92291 (17)	0.0391 (10)	
N1	0.7891 (5)	0.5094 (6)	1.17093 (15)	0.0442 (9)	
H1A	0.7685	0.4264	1.2010	0.053*	
C2	0.5909 (6)	0.0894 (8)	0.8802 (2)	0.0491 (12)	
H2B	0.5496	-0.0488	0.8917	0.059*	
N2	0.7558 (5)	0.4203 (6)	1.11441 (15)	0.0430 (9)	
C3	0.5905 (6)	0.1488 (9)	0.8209 (2)	0.0540 (13)	
H3B	0.5454	0.0508	0.7918	0.065*	
C4	0.6552 (6)	0.3490 (9)	0.8041 (2)	0.0555 (13)	
H4A	0.6566	0.3817	0.7636	0.067*	
C5	0.7186 (6)	0.5054 (8)	0.84494 (19)	0.0514 (12)	
H5A	0.7590	0.6427	0.8325	0.062*	

supporting information

C6	0.7203 (6)	0.4501 (8)	0.90646 (18)	0.0429 (11)
C7	0.7809 (5)	0.5961 (8)	0.95690 (16)	0.0371 (10)
H7A	0.8256	0.7395	0.9550	0.044*
C8	0.7548 (5)	0.4656 (7)	1.00939 (17)	0.0379 (10)
C9	0.7923 (5)	0.5458 (7)	1.07104 (17)	0.0342 (9)
C10	0.8941 (6)	0.8522 (7)	1.13060 (19)	0.0461 (11)
H10A	0.8284	0.9903	1.1326	0.055*
H10B	1.0204	0.8878	1.1341	0.055*
C11	0.8500 (6)	0.7115 (8)	1.18252 (19)	0.0446 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0665 (8)	0.0529 (7)	0.0334 (7)	-0.0047 (6)	0.0096 (5)	0.0009 (6)
O2	0.076 (2)	0.082 (3)	0.0322 (18)	-0.002 (2)	0.0036 (15)	-0.0179 (18)
O1	0.104 (3)	0.049 (2)	0.0293 (18)	-0.0176 (18)	0.0092 (17)	-0.0028 (14)
C1	0.038 (2)	0.056 (3)	0.024 (2)	0.0058 (19)	0.0081 (17)	0.0047 (19)
N1	0.059 (2)	0.052 (2)	0.0225 (18)	-0.0017 (19)	0.0104 (16)	0.0012 (16)
C2	0.054 (3)	0.057 (3)	0.037 (3)	0.001 (2)	0.005 (2)	-0.006(2)
N2	0.062 (2)	0.043 (2)	0.0248 (18)	0.0046 (18)	0.0097 (16)	-0.0007 (16)
C3	0.052 (3)	0.078 (4)	0.031 (2)	0.012 (3)	-0.002 (2)	-0.013 (3)
C4	0.064 (3)	0.079 (4)	0.024 (2)	0.019 (3)	0.007 (2)	0.003 (2)
C5	0.071 (3)	0.051 (3)	0.034 (3)	0.013 (2)	0.016 (2)	0.008 (2)
C6	0.046 (2)	0.053 (3)	0.031 (2)	0.009 (2)	0.0105 (18)	0.002 (2)
C7	0.0324 (19)	0.060 (3)	0.0186 (19)	0.013 (2)	0.0016 (15)	-0.0124 (19)
C8	0.049 (2)	0.041 (2)	0.024 (2)	0.007 (2)	0.0071 (17)	-0.0004 (18)
C9	0.042 (2)	0.036 (2)	0.026 (2)	0.0013 (18)	0.0036 (17)	-0.0014 (18)
C10	0.057 (3)	0.046 (3)	0.036 (2)	0.005 (2)	0.005 (2)	-0.007 (2)
C11	0.047 (2)	0.058 (3)	0.029 (2)	0.012 (2)	0.0056 (19)	-0.011 (2)

Geometric parameters (Å, °)

S	1.723 (5)	C3—C4	1.363 (7)
S—C1	1.723 (4)	C3—H3B	0.9300
O2—C11	1.232 (5)	C4—C5	1.382 (7)
01—С9	1.333 (5)	C4—H4A	0.9300
O1—C10	1.435 (5)	C5—C6	1.418 (6)
C1—C6	1.390 (6)	С5—Н5А	0.9300
C1—C2	1.406 (6)	C6—C7	1.485 (6)
N1-C11	1.323 (6)	C7—C8	1.438 (6)
N1—N2	1.387 (5)	C7—H7A	0.9300
N1—H1A	0.8600	C8—C9	1.477 (5)
С2—С3	1.377 (6)	C10—C11	1.492 (6)
C2—H2B	0.9300	C10—H10A	0.9700
N2—C9	1.274 (5)	C10—H10B	0.9700
C8—S—C1	90.0 (2)	C1—C6—C5	118.9 (4)
C9—O1—C10	118.7 (3)	C1—C6—C7	115.1 (4)

C6—C1—C2	121.8 (4)	C5—C6—C7	125.9 (4)
C6—C1—S	113.0 (3)	C8—C7—C6	104.4 (4)
C2—C1—S	125.2 (4)	C8—C7—H7A	127.8
C11—N1—N2	125.5 (4)	C6—C7—H7A	127.8
C11—N1—H1A	117.3	C7—C8—C9	124.0 (4)
N2—N1—H1A	117.3	C7—C8—S	117.5 (3)
C3—C2—C1	117.8 (5)	C9—C8—S	118.6 (3)
C3—C2—H2B	121.1	N2	128.1 (4)
C1—C2—H2B	121.1	N2—C9—C8	118.8 (4)
C9—N2—N1	115.5 (4)	O1—C9—C8	113.0 (3)
C4—C3—C2	121.1 (5)	O1-C10-C11	114.6 (4)
С4—С3—Н3В	119.5	O1-C10-H10A	108.6
С2—С3—Н3В	119.5	C11-C10-H10A	108.6
C3—C4—C5	122.5 (4)	O1-C10-H10B	108.6
C3—C4—H4A	118.8	C11-C10-H10B	108.6
C5—C4—H4A	118.8	H10A—C10—H10B	107.6
C4—C5—C6	117.9 (5)	O2—C11—N1	123.6 (4)
C4—C5—H5A	121.0	O2-C11-C10	119.0 (4)
С6—С5—Н5А	121.0	N1-C11-C10	117.4 (4)
C8—S—C1—C6	1.8 (3)	C6—C7—C8—S	0.0 (4)
C8—S—C1—C2	-179.4 (4)	C1—S—C8—C7	-1.0 (3)
C6—C1—C2—C3	-0.9 (6)	C1—S—C8—C9	177.3 (3)
S-C1-C2-C3	-179.7 (3)	N1—N2—C9—O1	-1.6 (6)
C11—N1—N2—C9	1.8 (6)	N1—N2—C9—C8	-178.0 (3)
C1—C2—C3—C4	1.7 (7)	C10—O1—C9—N2	2.6 (7)
C2—C3—C4—C5	-2.2 (7)	C10—O1—C9—C8	179.1 (4)
C3—C4—C5—C6	1.9 (7)	C7—C8—C9—N2	176.5 (4)
C2-C1-C6-C5	0.7 (6)	S-C8-C9-N2	-1.7 (5)
S-C1-C6-C5	179.5 (3)	C7—C8—C9—O1	-0.4 (6)
C2—C1—C6—C7	178.9 (4)	S-C8-C9-O1	-178.6 (3)
S-C1-C6-C7	-2.2 (4)	C9—O1—C10—C11	-3.3 (6)
C4—C5—C6—C1	-1.1 (6)	N2-N1-C11-O2	177.0 (4)
C4—C5—C6—C7	-179.1 (4)	N2-N1-C11-C10	-2.8 (6)
C1—C6—C7—C8	1.4 (4)	O1—C10—C11—O2	-176.5 (4)
C5—C6—C7—C8	179.5 (4)	O1-C10-C11-N1	3.4 (6)
C6—C7—C8—C9	-178.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$N1$ — $H1A$ ···· $O2^{i}$	0.86	2.03	2.848 (5)	158

Symmetry code: (i) -x+3/2, y-1/2, -z+5/2.