inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nickel(II) uranium(IV) trisulfide

Matthew D. Ward and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA

Correspondence e-mail: ibers@chem.northwestern.edu

Received 26 November 2013; accepted 12 December 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (U–S) = 0.001 Å; R factor = 0.018; wR factor = 0.043; data-to-parameter ratio = 25.8.

Crystals of NiUS₃ were obtained from the reaction of the elements Ni, U, S, and of GeI₂ in a CsCl flux at 1173 K. Nickel(II) uranium(IV) trisulfide, NiUS₃, has orthorhombic (*Pnma*) symmetry and crystallizes in the GdFeO₃ structure type. The compound has a perovskite ABQ_3 -like structure, with U occupying the interstitial sites of a NiS₆ framework. The U atoms are coordinated by eight S atoms in a distorted bicapped trigonal–prismatic arrangement. The Ni atoms are coordinated by six S atoms in a slightly distorted octahedral arrangement. The asymmetric unit comprises one U site (site symmetry *.m.*), one Ni site ($\overline{1}$), and two S sites (1 and *.m.*).

Related literature

Uranium chalcogenides of the composition ABQ_3 are known for Sc, V–Ni, Pd, Ru, Rh, and Ba (for a review, see: Narducci & Ibers, 1998). These compounds all have perovskite-type structures with A atoms occupying eight-coordinate interstitial sites within a BQ_6 framework. There are two subclasses of the ABQ_3 structure, viz. GdFeO₃ (Pnma) (Marezio et al., 1970) and FeUS₃ (Cmcm) (Noël & Padiou, 1976). Single-crystal refinements have been carried out for BaUS₃ (Brochu et al., 1970), CrUS₃ (Noël et al., 1975), FeUQ₃ (Q = S, Se) (Noël & Padiou, 1976; Jin et al., 2010), ScUS₃ (Julien et al., 1978), RhUS₃ (Daoudi & Noël, 1987), PdUSe₃ (Daoudi & Noël, 1989), and MnUSe₃ (Ijjaali et al., 2004). The unit cell of NiUS₃ was determined previously from powder diffracton experiments (Noël et al., 1971). For standardization of structural data, see: Gelato & Parthé (1987).

Experimental

Crystal data NiUS₃

 $M_r = 392.92$

Orthorhombic, *Pnma* a = 6.8924 (3) Å b = 8.7570 (4) Å c = 6.0758 (2) Å V = 366.72 (3) Å³

Data collection

Bruker APEXII CCD diffractometer Absorption correction: numerical (SADABS; Bruker, 2009) $T_{min} = 0.093, T_{max} = 0.108$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.018$ 29 parameters

 $wR(F^2) = 0.043$ $\Delta \rho_{max} = 2.80 \text{ e Å}^{-3}$

 S = 1.36 $\Delta \rho_{min} = -1.15 \text{ e Å}^{-3}$

 748 reflections
 $\Delta \rho_{min} = -1.15 \text{ e Å}^{-3}$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2013); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2013); molecular graphics: *CrystalMaker* (Palmer, 2009); software used to prepare material for publication: *SHELXL2013*.

Z = 4

Mo $K\alpha$ radiation

 $0.09 \times 0.09 \times 0.08 \; \mathrm{mm}$

7334 measured reflections

748 independent reflections

728 reflections with $I > 2\sigma(I)$

 $\mu = 50.68 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.047$

CrossMark

Use was made of the IMSERC X-ray facility at Northwestern University, supported by the International Institute of Nanotechnology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2789).

References

- Brochu, R., Padiou, J. & Grandjean, D. (1970). C. R. Seances Acad. Sci. Ser. C, 271, 642–643.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Daoudi, A. & Noël, H. (1987). Inorg. Chim. Acta, 140, 93-95.
- Daoudi, A. & Noël, H. (1989). J. Less Common Met. 153, 293-298.
- Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
- Ijjaali, I., Mitchell, K., Huang, F. Q. & Ibers, J. A. (2004). J. Solid State Chem. 177, 257–261.
- Jin, G. B., Ringe, E., Long, G. J., Grandjean, F., Sougrati, M. T., Choi, E. S., Wells, D. M., Balasubramanian, M. & Ibers, J. A. (2010). *Inorg. Chem.* 49, 10455–10467.
- Julien, R., Rodier, N. & Tien, V. (1978). Acta Cryst. B34, 2612-2614.
- Marezio, M., Remeika, J. P. & Dernier, P. D. (1970). Acta Cryst. B26, 2008– 2022.
- Narducci, A. A. & Ibers, J. A. (1998). Chem. Mater. 10, 2811-2823.
- Noël, H. & Padiou, J. (1976). Acta Cryst. B32, 1593-1595.
- Noël, H., Padiou, J. & Prigent, J. (1971). C. R. Seances Acad. Sci. Ser. C, 272, 206–208.
- Noël, H., Padiou, J. & Prigent, J. (1975). C. R. Seances Acad. Sci. Ser. C, 280, 123–126.
- Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany.

supporting information

Acta Cryst. (2014). E70, i4 [https://doi.org/10.1107/S1600536813033680]

Nickel(II) uranium(IV) trisulfide

Matthew D. Ward and James A. Ibers

S1. Comment

NiUS₃ crystallizes in the orthorhombic space group *Pnma*. Its unit cell was previously determined (Noël *et al.*, 1971), revealing the compound to be isostructral with uranium compounds with analogous compositions. A number of uranium chalcogenides of the composition *ABQ*₃ are known (for a review, see: Narducci & Ibers, 1998) and crystallize in two subclasses, *viz*. GdFeO₃ (*Pnma*) (Marezio *et al.*, 1970) and FeUS₃ (*Cmcm*) (Noël & Padiou, 1976). Most of the *ABQ*₃ compounds crystallize in the three-dimesional GdFeO₃ structure type. However, when B = Sc, Fe, or Mn, they crystallize in the layered FeUS₃ structure type. Refinements based on single crystal data have been carried out for BaUS₃ (Brochu *et al.*, 1970), CrUS₃ (Noël *et al.*, 1975), FeUQ₃ (Q = S, Se) (Noël & Padiou, 1976; Jin *et al.*, 2010), ScUS₃ (Julien *et al.*, 1978), RhUS₃ (Daoudi & Noël, 1987), PdUSe₃ (Daoudi & Noël, 1989), and MnUSe₃ (Ijjaali *et al.*, 2004).

The structure is composed of one U site, one Ni site, and two S sites. The uranium atoms are coordinated by eight S atoms in a distorted bicapped trigonal-prismatic arrangement. The Ni atoms are coordinated by six S atoms in a slightly distorted octahedral arrangement. The unit cell is shown in Figure 1 and a packing diagram is shown in Figure 2. There is no evidence of S—S bonding and thus formal oxidation states may be assigned as +II,+IV, and –II for Ni, U, and S, respectively. U—S distances range from 2.6666 (13) Å to 3.0088 (8) Å. These distances compare favorably with the U—S distances in the related compound RhUS₃ (Daoudi & Noël, 1987). Ni—S distances range from 2.3386 (4) Å to 2.4739 (9) Å.

S2. Experimental

NiUS₃ was obtained from the reaction of U (0.126 mmol), GeI₂ (0.063 mmol), Ni (0.126 mmol), and S (0.378 mmol) in a CsCl flux (0.445 mmol). The reactants were loaded into a carbon-coated fused-silica tube under an inert Ar atmosphere that was evacuated to 10⁻⁴ Torr. The tube was then flame sealed. It was placed in a computer-controlled furnace and heated to 1173 K in 12 h, held there for 6 h, cooled to 1073 K in 12 h and then held there for a further 96 h. The tube was next cooled at 5 K/h to 773 K and then to 298 K in 12 h. The reaction yielded black prisms of NiUS₃ and black rectangular plates of NiU₈S₁₇ (Noël *et al.*, 1971). The crystals were washed with water and dried with acetone to remove excess flux. They are stable to both air and moisture.

S3. Refinement

Atomic positions were standardized with the program *STRUCTURE TIDY* (Gelato & Parthé, 1987). The highest peak of 2.8 (3) $e^{-}/Å^{3}$ is 1.81 Å from atom S2 and the deepest hole of -1.2 (3) $e^{-}/Å^{3}$ is 0.96 Å from atom U1.

The unit cell of NiUS₃. Displacement ellipsoids at the 95% probability level are shown.

Figure 2

A packing diagram of NiUS₃ viewed down the *a* axis. Ni atoms are green, U atoms are black, and S atoms are orange.

Nickel(II) uranium(IV) trisulfide

Crystal data

NiUS₃ $M_r = 392.92$ Orthorhombic, Pnma a = 6.8924 (3) Å b = 8.7570 (4) Å c = 6.0758 (2) Å V = 366.72 (3) Å³ Z = 4F(000) = 672

Data collection

748 independent refle
728 reflections with I
$R_{\rm int} = 0.047$
$\theta_{\rm max} = 33.2^{\circ}, \ \theta_{\rm min} = 4.2^{\circ}$
$h = -10 \rightarrow 10$
$k = -13 \rightarrow 13$
$l = -9 \rightarrow 9$

 $D_{\rm x} = 7.117 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3973 reflections $\theta = 4.1 - 33.2^{\circ}$ $\mu = 50.68 \text{ mm}^{-1}$ T = 100 KPrism, black $0.09 \times 0.09 \times 0.08$ mm

ections $> 2\sigma(I)$ 1°

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.043$ S = 1.36748 reflections 29 parameters 0 restraints

Special details

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0149F_{o}^{2})^{2}]$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 2.80 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.15 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL2013* (Sheldrick, 2013), Fc*=kFc[1+0.001xFc^{2}\lambda^{3}/\sin(2\theta)]^{-1/4}
Extinction coefficient: 0.0039 (4)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
U1	0.38141 (3)	0.2500	0.05064 (3)	0.00770 (8)	
Ni1	0.0000	0.0000	0.0000	0.00778 (13)	
S1	0.18039 (14)	0.05448 (9)	0.33217 (13)	0.00731 (15)	
S2	0.52930 (19)	0.2500	0.63121 (19)	0.0085 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
U1	0.00525 (11)	0.00896 (10)	0.00890 (10)	0.000	0.00069 (5)	0.000
Ni1	0.0069 (3)	0.0081 (2)	0.0083 (2)	-0.0009(2)	-0.0008(2)	0.0002 (2)
S 1	0.0057 (4)	0.0087 (3)	0.0075 (3)	0.0000 (3)	0.0000 (3)	0.0004 (3)
S2	0.0081 (6)	0.0079 (4)	0.0095 (5)	0.000	0.0023 (4)	0.000

Geometric parameters (Å, °)

U1—S2 ⁱ	2.6666 (13)	Ni1—S1 ^{ix}	2.4180 (8)
U1—S2 ⁱⁱ	2.7446 (12)	Ni1—S1	2.4180 (8)
U1—S1 ⁱⁱⁱ	2.7721 (9)	Ni1—S1 ⁱ	2.4739 (9)
U1—S1 ^{iv}	2.7721 (9)	Ni1—S1 ^{vi}	2.4739 (9)
U1—S1 ^v	2.7888 (8)	Ni1—U1 ^{ix}	3.4349 (2)
U1—S1	2.7888 (8)	S1—Ni1 ^x	2.4739 (9)
U1—S1 ^{vi}	3.0088 (8)	S1—U1 ⁱ	2.7722 (9)
U1—S1 ^{vii}	3.0088 (8)	S1—U1 ^x	3.0088 (8)
U1—Ni1	3.4349 (2)	S2—Ni1 ^x	2.3386 (4)
U1—Ni1 ^{viii}	3.4349 (2)	S2—Ni1 ⁱⁱⁱ	2.3386 (4)
Ni1—S2 ⁱ	2.3386 (4)	S2—U1 ^{iv}	2.6666 (13)
Ni1—S2 ^{vi}	2.3386 (4)	S2—U1 ^{xi}	2.7446 (12)
S2 ⁱ —U1—S2 ⁱⁱ	87.32 (2)	S2 ⁱ —Ni1—S2 ^{vi}	180.0
S2 ⁱ —U1—S1 ⁱⁱⁱ	141.532 (18)	S2 ⁱ —Ni1—S1 ^{ix}	86.82 (3)
S2 ⁱⁱ —U1—S1 ⁱⁱⁱ	87.85 (3)	S2 ^{vi} —Ni1—S1 ^{ix}	93.18 (3)

$S2^{i}$ —U1— $S1^{iv}$	141.532 (18)	S2 ⁱ —Ni1—S1	93.18 (3)
$S2^{ii}$ —U1— $S1^{iv}$	87.85 (3)	S2 ^{vi} —Ni1—S1	86.82 (3)
$S1^{iii}$ — $U1$ — $S1^{iv}$	76.29 (3)	S1 ^{ix} —Ni1—S1	180.00 (4)
$S2^{i}$ —U1— $S1^{v}$	78.58 (3)	S2 ⁱ —Ni1—S1 ⁱ	92.11 (4)
S2 ⁱⁱ —U1—S1 ^v	138.939 (19)	S2 ^{vi} —Ni1—S1 ⁱ	87.89 (4)
S1 ⁱⁱⁱ —U1—S1 ^v	80.362 (19)	S1 ^{ix} —Ni1—S1 ⁱ	85.654 (14)
$S1^{iv}$ — $U1$ — $S1^{v}$	126.225 (15)	S1—Ni1—S1 ⁱ	94.346 (14)
S2 ⁱ —U1—S1	78.58 (3)	S2 ⁱ —Ni1—S1 ^{vi}	87.89 (4)
S2 ⁱⁱ —U1—S1	138.939 (19)	S2 ^{vi} —Ni1—S1 ^{vi}	92.11 (4)
S1 ⁱⁱⁱ —U1—S1	126.225 (15)	S1 ^{ix} —Ni1—S1 ^{vi}	94.346 (14)
S1 ^{iv} —U1—S1	80.362 (19)	S1—Ni1—S1 ^{vi}	85.654 (14)
S1 ^v —U1—S1	75.75 (3)	S1 ⁱ —Ni1—S1 ^{vi}	180.0
$S2^{i}$ —U1— $S1^{vi}$	71.84 (2)	S2 ⁱ —Ni1—U1 ^{ix}	129.21 (3)
$S2^{ii}$ —U1— $S1^{vi}$	69.082 (18)	S2 ^{vi} —Ni1—U1 ^{ix}	50.79 (3)
S1 ⁱⁱⁱ —U1—S1 ^{vi}	139.987 (15)	S1 ^{ix} —Ni1—U1 ^{ix}	53.55 (2)
S1 ^{iv} —U1—S1 ^{vi}	70.81 (3)	S1—Ni1—U1 ^{ix}	126.45 (2)
S1 ^v —U1—S1 ^{vi}	138.102 (15)	S1 ⁱ —Ni1—U1 ^{ix}	58.556 (19)
S1—U1—S1 ^{vi}	69.890 (12)	S1 ^{vi} —Ni1—U1 ^{ix}	121.444 (19)
S2 ⁱ —U1—S1 ^{vii}	71.84 (2)	S2 ⁱ —Ni1—U1	50.79 (3)
S2 ⁱⁱ —U1—S1 ^{vii}	69.082 (18)	S2 ^{vi} —Ni1—U1	129.21 (3)
S1 ⁱⁱⁱ —U1—S1 ^{vii}	70.81 (3)	S1 ^{ix} —Ni1—U1	126.45 (2)
S1 ^{iv} —U1—S1 ^{vii}	139.987 (15)	S1—Ni1—U1	53.55 (2)
S1v—U1—S1 ^{vii}	69.890 (12)	S1 ⁱ —Ni1—U1	121.444 (19)
S1—U1—S1 ^{vii}	138.102 (15)	S1 ^{vi} —Ni1—U1	58.556 (19)
S1 ^{vi} —U1—S1 ^{vii}	124.80 (3)	U1 ^{ix} —Ni1—U1	180.0
S2 ⁱ —U1—Ni1	42.805 (10)	Ni1—S1—Ni1 ^x	139.81 (4)
S2 ⁱⁱ —U1—Ni1	101.60 (2)	Ni1—S1—U1 ⁱ	87.36 (3)
S1 ⁱⁱⁱ —U1—Ni1	170.255 (18)	Ni1 ^x —S1—U1 ⁱ	132.47 (3)
S1 ^{iv} —U1—Ni1	101.436 (18)	Ni1—S1—U1	82.22 (2)
S1 ^v —U1—Ni1	93.784 (19)	Ni1 ^x —S1—U1	85.92 (3)
S1—U1—Ni1	44.224 (18)	U1 ⁱ —S1—U1	98.49 (2)
S1 ^{vi} —U1—Ni1	44.546 (18)	Ni1—S1—U1 ^x	96.93 (3)
S1 ^{vii} —U1—Ni1	114.642 (18)	Ni1 ^x —S1—U1 ^x	76.90(2)
S2 ⁱ —U1—Ni1 ^{viii}	42.805 (10)	$U1^{i}$ $S1$ $U1^{x}$	109.19 (3)
S2 ⁱⁱ —U1—Ni1 ^{viii}	101.60 (2)	U1—S1—U1 ^x	152.25 (3)
S1 ⁱⁱⁱ —U1—Ni1 ^{viii}	101.436 (18)	Ni1 ^x —S2—Ni1 ⁱⁱⁱ	138.82 (6)
S1 ^{iv} —U1—Ni1 ^{viii}	170.255 (18)	Ni1 ^x —S2—U1 ^{iv}	86.41 (3)
S1 ^v —U1—Ni1 ^{viii}	44.224 (18)	Ni1 ⁱⁱⁱ —S2—U1 ^{iv}	86.41 (3)
S1—U1—Ni1 ^{viii}	93.784 (19)	Ni1 ^x —S2—U1 ^{xi}	106.53 (3)
S1 ^{vi} —U1—Ni1 ^{viii}	114.642 (18)	Ni1 ⁱⁱⁱ —S2—U1 ^{xi}	106.53 (3)
S1 ^{vii} —U1—Ni1 ^{viii}	44.546 (18)	$U1^{iv}$ —S2— $U1^{xi}$	136.28 (5)
Ni1—U1—Ni1 ^{viii}	79.190 (5)		

Symmetry codes: (i) x-1/2, y, -z+1/2; (ii) x, y, z-1; (iii) x+1/2, -y+1/2, -z+1/2; (iv) x+1/2, y, -z+1/2; (v) x, -y+1/2, z; (vi) -x+1/2, -y, z-1/2; (vii) -x+1/2, -y, z-1/2; (vii) -x+1/2, -y, z-1/2; (vii) -x+1/2, -y, z-1/2; (viii) -x+1/2, -y, z-1/2; (vii) -x+1/2; -y, -y