Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nickel(II) uranium(IV) trisulfide

Matthew D. Ward and James A. Ibers*
Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.northwestern.edu

Received 26 November 2013; accepted 12 December 2013

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{U}-\mathrm{S})=0.001 \AA$; R factor $=0.018 ; w R$ factor $=0.043$; data-to-parameter ratio $=25.8$.

Crystals of NiUS_{3} were obtained from the reaction of the elements $\mathrm{Ni}, \mathrm{U}, \mathrm{S}$, and of GeI_{2} in a CsCl flux at 1173 K . Nickel(II) uranium(IV) trisulfide, NiUS_{3}, has orthorhombic (Pnma) symmetry and crystallizes in the GdFeO_{3} structure type. The compound has a perovskite $A B Q_{3}$-like structure, with U occupying the interstitial sites of a NiS_{6} framework. The U atoms are coordinated by eight S atoms in a distorted bicapped trigonal-prismatic arrangement. The Ni atoms are coordinated by six S atoms in a slightly distorted octahedral arrangement. The asymmetric unit comprises one U site (site symmetry .m.), one Ni site ($\overline{1}$), and two S sites (1 and .m.).

Related literature

Uranium chalcogenides of the composition $A B Q_{3}$ are known for $\mathrm{Sc}, \mathrm{V}-\mathrm{Ni}, \mathrm{Pd}, \mathrm{Ru}, \mathrm{Rh}$, and Ba (for a review, see: Narducci \& Ibers, 1998). These compounds all have perovskite-type structures with A atoms occupying eight-coordinate interstitial sites within a $B Q_{6}$ framework. There are two subclasses of the $A B Q_{3}$ structure, viz. GdFeO_{3} (Pnma) (Marezio et al., 1970) and FeUS_{3} (Cmcm) (Noël \& Padiou, 1976). Single-crystal refinements have been carried out for BaUS_{3} (Brochu et al., 1970), CrUS_{3} (Noël et al., 1975), $\mathrm{FeU}_{3}(Q=\mathrm{S}, \mathrm{Se})($ Noël \& Padiou, 1976; Jin et al., 2010), ScUS_{3} (Julien et al., 1978), RhUS $_{3}$ (Daoudi \& Noël, 1987), PdUSe 3 (Daoudi \& Noël, 1989), and MnUSe_{3} (Ijjaali et al., 2004). The unit cell of NiUS_{3} was determined previously from powder diffracton experiments (Noël et al., 1971). For standardization of structural data, see: Gelato \& Parthé (1987).

Experimental

Crystal data
$\mathrm{NiUS}_{3} \quad M_{r}=392.92$

Orthorhombic, Pnma
$a=6.8924$ (3) \AA
$b=8.7570$ (4) \AA
$c=6.0758$ (2) \AA
$V=366.72(3) \AA^{3}$

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: numerical (SADABS; Bruker, 2009)
$T_{\text {min }}=0.093, T_{\text {max }}=0.108$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.043$
$S=1.36$
748 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=50.68 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.09 \times 0.09 \times 0.08 \mathrm{~mm}$

7334 measured reflections 748 independent reflections 728 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

29 parameters
$\Delta \rho_{\text {max }}=2.80 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.15 \mathrm{e} \mathrm{A}^{-3}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2013); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL2013.

Use was made of the IMSERC X-ray facility at Northwestern University, supported by the International Institute of Nanotechnology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2789).

References

Brochu, R., Padiou, J. \& Grandjean, D. (1970). C. R. Seances Acad. Sci. Ser. C, 271, 642-643.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Daoudi, A. \& Noël, H. (1987). Inorg. Chim. Acta, 140, 93-95.
Daoudi, A. \& Noël, H. (1989). J. Less Common Met. 153, 293-298.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Ijjaali, I., Mitchell, K., Huang, F. Q. \& Ibers, J. A. (2004). J. Solid State Chem. 177, 257-261.
Jin, G. B., Ringe, E., Long, G. J., Grandjean, F., Sougrati, M. T., Choi, E. S., Wells, D. M., Balasubramanian, M. \& Ibers, J. A. (2010). Inorg. Chem. 49, 10455-10467.
Julien, R., Rodier, N. \& Tien, V. (1978). Acta Cryst. B34, 2612-2614.
Marezio, M., Remeika, J. P. \& Dernier, P. D. (1970). Acta Cryst. B26, $2008-$ 2022.

Narducci, A. A. \& Ibers, J. A. (1998). Chem. Mater. 10, 2811-2823.
Noël, H. \& Padiou, J. (1976). Acta Cryst. B32, 1593-1595.
Noël, H., Padiou, J. \& Prigent, J. (1971). C. R. Seances Acad. Sci. Ser. C, 272, 206-208.
Noël, H., Padiou, J. \& Prigent, J. (1975). C. R. Seances Acad. Sci. Ser. C, 280, 123-126.
Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
Sheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany.

supporting information

Acta Cryst. (2014). E70, i4 [https://doi.org/10.1107/S1600536813033680]
Nickel(II) uranium(IV) trisulfide

Matthew D. Ward and James A. Ibers

S1. Comment

NiUS_{3} crystallizes in the orthorhombic space group Pnma. Its unit cell was previously determined (Noël et al., 1971), revealing the compound to be isostructral with uranium compounds with analogous compositions. A number of uranium chalcogenides of the composition $A B Q_{3}$ are known (for a review, see: Narducci \& Ibers, 1998) and crystallize in two subclasses, viz. GdFeO_{3} (Pnma) (Marezio et al., 1970) and FeUS_{3} (Cmcm) (Noël \& Padiou, 1976). Most of the $A B Q_{3}$ compounds crystallize in the three-dimesional GdFeO_{3} structure type. However, when $B=\mathrm{Sc}, \mathrm{Fe}$, or Mn , they crystallize in the layered FeUS_{3} structure type. Refinements based on single crystal data have been carried out for BaUS_{3} (Brochu et al., 1970), CrUS_{3} (Noël et al., 1975), $\mathrm{FeU}_{3}(Q=\mathrm{S}, \mathrm{Se})$ (Nö̈l \& Padiou, 1976; Jin et al., 2010), ScUS ${ }_{3}$ (Julien et al., 1978), RhUS_{3} (Daoudi \& Noël, 1987), PdUSe $_{3}$ (Daoudi \& Noël, 1989), and MnUSe (Ijjaali et al., 2004).

The structure is composed of one U site, one Ni site, and two S sites. The uranium atoms are coordinated by eight S atoms in a distorted bicapped trigonal-prismatic arrangement. The Ni atoms are coordinated by six S atoms in a slightly distorted octahedral arrangement. The unit cell is shown in Figure 1 and a packing diagram is shown in Figure 2. There is no evidence of $\mathrm{S}-\mathrm{S}$ bonding and thus formal oxidation states may be assigned as $+\mathrm{II},+\mathrm{IV}$, and -II for Ni, U, and S , respectively. U—S distances range from 2.6666 (13) \AA to 3.0088 (8) \AA. These distances compare favorably with the U— S distances in the related compound RhUS_{3} (Daoudi \& Noël, 1987). Ni—S distances range from 2.3386 (4) \AA to 2.4739 (9) Å.

S2. Experimental

NiUS_{3} was obtained from the reaction of $\mathrm{U}(0.126 \mathrm{mmol}), \mathrm{GeI}_{2}(0.063 \mathrm{mmol}), \mathrm{Ni}(0.126 \mathrm{mmol})$, and $\mathrm{S}(0.378 \mathrm{mmol})$ in a CsCl flux $(0.445 \mathrm{mmol})$. The reactants were loaded into a carbon-coated fused-silica tube under an inert Ar atmosphere that was evacuated to 10^{-4} Torr. The tube was then flame sealed. It was placed in a computer-controlled furnace and heated to 1173 K in 12 h , held there for 6 h , cooled to 1073 K in 12 h and then held there for a further 96 h . The tube was next cooled at $5 \mathrm{~K} / \mathrm{h}$ to 773 K and then to 298 K in 12 h . The reaction yielded black prisms of NiUS_{3} and black rectangular plates of $\mathrm{NiU}_{8} \mathrm{~S}_{17}$ (Noël et al., 1971). The crystals were washed with water and dried with acetone to remove excess flux. They are stable to both air and moisture.

S3. Refinement

Atomic positions were standardized with the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The highest peak of $2.8(3) \mathrm{e}^{-} / \AA^{3}$ is $1.81 \AA$ from atom S2 and the deepest hole of $-1.2(3) \mathrm{e}^{-} / \AA^{3}$ is $0.96 \AA$ from atom U1.

Figure 1
The unit cell of NiUS_{3}. Displacement ellipsoids at the 95% probability level are shown.

Figure 2
A packing diagram of NiUS_{3} viewed down the a axis. Ni atoms are green, U atoms are black, and S atoms are orange.

Nickel(II) uranium(IV) trisulfide

Crystal data

NiUS_{3}
$M_{r}=392.92$
Orthorhombic, Pnma
$a=6.8924$ (3) Å
$b=8.7570$ (4) \AA
$c=6.0758(2) \AA$
$V=366.72(3) \AA^{3}$
$Z=4$
$F(000)=672$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2009)
$T_{\min }=0.093, T_{\max }=0.108$
7334 measured reflections
$D_{\mathrm{x}}=7.117 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3973 reflections
$\theta=4.1-33.2^{\circ}$
$\mu=50.68 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, black
$0.09 \times 0.09 \times 0.08 \mathrm{~mm}$

748 independent reflections
728 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=33.2^{\circ}, \theta_{\text {min }}=4.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.043$
$S=1.36$
748 reflections
29 parameters
0 restraints

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+\left(0.0149 F_{0}^{2}\right)^{2}\right] \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=2.80 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.15 \mathrm{e}^{-3} .
\end{aligned}
$$

Extinction correction: SHELXL2013 (Sheldrick, 2013), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0039 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iss }} * / U_{\mathrm{eq}}$
U1	$0.38141(3)$	0.2500	$0.05064(3)$	$0.00770(8)$
Ni1	0.0000	0.0000	0.0000	$0.00778(13)$
S1	$0.18039(14)$	$0.05448(9)$	$0.33217(13)$	$0.00731(15)$
S2	$0.52930(19)$	0.2500	$0.63121(19)$	$0.0085(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U1	$0.00525(11)$	$0.00896(10)$	$0.00890(10)$	0.000	$0.00069(5)$	0.000
Ni1	$0.0069(3)$	$0.0081(2)$	$0.0083(2)$	$-0.0009(2)$	$-0.0008(2)$	$0.0002(2)$
S1	$0.0057(4)$	$0.0087(3)$	$0.0075(3)$	$0.0000(3)$	$0.0000(3)$	$0.0004(3)$
S2	$0.0081(6)$	$0.0079(4)$	$0.0095(5)$	0.000	$0.0023(4)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

U1-S2 ${ }^{\text {i }}$	2.6666 (13)	Ni1-S1 ${ }^{\text {ix }}$	2.4180 (8)
U1-S2 ${ }^{\text {ii }}$	2.7446 (12)	Ni1-S1	2.4180 (8)
U1-S $1^{\text {iii }}$	2.7721 (9)	Ni1-S1 ${ }^{\text {i }}$	2.4739 (9)
U1-S1 ${ }^{\text {iv }}$	2.7721 (9)	Ni1-S1 ${ }^{\text {vi }}$	2.4739 (9)
U1-S1 ${ }^{\text {v }}$	2.7888 (8)	Ni1-U1 $1^{\text {ix }}$	3.4349 (2)
U1-S1	2.7888 (8)	S1-Ni1 ${ }^{\text {x }}$	2.4739 (9)
U1-S1 ${ }^{\text {vi }}$	3.0088 (8)	S1-U1 ${ }^{\text {i }}$	2.7722 (9)
U1-S1 ${ }^{\text {vii }}$	3.0088 (8)	S1-U1 ${ }^{\text {x }}$	3.0088 (8)
U1-Ni1	3.4349 (2)	S 2 - $\mathrm{Ni} 1{ }^{\text {x }}$	2.3386 (4)
U1-Ni1 ${ }^{\text {viii }}$	3.4349 (2)	$\mathrm{S} 2-\mathrm{Ni} 1^{\text {iii }}$	2.3386 (4)
Ni1-S2 ${ }^{\text {i }}$	2.3386 (4)	S2-U1 ${ }^{\text {iv }}$	2.6666 (13)
Ni1-S2 ${ }^{\text {vi }}$	2.3386 (4)	$\mathrm{S} 2-\mathrm{U} 1^{\text {xi }}$	2.7446 (12)
S2 ${ }^{\text {i }}$ - U1-S2 ${ }^{\text {ii }}$	87.32 (2)	S2 ${ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{S} 2{ }^{\text {vi }}$	180.0
$\mathrm{S} 2{ }^{\text {i }}$ - U1- $\mathrm{S}^{1 i \mathrm{ii}}$	141.532 (18)	$\mathrm{S} 2{ }^{\text {i }}$ - Ni1- $\mathrm{S}^{\text {ix }}$	86.82 (3)
$\mathrm{S} 2{ }^{\text {iii }} \mathrm{U} 1-\mathrm{S} 1^{\text {iii }}$	87.85 (3)	S2 ${ }^{\text {vi}}-\mathrm{Ni} 11-\mathrm{S} 1^{\text {ix }}$	93.18 (3)

141.532 (18)
87.85 (3)
76.29 (3)
78.58 (3)
138.939 (19)
80.362 (19)
126.225 (15)
78.58 (3)
138.939 (19)
126.225 (15)
80.362 (19)
75.75 (3)
71.84 (2)
69.082 (18)
139.987 (15)
70.81 (3)
138.102 (15)
69.890 (12)
71.84 (2)
69.082 (18)
70.81 (3)
139.987 (15)
69.890 (12)
138.102 (15)
124.80 (3)
42.805 (10)
101.60 (2)
170.255 (18)
101.436 (18)
93.784 (19)
44.224 (18)
44.546 (18)
114.642 (18)
42.805 (10)
101.60 (2)
101.436 (18)
170.255 (18)
44.224 (18)
93.784 (19)
114.642 (18)
44.546 (18)
79.190 (5)

S2 ${ }^{\text {i }}$ - Ni 1 - S 1	93.18 (3)
S2 ${ }^{\text {vi }}$ - Ni1- ${ }^{\text {S }}$	86.82 (3)
S1 ${ }^{\text {ix }}$ - Ni1- ${ }^{\text {S }} 1$	180.00 (4)
$\mathrm{S} 2{ }^{\text {i }}$ - $\mathrm{Ni} 11-\mathrm{S} 1^{\text {i }}$	92.11 (4)
S2 ${ }^{\text {vi }}$ - Ni1-S $1^{\text {i }}$	87.89 (4)
S1 ${ }^{\text {ix }}-\mathrm{Ni} 1-\mathrm{Sl}^{1}$	85.654 (14)
S1-Nil-S1 ${ }^{\text {i }}$	94.346 (14)
S2i-Ni1-S1 ${ }^{\text {vi }}$	87.89 (4)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Ni} 1-\mathrm{S} 1^{\text {vi }}$	92.11 (4)
$\mathrm{S} 1^{\mathrm{ix}}$ - Ni1- $\mathrm{Sl}^{\text {vi }}$	94.346 (14)
S1-Ni1-S1 ${ }^{\text {vi }}$	85.654 (14)
S1 ${ }^{\text {i }}$-Ni1-S1 ${ }^{\text {vi }}$	180.0
S2 ${ }^{\text {i }}$ - Ni1- ${ }^{\text {d }} 1^{\text {ix }}$	129.21 (3)
S2 ${ }^{\text {vi }}$-Ni1-U1 ${ }^{\text {ix }}$	50.79 (3)
S $1^{\text {ix }}-\mathrm{Ni} 1-\mathrm{U} 1^{\text {ix }}$	53.55 (2)
S1-Ni1-U1 ${ }^{\text {ix }}$	126.45 (2)
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{U} 1^{\mathrm{ix}}$	58.556 (19)
S1 ${ }^{\text {vi }}-\mathrm{Ni} 1-\mathrm{U} 1^{\text {ix }}$	121.444 (19)
S2 ${ }^{\text {i }}$-Ni1-U1	50.79 (3)
S2 ${ }^{\text {vi }}$-Ni1-U1	129.21 (3)
S1 ${ }^{\text {ix }}$-Ni1-U1	126.45 (2)
S1-Ni1-U1	53.55 (2)
S1 ${ }^{\text {i }}$-Ni1-U1	121.444 (19)
S1 ${ }^{\text {vi }}$-Ni1-U1	58.556 (19)
U1 ${ }^{\text {ix }}$ - $\mathrm{Ni} 1-\mathrm{U} 1$	180.0
Ni1-S1-Ni1 ${ }^{\text {x }}$	139.81 (4)
Ni1-S1-U1 ${ }^{\text {i }}$	87.36 (3)
Ni1 ${ }^{\text {x }}$-S $1-\mathrm{Ul} 1^{\text {i }}$	132.47 (3)
Ni1-S1-U1	82.22 (2)
Ni1 ${ }^{\mathrm{x}}$-S1-U1	85.92 (3)
U1-S1-U1	98.49 (2)
Ni1-S1-U1 ${ }^{\text {x }}$	96.93 (3)
Ni1 ${ }^{\text {x }}$-S1-U1 ${ }^{\text {x }}$	76.90 (2)
U1--S1-U1 ${ }^{\text {x }}$	109.19 (3)
$\mathrm{U} 1-\mathrm{S} 1-\mathrm{U} 1^{\mathrm{x}}$	152.25 (3)
Ni1 ${ }^{\text {x }}$-S2- $\mathrm{Ni}^{1{ }^{1 i i}}$	138.82 (6)
Ni1 ${ }^{\text {x }}$-S2-U1 $1^{\text {iv }}$	86.41 (3)
Ni1 ${ }^{\text {iiii- }}$ S2- U1 ${ }^{\text {iv }}$	86.41 (3)
Ni1 ${ }^{\text {x }}$-S2-U1 ${ }^{\text {xi }}$	106.53 (3)
Ni1 ${ }^{\text {iiii }}$-S2-U1 ${ }^{\text {xi }}$	106.53 (3)
$\mathrm{U} 1{ }^{\mathrm{iv}}-\mathrm{S} 2-\mathrm{U} 1^{\text {xi }}$	136.28 (5)

Symmetry codes: (i) $x-1 / 2, y,-z+1 / 2$; (ii) $x, y, z-1$; (iii) $x+1 / 2,-y+1 / 2,-z+1 / 2$; (iv) $x+1 / 2, y,-z+1 / 2$; (v) $x,-y+1 / 2, z$; (vi) $-x+1 / 2,-y, z-1 / 2$; (vii) $-x+1 / 2$, $y+1 / 2, z-1 / 2$; (viii) $-x, y+1 / 2,-z$; (ix) $-x,-y,-z$; (x) $-x+1 / 2,-y, z+1 / 2$; (xi) $x, y, z+1$.

