

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Tetra- $\mu$ -acetato- $\kappa^8 O:O'$ -bis[(pyridine-2carbonitrile- $\kappa N^1$ )copper(II)]

### Mei Luo,\* Lei Wang and Jing-Cheng Zhang

Hefei University of Technology, Hefei, People's Republic of China Correspondence e-mail: luomei@pku.edu.cn

Received 25 November 2013; accepted 18 December 2013

Key indicators: single-crystal X-ray study; T = 140 K; mean  $\sigma$ (C–C) = 0.008 Å; R factor = 0.060; wR factor = 0.159; data-to-parameter ratio = 13.2.

The title binuclear compound,  $[Cu_2(CH_3COO)_4(C_6H_4N_2)_2]$ , lies about an inversion center, with the Cu<sup>II</sup> cation bridged by four acetate anions and coordinated by a pyridine N atom in a distorted square-pyramidal geometry. The Cu···Cu distance is 2.5997 (15) Å. In the crystal, molecules are linked by weak  $C-H\cdots O$  and  $C-H\cdots N$  hydrogen bonds into a threedimensional supramolecular architecture. The crystal studied was a non-merohedral twin with a minor twin component of 4.1 (1)%.

### **Related literature**

For related binuclear compounds, see: Fairuz et al. (2010); Chang et al. (2011).



### **Experimental**

Crystal data  $[Cu_2(C_2H_3O_2)_4(C_6H_4N_2)_2]$  $M_r = 571.48$ Monoclinic,  $P2_1/c$ a = 7.929 (5) Å b = 19.817 (12) Å

| c = 8.222 (5) Å                |
|--------------------------------|
| $\beta = 118.83 \ (2)^{\circ}$ |
| $V = 1131.8 (12) \text{ Å}^3$  |
| Z = 2                          |
| Mo $K\alpha$ radiation         |

# metal-organic compounds

 $R_{\rm int} = 0.165$ 

 $0.32 \times 0.12 \times 0.06 \text{ mm}$ 

7361 measured reflections 2077 independent reflections

1792 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.93 \text{ mm}^{-1}$ T = 140 K

#### Data collection

| Bruker APEXII CCD                    |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 2001)               |
| $T_{\min} = 0.58, \ T_{\max} = 0.89$ |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 157 parameters  $wR(F^2) = 0.159$ H-atom parameters constrained S = 1.07 $\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-1}$  $\Delta \rho_{\rm min} = -1.48 \text{ e} \text{ Å}^{-3}$ 2077 reflections

### Table 1

Selected bond lengths (Å).

| Cu1-O1              | 1.975 (4) | Cu1-O4 | 1.952 (4) |
|---------------------|-----------|--------|-----------|
| Cu1-O2 <sup>i</sup> | 1.980 (4) | Cu1-N1 | 2.235 (4) |
| Cu1-O3 <sup>i</sup> | 1.941 (4) |        |           |

Symmetry code: (i) -x + 1, -y, -z + 1.

#### Table 2 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                    | D-H          | $H \cdots A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------|--------------|--------------|------------------------|--------------------------------------|
| $C2 - H2 \cdots N2^{ii}$ $C8 - H8B \cdots N2^{iii}$ | 0.93<br>0.96 | 2.60<br>2.57 | 3.196 (9)<br>3.491 (8) | 122<br>160                           |
| $C10-H10A\cdots O4^{iv}$                            | 0.96         | 2.54         | 3.381 (7)              | 147                                  |

Symmetry codes: (ii) x - 1, y, z; (iii) x,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ ; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by Hefei University of Technology, China. The data were collected at the University of Science and Technology of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5755).

### References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chang, H.-C., Cole, J. M., Lin, T.-C. & Waddell, P. G. (2011). Acta Cryst. E67, m691.
- Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1077-m1078.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2014). E70, m27 [https://doi.org/10.1107/S1600536813034120]

Tetra- $\mu$ -acetato- $\kappa^{8}O:O'$ -bis[(pyridine-2-carbonitrile- $\kappa N^{1}$ )copper(II)]

# Mei Luo, Lei Wang and Jing-Cheng Zhang

## S1. Comment

The Cu–N complexes have occupied an important position in catalytic processes. In connection with on-going studies into the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes (Fairuz *et al.*, 2010; Chang *et al.* (2011), the title complex, (I), was investigated. The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two Cu II atoms bridged by four acetate groups. The Cu–O bond distances ranged from 1.941 (4) to 1.980 (4) Å (Table 1). The distorted square-pyramidal coordination environment for the Cu atom is completed by a pyridine-N atom and four carboxyl-O atoms of acetate anions. In the binuclear compound, the Cu …Cu distance is 2.5997 (15) Å. In the crystal, the molecules are linked by weak C—H…O and C—H…N hydrogen bonds into three dimensional supramolecular architecture.

# **S2. Experimental**

2-Cyanopyridine (23.1233 g, 30 mmol) was added to a THF solution (60 ml) of  $Cu(OAc)_2$ .H<sub>2</sub>O (1.9972 g, 5 mmol). The reaction mixture was stirred vigorously while refluxing for 48 h. The filtrate was slowly evaporated, the blue single crystals were obtained.

## **S3. Refinement**

H atoms were placed in calculated position with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in a riding mode with  $U_{iso}(H) = 1.2U_{eq}(C)$  for aromatic H atoms and  $1.5U_{eq}(C)$  for methyl H atom.





The structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Tetra- $\mu$ -acetato- $\kappa^{8}O:O'$ -bis[(pyridine-2-carbonitrile- $\kappa N^{1}$ )copper(II)]

Crystal data

 $\begin{bmatrix} Cu_2(C_2H_3O_2)_4(C_6H_4N_2)_2 \end{bmatrix}$   $M_r = 571.48$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 7.929 (5) Å b = 19.817 (12) Å c = 8.222 (5) Å  $\beta = 118.83$  (2)° V = 1131.8 (12) Å<sup>3</sup> Z = 2

## Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001)  $T_{\min} = 0.58, T_{\max} = 0.89$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.060$  $wR(F^2) = 0.159$ S = 1.072077 reflections 157 parameters F(000) = 580  $D_x = 1.677 \text{ Mg m}^{-3}$ Mo Ka radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3034 reflections  $\theta = 2.9-30.5^{\circ}$   $\mu = 1.93 \text{ mm}^{-1}$  T = 140 KBlock, blue  $0.32 \times 0.12 \times 0.06 \text{ mm}$ 

7361 measured reflections 2077 independent reflections 1792 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.165$  $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.0^{\circ}$  $h = -9 \rightarrow 9$  $k = -23 \rightarrow 23$  $l = -9 \rightarrow 6$ 

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

| H-atom parameters constrained           | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
|-----------------------------------------|------------------------------------------------------------|
| $w = 1/[\sigma^2(F_o^2) + (0.0938P)^2]$ | $\Delta \rho_{\rm max} = 0.89 \text{ e } \text{\AA}^{-3}$  |
| where $P = (F_o^2 + 2F_c^2)/3$          | $\Delta \rho_{\rm min} = -1.48 \text{ e } \text{\AA}^{-3}$ |

Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x           | у             | Z           | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|---------------|-------------|---------------------------|
| Cul  | 0.40864 (8) | 0.05361 (2)   | 0.50591 (7) | 0.0184 (3)                |
| N1   | 0.2510 (5)  | 0.14273 (19)  | 0.5328 (6)  | 0.0199 (8)                |
| N2   | 0.6530 (7)  | 0.2387 (2)    | 0.6344 (9)  | 0.0436 (14)               |
| 01   | 0.4618 (6)  | 0.08980 (17)  | 0.3114 (5)  | 0.0295 (8)                |
| O2   | 0.6269 (6)  | -0.00139 (17) | 0.3074 (5)  | 0.0283 (8)                |
| O3   | 0.3373 (5)  | -0.08126 (18) | 0.3035 (5)  | 0.0318 (8)                |
| O4   | 0.1766 (5)  | 0.00951 (17)  | 0.3166 (5)  | 0.0260 (8)                |
| C1   | 0.0735 (7)  | 0.1301 (2)    | 0.5040 (7)  | 0.0253 (11)               |
| H1   | 0.0229      | 0.0871        | 0.4645      | 0.030*                    |
| C2   | -0.0387 (7) | 0.1775 (2)    | 0.5298 (7)  | 0.0270 (11)               |
| H2   | -0.1624     | 0.1666        | 0.5070      | 0.032*                    |
| C3   | 0.0343 (7)  | 0.2405 (2)    | 0.5895 (7)  | 0.0264 (11)               |
| Н3   | -0.0394     | 0.2731        | 0.6075      | 0.032*                    |
| C4   | 0.2182 (8)  | 0.2557 (2)    | 0.6228 (7)  | 0.0261 (11)               |
| H4   | 0.2711      | 0.2982        | 0.6643      | 0.031*                    |
| C5   | 0.3216 (7)  | 0.2053 (2)    | 0.5922 (7)  | 0.0201 (10)               |
| C6   | 0.5091 (8)  | 0.2214 (2)    | 0.6174 (8)  | 0.0303 (12)               |
| C7   | 0.5577 (7)  | 0.0559 (2)    | 0.2514 (7)  | 0.0214 (10)               |
| C8   | 0.5910 (9)  | 0.0865 (3)    | 0.1015 (8)  | 0.0320 (12)               |
| H8A  | 0.6835      | 0.0600        | 0.0860      | 0.048*                    |
| H8B  | 0.6388      | 0.1317        | 0.1362      | 0.048*                    |
| H8C  | 0.4719      | 0.0875        | -0.0131     | 0.048*                    |
| С9   | 0.1852 (8)  | -0.0478 (2)   | 0.2547 (7)  | 0.0228 (10)               |
| C10  | 0.0014 (8)  | -0.0787 (3)   | 0.1106 (8)  | 0.0324 (12)               |
| H10A | -0.0097     | -0.0723       | -0.0099     | 0.049*                    |
| H10B | -0.1056     | -0.0575       | 0.1144      | 0.049*                    |
| H10C | 0.0014      | -0.1261       | 0.1349      | 0.049*                    |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | <i>U</i> <sup>22</sup> | $U^{33}$   | $U^{12}$   | $U^{13}$   | U <sup>23</sup> |
|-----|------------|------------------------|------------|------------|------------|-----------------|
| Cul | 0.0166 (4) | 0.0163 (3)             | 0.0162 (4) | 0.0018 (2) | 0.0029 (3) | -0.0010 (2)     |

# supporting information

| N1  | 0.0151 (18) | 0.0218 (18) | 0.018 (2)   | 0.0014 (16)  | 0.0041 (16)  | -0.0018 (16) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N2  | 0.029 (3)   | 0.028 (2)   | 0.079 (4)   | -0.007 (2)   | 0.031 (3)    | -0.014 (2)   |
| 01  | 0.038 (2)   | 0.0219 (16) | 0.031 (2)   | 0.0029 (16)  | 0.0185 (18)  | 0.0034 (15)  |
| O2  | 0.034 (2)   | 0.0291 (18) | 0.0237 (19) | 0.0055 (16)  | 0.0161 (17)  | 0.0009 (15)  |
| O3  | 0.0231 (18) | 0.0252 (17) | 0.034 (2)   | -0.0019 (17) | 0.0034 (17)  | -0.0079 (16) |
| O4  | 0.0175 (17) | 0.0260 (17) | 0.0216 (19) | 0.0029 (14)  | -0.0010 (15) | -0.0027 (14) |
| C1  | 0.019 (2)   | 0.024 (2)   | 0.025 (3)   | -0.005 (2)   | 0.005 (2)    | -0.003 (2)   |
| C2  | 0.019 (2)   | 0.028 (2)   | 0.031 (3)   | 0.000 (2)    | 0.010 (2)    | 0.001 (2)    |
| C3  | 0.023 (3)   | 0.024 (2)   | 0.029 (3)   | 0.006 (2)    | 0.010 (2)    | 0.001 (2)    |
| C4  | 0.028 (3)   | 0.020 (2)   | 0.029 (3)   | 0.003 (2)    | 0.013 (2)    | 0.000 (2)    |
| C5  | 0.020 (2)   | 0.018 (2)   | 0.019 (2)   | 0.0016 (19)  | 0.007 (2)    | 0.0021 (18)  |
| C6  | 0.034 (3)   | 0.018 (2)   | 0.042 (3)   | 0.004 (2)    | 0.021 (3)    | -0.002 (2)   |
| C7  | 0.019 (2)   | 0.022 (2)   | 0.016 (2)   | -0.003 (2)   | 0.004 (2)    | -0.0023 (18) |
| C8  | 0.040 (3)   | 0.030 (3)   | 0.023 (3)   | -0.006 (2)   | 0.013 (2)    | 0.001 (2)    |
| C9  | 0.022 (3)   | 0.022 (2)   | 0.014 (2)   | -0.003 (2)   | 0.001 (2)    | 0.0004 (19)  |
| C10 | 0.024 (3)   | 0.029 (3)   | 0.026 (3)   | -0.005 (2)   | -0.003 (2)   | 0.001 (2)    |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cu1—O1                        | 1.975 (4)   | C1—H1    | 0.9300    |
|-------------------------------|-------------|----------|-----------|
| Cu1—O2 <sup>i</sup>           | 1.980 (4)   | C2—C3    | 1.366 (7) |
| Cu1—O3 <sup>i</sup>           | 1.941 (4)   | C2—H2    | 0.9300    |
| Cu1—04                        | 1.952 (4)   | C3—C4    | 1.380 (7) |
| Cu1—N1                        | 2.235 (4)   | С3—Н3    | 0.9300    |
| Cu1—Cu1 <sup>i</sup>          | 2.5997 (15) | C4—C5    | 1.389 (7) |
| N1C1                          | 1.334 (6)   | C4—H4    | 0.9300    |
| N1—C5                         | 1.352 (6)   | C5—C6    | 1.435 (7) |
| N2—C6                         | 1.133 (7)   | C7—C8    | 1.507 (7) |
| O1—C7                         | 1.279 (6)   | C8—H8A   | 0.9600    |
| O2—C7                         | 1.248 (6)   | C8—H8B   | 0.9600    |
| O2—Cu1 <sup>i</sup>           | 1.980 (4)   | C8—H8C   | 0.9600    |
| О3—С9                         | 1.261 (7)   | C9—C10   | 1.496 (7) |
| O3—Cu1 <sup>i</sup>           | 1.941 (4)   | C10—H10A | 0.9600    |
| О4—С9                         | 1.259 (6)   | C10—H10B | 0.9600    |
| C1—C2                         | 1.379 (7)   | C10—H10C | 0.9600    |
| O3 <sup>i</sup> —Cu1—O4       | 169.17 (14) | C2—C3—C4 | 119.6 (5) |
| O3 <sup>i</sup> —Cu1—O1       | 90.43 (17)  | С2—С3—Н3 | 120.2     |
| 04—Cu1—O1                     | 90.23 (16)  | C4—C3—H3 | 120.2     |
| $O3^{i}$ —Cu1—O2 <sup>i</sup> | 90.11 (17)  | C3—C4—C5 | 117.9 (5) |
| $O4$ — $Cu1$ — $O2^i$         | 87.28 (16)  | C3—C4—H4 | 121.1     |
| $O1$ — $Cu1$ — $O2^i$         | 169.40 (14) | C5—C4—H4 | 121.1     |
| O3 <sup>i</sup> —Cu1—N1       | 96.27 (15)  | N1—C5—C4 | 123.2 (4) |
| O4—Cu1—N1                     | 94.34 (15)  | N1—C5—C6 | 118.4 (4) |
| O1—Cu1—N1                     | 98.10 (15)  | C4—C5—C6 | 118.4 (4) |
| O2 <sup>i</sup> —Cu1—N1       | 92.35 (14)  | N2—C6—C5 | 175.1 (6) |
| $O3^i$ —Cu1—Cu1 <sup>i</sup>  | 83.16 (11)  | O2—C7—O1 | 125.0 (4) |
| O4—Cu1—Cu1 <sup>i</sup>       | 86.12 (11)  | O2—C7—C8 | 116.7 (4) |

| O1—Cu1—Cu1 <sup>i</sup>        | 85.76 (11)  | O1—C7—C8      | 118.3 (4) |
|--------------------------------|-------------|---------------|-----------|
| $O2^{i}$ —Cu1—Cu1 <sup>i</sup> | 83.80 (10)  | C7—C8—H8A     | 109.5     |
| N1—Cu1—Cu1 <sup>i</sup>        | 176.10 (10) | C7—C8—H8B     | 109.5     |
| C1—N1—C5                       | 117.0 (4)   | H8A—C8—H8B    | 109.5     |
| C1—N1—Cu1                      | 115.2 (3)   | C7—C8—H8C     | 109.5     |
| C5—N1—Cu1                      | 127.4 (3)   | H8A—C8—H8C    | 109.5     |
| C7—O1—Cu1                      | 121.3 (3)   | H8B—C8—H8C    | 109.5     |
| C7—O2—Cu1 <sup>i</sup>         | 124.0 (3)   | O4—C9—O3      | 125.1 (5) |
| C9—O3—Cu1 <sup>i</sup>         | 124.7 (3)   | O4—C9—C10     | 117.9 (5) |
| C9—O4—Cu1                      | 120.8 (3)   | O3—C9—C10     | 117.0 (4) |
| N1—C1—C2                       | 123.3 (5)   | C9—C10—H10A   | 109.5     |
| N1—C1—H1                       | 118.4       | C9—C10—H10B   | 109.5     |
| C2—C1—H1                       | 118.4       | H10A-C10-H10B | 109.5     |
| C3—C2—C1                       | 119.1 (4)   | C9—C10—H10C   | 109.5     |
| С3—С2—Н2                       | 120.5       | H10A-C10-H10C | 109.5     |
| C1—C2—H2                       | 120.5       | H10B—C10—H10C | 109.5     |
|                                |             |               |           |

Symmetry code: (i) -x+1, -y, -z+1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H  | Н…А  | D····A    | D—H··· $A$ |
|--------------------------------------|------|------|-----------|------------|
| C2—H2····N2 <sup>ii</sup>            | 0.93 | 2.60 | 3.196 (9) | 122        |
| C8—H8 <i>B</i> ····N2 <sup>iii</sup> | 0.96 | 2.57 | 3.491 (8) | 160        |
| C10—H10 <i>A</i> ···O4 <sup>iv</sup> | 0.96 | 2.54 | 3.381 (7) | 147        |

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) *x*, -*y*+1/2, *z*-1/2; (iv) -*x*, -*y*, -*z*.