

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(*E*)-2-(4-Ethoxyphenyl)ethenyl]-1methylquinolinium 4-fluorobenzenesulfonate

Hoong-Kun Fun,^a*‡Thawanrat Kobkeatthawin,^b Pumsak Ruanwas,^b Ching Kheng Quah^a and Suchada Chantrapromma^b§

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand Correspondence e-mail: hkfun@usm.my

Received 22 November 2013; accepted 29 November 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.065; wR factor = 0.154; data-to-parameter ratio = 12.7.

In the structure of the title salt, $C_{20}H_{20}NO^+ \cdot C_6H_4FO_3S^-$, the 4-(ethoxyphenyl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation is nearly planar, the dihedral angle between the quinolinium and benzene rings being 6.7 (4) and 1.7 $(7)^{\circ}$ for the major and minor components, respectively. The ethoxy group is essentially coplanar with the benzene ring [C-O- $C-C_{methy} = 177.1$ (8) and 177.8 (12)° for the major and minor components, respectively]. In the crystal, cations and anions are linked into chains along the b-axis direction by C- $H \cdot \cdot \cdot O_{sulfonvl}$ weak interactions. These chains are further connected into sheets parallel to (001) by $C-H \cdots O_{sulfonyl}$ weak interactions. The chains are also stacked along the *a* axis through $\pi - \pi$ interactions involving the quinolinium and benzene rings [centroid–centroid distances = 3.636(5) Å for the major component and 3.800 (9) Å for the minor component]. $C-H \cdots \pi$ interactions are also present.

Related literature

For background to the bioactivity and non-linear optical properties of quinolinium derivatives, see: Chanawanno *et al.* (2010); Hopkins *et al.* (2005); Musiol *et al.* (2006); O'Donnell *et al.* (2010); Ruanwas *et al.* (2010). For related structures, see: Chantrapromma *et al.* (2011); Fun *et al.* (2010); Ruanwas *et al.* (2010). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{20}NO^+ \cdot C_6H_4FO_3S^-\\ M_r = 465.52\\ Monoclinic, P2_1/n\\ a = 6.4366 (3) A\\ b = 9.8909 (5) Å\\ c = 34.3628 (15) Å\\ \beta = 95.102 (2)^\circ \end{array}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) T_{min} = 0.932, T_{max} = 0.991

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.154$ S = 1.094993 reflections 392 parameters Z = 4Mo K α radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 100 K $0.37 \times 0.12 \times 0.05 \text{ mm}$

 $V = 2179.00 (18) \text{ Å}^3$

19050 measured reflections 4993 independent reflections 3609 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.060$

```
418 restraints
H-atom parameters constrained
\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}
\Delta \rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}
```

Table 1

Hydrogen-bond geometry (Å, °).

Cg4	and	Cg5	are	the	centroids	of	the	$\mathrm{C12}B\mathrm{-C17}B$	and	C21-C26	rings,
resp	ective	ely.									

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2-H2A\cdots O2^{i}$	0.93	2.55	3.456 (4)	166
C8−H8A···O4 ⁱⁱ	0.93	2.41	3.306 (3)	161
C10-H10A···O3	0.96	2.55	3.483 (4)	164
$C11A - H11A \cdots O4^{ii}$	0.93	2.52	3.408 (19)	159
$C17A - H17A \cdots O3$	0.93	2.58	3.510 (10)	177
$C20-H20B\cdots O2^{i}$	0.96	2.53	3.441 (4)	158
C20−H20C···O3	0.96	2.44	3.085 (4)	124
$C25-H25A\cdots O4^{iii}$	0.93	2.55	3.264 (4)	134
$C13A - H13A \cdots Cg5^{ii}$	0.93	2.82	3.575 (10)	139
$C16A - H16A \cdots Cg5$	0.93	2.98	3.826 (9)	151
$C19A - H19B \cdots Cg4^{iii}$	0.96	2.99	3.862 (11)	152
$C13B - H13B \cdots Cg5^{ii}$	0.93	2.95	3.765 (16)	147
$C16B - H16B \cdots Cg5$	0.93	2.70	3.562 (13)	155

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z; (iii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PLATON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2006) and *publCIF* (Westrip, 2010).

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

The authors thank Prince of Songkla University for a research grant. They also thank the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5097).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). *Eur. J. Med. Chem.* **45**, 4199–4208.
- Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, 0515–0516.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Fun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, 0938–0939.
- Hopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents, 25, 358–373.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). *Bioorg. Med. Chem.* 14, 3592–3598.
- O'Donnell, F., Smyth, T. J. P., Ramachandran, V. N. & Smyth, W. F. (2010). Int. J. Antimicrob. Agents, 35, 30–38.
- Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). *Synth. Met.* **160**, 819–824.
- Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2014). E70, o11–o12 [https://doi.org/10.1107/S1600536813032509]

2-[(*E*)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-fluorobenzenesulfonate

Hoong-Kun Fun, Thawanrat Kobkeatthawin, Pumsak Ruanwas, Ching Kheng Quah and Suchada Chantrapromma

S1. Comment

Quinolinium derivatives were reported to possess interesting bioactivities and pharmacological activities (Chanawanno *et al.*, 2010; Hopkins *et al.*, 2005; Musiol *et al.*, 2006; O'Donnell *et al.*, 2010), including non-linear optic properties (Ruanwas *et al.*, 2010). During the course of our research on the antibacterial activity of pyridinium and quinolinium salts, the title quinolinium salt (I) was synthesized in order to study the effect of the anion counter-part on its antibacterial activity because its starting quinolinium iodide salt (Chanawanno *et al.*, 2010) was found to be very active against the methicillin-resistant *Staphylococcus aureus* with a MIC value of 2.34 μ g/ml. Herein the synthesis and crystal structure of (I) are reported.

In the title salt (Fig. 1), $C_{20}H_{20}NO^+$. $C_6H_4FSO_3^-$, the 4-(ethoxyphenyl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation exists in an *E* configuration with respect to the ethenyl bond [C10 ==C11 = 1.326 (18) Å for the major *A* component and 1.38 (3) Å for the minor *B* component] and torsion angle C9---C10---C11---C12 = -178.3 (12) ° for the major *A* component, and -179.0 (19)° for the minor *B* component. The 1-methylquinolinium ring system is planar with a *rms* deviation of 0.0199 (3) Å for the eleven non-H atoms. The cation is planar with dihedral angles between the N1/C1--C9 quinolinium and C12--C17 benzene rings of 6.7 (4) and 1.7 (7)° for the major *A* and minor *B* components, respectively. The ethoxy unit is disordered over two positions in such a way that the major *A* and minor *B* components are related by a 180° rotation. Moreover the ethoxy unit is co-planar with the attached benzene ring as indicated by the torsion angles C16--C15-O1--C18 = 2.5 (15)° and C15-O1--C18 = 177.1 (8)° for the major *A* component. The corresponding values are 180.0 (14) and 177.8 (12)° for the minor *B* comparable to those observed in related structures (Chantrapromma *et al.*, 2011; Fun *et al.*, 2010; Ruanwas *et al.*, 2010).

In the crystal packing (Fig. 2), cations and anions are linked into chains along the *b* axis by C—H···O_{sulfonyl} weak interactions. These chains are further connected into sheets parallel to the (001) plane by C—H···O_{sulfonyl} weak interactions (Table 1), and these chains are also stacked by π – π interactions involving quinolinium and benzene rings (Fig. 3) with separations Cg_1 ··· $Cg_3^i = 3.636$ (5) Å in the major component *A* and Cg_1 ··· $Cg_4^i = 3.800$ (9) Å in the minor component *B* (symmetry code as in Table 1); Cg_1 , Cg_3 and Cg_4 are the centroids of the N1/C1/C6–C9, C12A–C17A and C12B–C17B rings, respectively. C—H··· π interactions (Table 1) are also present.

S2. Experimental

The title compound was synthesized by dissolving silver(I) 4-fluorobenzenesulfonate (0.20 g, 0.71 mmol) in methanol (20 ml) which upon heating was added to a solution of 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolinium iodide

(Fun *et al.*, 2010) (0.29 g, 0.71 mmol) in hot methanol (30 ml). The mixture turned yellow and cloudy immediately. After stirring for 0.5 h, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give a yellow solid. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH, 0.97 Å for CH₂ and 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The 4-(ethoxyphenyl)-ethenyl unit is disordered over two sites with refined site occupancies ratio 0.610 (6):0.390 (6). Similarity and simulation restraints were applied.

Figure 1

The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.

Figure 2

The crystal packing of the major component of the title compound viewed approximately along the *a* axis. Hydrogen bonds are drawn as dashed lines.

Figure 3

 π - π interaction between aromatic rings of the cations of the major component. H-atoms of the cations not involved in hydrogen bonds are omitted for clarity.

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-fluorobenzenesulfonate

Crystal data	
$C_{20}H_{20}NO^+ \cdot C_6H_4FO_3S^-$	b = 9.8909 (5) Å
$M_r = 465.52$	c = 34.3628 (15) Å
Monoclinic, $P2_1/n$	$\beta = 95.102 \ (2)^{\circ}$
Hall symbol: -P 2yn	$V = 2179.00 (18) \text{ Å}^3$
a = 6.4366 (3) Å	Z = 4

F(000) = 976 $D_x = 1.419 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4993 reflections $\theta = 2.1-27.5^{\circ}$

Data collection

Bruker APEXII CCD area-detector	19050 measured reflections
diffractometer	4993 independent reflections
Radiation source: sealed tube	3609 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.060$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(SADABS; Bruker, 2009)	$k = -12 \rightarrow 11$
$T_{\min} = 0.932, \ T_{\max} = 0.991$	$l = -44 \longrightarrow 44$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.154$	neighbouring sites
<i>S</i> = 1.09	H-atom parameters constrained
4993 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0388P)^2 + 4.3613P]$
392 parameters	where $P = (F_o^2 + 2F_c^2)/3$
418 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

 $\mu = 0.19 \text{ mm}^{-1}$ T = 100 K

Plate, yellow

 $0.37 \times 0.12 \times 0.05 \text{ mm}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	1.5593 (3)	0.1235 (2)	0.18311 (7)	0.0173 (5)	
C1	1.7488 (4)	0.0857 (3)	0.20382 (8)	0.0170 (6)	
C2	1.8922 (4)	0.1828 (3)	0.22024 (9)	0.0211 (6)	
H2A	1.8655	0.2748	0.2173	0.025*	
C3	2.0733 (4)	0.1375 (3)	0.24085 (9)	0.0233 (6)	
H3A	2.1660	0.2008	0.2524	0.028*	
C4	2.1223 (4)	0.0006 (3)	0.24491 (9)	0.0214 (6)	
H4A	2.2460	-0.0267	0.2587	0.026*	
C5	1.9854 (4)	-0.0928 (3)	0.22830 (9)	0.0205 (6)	
H5A	2.0182	-0.1842	0.2303	0.025*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	1.7957 (4)	-0.0528 (3)	0.20815 (8)	0.0184 (6)	
C7	1.6492 (4)	-0.1489 (3)	0.19255 (9)	0.0191 (6)	
H7A	1.6790	-0.2406	0.1952	0.023*	
C8	1.4663 (4)	-0.1090 (3)	0.17380 (9)	0.0198 (6)	
H8A	1.3698	-0.1738	0.1644	0.024*	
C9	1.4191 (4)	0.0300 (3)	0.16827 (8)	0.0163 (5)	
C10	1.2247 (4)	0.0745 (3)	0.14715 (9)	0.0197 (6)	
H10A	1.1959	0.1693	0.1442	0.024*	0.610 (6)
H10B	1.1971	0.1699	0.1466	0.024*	0.390 (6)
C20	1.5120 (5)	0.2681 (3)	0.17700 (10)	0.0245 (7)	
H20A	1.4912	0.2865	0.1495	0.037*	
H20B	1.6262	0.3213	0.1884	0.037*	
H20C	1.3876	0.2905	0.1891	0.037*	
O1A	0.3281 (9)	0.0972 (6)	0.04235 (19)	0.0386 (14)	0.610 (6)
C11A	1.086 (2)	-0.0139 (19)	0.1318 (6)	0.0169 (19)	0.610 (6)
H11A	1.1156	-0.1053	0.1356	0.020*	0.610 (6)
C12A	0.889 (2)	0.0214 (10)	0.1092 (4)	0.0174 (16)	0.610 (6)
C13A	0.7675 (19)	-0.0815 (10)	0.0915 (5)	0.0235 (16)	0.610 (6)
H13A	0.8105	-0.1708	0.0950	0.028*	0.610 (6)
C14A	0.5834 (16)	-0.0542 (8)	0.0687 (4)	0.0250 (16)	0.610 (6)
H14A	0.5068	-0.1244	0.0565	0.030*	0.610 (6)
C15A	0.5146 (15)	0.0770 (8)	0.0641 (4)	0.0246 (16)	0.610 (6)
C16A	0.6277 (15)	0.1820 (9)	0.0829 (3)	0.0246 (18)	0.610 (6)
H16A	0.5789	0.2703	0.0805	0.030*	0.610 (6)
C17A	0.8141 (15)	0.1543 (10)	0.1054 (3)	0.0190 (18)	0.610 (6)
H17A	0.8891	0.2246	0.1179	0.023*	0.610 (6)
C18A	0.2520 (9)	0.2376 (8)	0.03791 (18)	0.0459 (17)	0.610 (6)
H18A	0.3556	0.2933	0.0267	0.055*	0.610 (6)
H18B	0.2271	0.2745	0.0632	0.055*	0.610 (6)
C19A	0.0542 (11)	0.2371 (11)	0.0117 (2)	0.061 (2)	0.610 (6)
H19A	-0.0053	0.3262	0.0108	0.092*	0.610 (6)
H19B	-0.0423	0.1745	0.0216	0.092*	0.610 (6)
H19C	0.0832	0.2104	-0.0141	0.092*	0.610 (6)
O1B	0.3343 (14)	0.1530(7)	0.0407 (3)	0.0238 (16)	0.390 (6)
C11B	1.076 (4)	-0.005 (3)	0.1270 (9)	0.019 (3)	0.390 (6)
H11B	1.1013	-0.0980	0.1272	0.023*	0.390 (6)
C12B	0.883 (3)	0.0408 (17)	0.1054 (8)	0.019 (2)	0.390 (6)
C13B	0.748 (3)	-0.0595 (16)	0.0880 (7)	0.022 (2)	0.390 (6)
H13B	0.7842	-0.1504	0.0903	0.026*	0.390 (6)
C14B	0.561 (3)	-0.0215 (13)	0.0672 (6)	0.022 (2)	0.390 (6)
H14B	0.4692	-0.0872	0.0564	0.027*	0.390 (6)
C15B	0.512 (2)	0.1117 (12)	0.0627 (6)	0.0188 (19)	0.390 (6)
C16B	0.647 (2)	0.2108 (13)	0.0783 (5)	0.020(2)	0.390 (6)
H16B	0.6125	0.3016	0.0747	0.024*	0.390 (6)
C17B	0.831 (2)	0.1749 (15)	0.0993 (5)	0.017 (2)	0.390 (6)
H17B	0.9209	0.2421	0.1094	0.020*	0.390 (6)
C18B	0.1886 (13)	0.0568 (9)	0.0237 (3)	0.038 (2)	0.390 (6)
H18C	0.1379	-0.0008	0.0436	0.046*	0.390 (6)

H18D	0.2530	0.0005	0.0050	0.046*	0.390 (6)
C19B	0.0125 (13)	0.1380 (12)	0.0035 (3)	0.038 (2)	0.390 (6)
H19D	-0.0927	0.0778	-0.0080	0.057*	0.390 (6)
H19E	0.0647	0.1929	-0.0165	0.057*	0.390 (6)
H19F	-0.0468	0.1950	0.0223	0.057*	0.390 (6)
S1	0.97568 (10)	0.53446 (7)	0.16403 (2)	0.02062 (19)	
F1	0.3508 (3)	0.6116 (3)	0.03020 (7)	0.0605 (7)	
O2	0.8648 (3)	0.5242 (2)	0.19899 (6)	0.0262 (5)	
O3	1.0931 (3)	0.4139 (2)	0.15628 (7)	0.0337 (6)	
O4	1.0969 (3)	0.6584 (2)	0.16254 (6)	0.0261 (5)	
C21	0.7812 (4)	0.5484 (3)	0.12372 (9)	0.0223 (6)	
C22	0.8393 (5)	0.5361 (4)	0.08595 (10)	0.0331 (8)	
H22A	0.9763	0.5141	0.0820	0.040*	
C23	0.6945 (5)	0.5564 (4)	0.05408 (11)	0.0436 (10)	
H23A	0.7320	0.5488	0.0287	0.052*	
C24	0.4930 (5)	0.5883 (4)	0.06144 (11)	0.0378 (9)	
C25	0.4299 (5)	0.5984 (3)	0.09833 (10)	0.0286 (7)	
H25A	0.2922	0.6191	0.1021	0.034*	
C26	0.5755 (4)	0.5771 (3)	0.12989 (9)	0.0212 (6)	
H26A	0.5355	0.5819	0.1552	0.025*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0140 (11)	0.0130 (11)	0.0247 (13)	-0.0001 (8)	0.0009 (9)	-0.0002 (10)
C1	0.0109 (12)	0.0221 (13)	0.0181 (15)	0.0002 (10)	0.0016 (10)	-0.0002 (11)
C2	0.0206 (14)	0.0151 (13)	0.0278 (17)	0.0008 (11)	0.0031 (12)	-0.0024 (12)
C3	0.0174 (14)	0.0256 (15)	0.0268 (17)	-0.0101 (12)	0.0008 (12)	-0.0069 (13)
C4	0.0159 (13)	0.0268 (16)	0.0209 (16)	0.0014 (11)	-0.0011 (11)	0.0017 (12)
C5	0.0213 (14)	0.0170 (13)	0.0231 (16)	0.0033 (11)	0.0013 (12)	0.0011 (12)
C6	0.0154 (13)	0.0196 (14)	0.0201 (15)	-0.0023 (11)	0.0006 (11)	-0.0027 (12)
C7	0.0193 (14)	0.0132 (13)	0.0250 (16)	-0.0004 (10)	0.0031 (11)	-0.0014 (11)
C8	0.0167 (13)	0.0167 (13)	0.0261 (17)	-0.0056 (11)	0.0019 (12)	-0.0019 (12)
C9	0.0100 (12)	0.0209 (13)	0.0184 (14)	-0.0014 (11)	0.0026 (10)	-0.0023 (12)
C10	0.0144 (13)	0.0206 (14)	0.0242 (16)	0.0010 (11)	0.0020 (11)	-0.0012 (12)
C20	0.0198 (14)	0.0152 (13)	0.0371 (19)	0.0009 (11)	-0.0052 (13)	0.0016 (13)
O1A	0.019 (2)	0.065 (3)	0.030 (2)	0.010 (3)	-0.0085 (17)	0.005 (3)
C11A	0.013 (3)	0.019 (3)	0.018 (5)	0.005 (2)	-0.001 (3)	0.003 (3)
C12A	0.013 (2)	0.024 (3)	0.015 (3)	0.006 (2)	0.000 (2)	0.004 (3)
C13A	0.018 (3)	0.026 (3)	0.026 (3)	0.003 (2)	-0.006 (2)	0.005 (3)
C14A	0.019 (3)	0.027 (3)	0.029 (3)	0.004 (3)	-0.003 (2)	-0.002 (3)
C15A	0.016 (2)	0.035 (4)	0.022 (2)	0.006 (3)	-0.003 (2)	0.003 (3)
C16A	0.019 (3)	0.026 (4)	0.030 (3)	0.010 (3)	0.005 (2)	0.008 (3)
C17A	0.014 (3)	0.025 (4)	0.018 (3)	0.000 (2)	0.004 (2)	0.003 (3)
C18A	0.029 (3)	0.077 (4)	0.030 (3)	0.035 (3)	-0.002 (2)	0.009 (3)
C19A	0.037 (3)	0.110 (6)	0.036 (4)	0.033 (4)	-0.006 (3)	0.005 (4)
O1B	0.021 (3)	0.023 (3)	0.026 (3)	-0.008 (3)	-0.006 (2)	0.003 (3)
C11B	0.018 (4)	0.022 (5)	0.017 (5)	-0.004 (4)	0.000 (4)	0.002 (4)

supporting information

C12B	0.011 (3)	0.027 (4)	0.019 (4)	0.000 (3)	0.001 (3)	0.003 (3)
C13B	0.021 (4)	0.018 (4)	0.025 (4)	0.003 (3)	-0.001 (3)	0.003 (4)
C14B	0.019 (4)	0.025 (4)	0.021 (3)	-0.002 (4)	-0.008 (3)	0.001 (4)
C15B	0.015 (3)	0.022 (4)	0.019 (3)	0.006 (3)	0.002 (3)	0.004 (3)
C16B	0.015 (3)	0.019 (4)	0.026 (4)	-0.001 (3)	0.005 (3)	0.005 (3)
C17B	0.013 (3)	0.015 (4)	0.023 (4)	-0.001 (3)	0.004 (3)	0.008 (3)
C18B	0.031 (4)	0.046 (4)	0.036 (4)	-0.007 (3)	-0.002 (3)	0.002 (4)
C19B	0.017 (4)	0.057 (5)	0.039 (5)	0.006 (4)	-0.007 (3)	0.013 (4)
S1	0.0126 (3)	0.0153 (3)	0.0329 (4)	0.0008 (3)	-0.0040 (3)	-0.0043 (3)
F1	0.0400 (13)	0.096 (2)	0.0406 (14)	0.0180 (13)	-0.0222 (10)	-0.0190 (13)
O2	0.0217 (10)	0.0269 (11)	0.0298 (13)	-0.0014 (9)	0.0015 (9)	0.0035 (10)
O3	0.0195 (11)	0.0232 (11)	0.0559 (16)	0.0070 (9)	-0.0105 (10)	-0.0129 (11)
O4	0.0193 (10)	0.0225 (11)	0.0355 (13)	-0.0056 (8)	-0.0031 (9)	-0.0040 (9)
C21	0.0145 (13)	0.0160 (13)	0.0353 (18)	-0.0031 (11)	-0.0050 (12)	-0.0068 (13)
C22	0.0163 (14)	0.049 (2)	0.0331 (19)	0.0027 (14)	-0.0005 (13)	-0.0184 (17)
C23	0.0313 (18)	0.067 (3)	0.032 (2)	0.0029 (18)	-0.0008 (15)	-0.0210 (19)
C24	0.0289 (17)	0.048 (2)	0.033 (2)	0.0046 (16)	-0.0146 (15)	-0.0118 (17)
C25	0.0139 (14)	0.0277 (16)	0.043 (2)	0.0015 (12)	-0.0054 (13)	-0.0066 (15)
C26	0.0171 (13)	0.0151 (13)	0.0311 (17)	-0.0014 (11)	0.0011 (12)	-0.0029 (12)

Geometric parameters (Å, °)

N1—C9	1.359 (3)	C18A—H18A	0.9700
N1-C1	1.407 (3)	C18A—H18B	0.9700
N1-C20	1.473 (3)	C19A—H19A	0.9600
C1—C6	1.407 (4)	C19A—H19B	0.9600
C1—C2	1.414 (4)	C19A—H19C	0.9600
C2—C3	1.383 (4)	O1B—C15B	1.375 (11)
C2—H2A	0.9300	O1B—C18B	1.425 (10)
C3—C4	1.394 (4)	C11B—C12B	1.463 (12)
С3—НЗА	0.9300	C11B—H11B	0.9300
C4—C5	1.366 (4)	C12B—C17B	1.380 (12)
C4—H4A	0.9300	C12B—C13B	1.417 (12)
C5—C6	1.406 (4)	C13B—C14B	1.399 (12)
С5—Н5А	0.9300	C13B—H13B	0.9300
C6—C7	1.411 (4)	C14B—C15B	1.360 (11)
С7—С8	1.350 (4)	C14B—H14B	0.9300
С7—Н7А	0.9300	C15B—C16B	1.385 (11)
C8—C9	1.418 (4)	C16B—C17B	1.377 (11)
C8—H8A	0.9300	C16B—H16B	0.9300
C9—C10	1.457 (4)	C17B—H17B	0.9300
C10-C11A	1.326 (18)	C18B—C19B	1.506 (10)
C10-C11B	1.38 (3)	C18B—H18C	0.9700
C10—H10A	0.9600	C18B—H18D	0.9700
C10—H10B	0.9600	C19B—H19D	0.9600
C20—H20A	0.9600	C19B—H19E	0.9600
C20—H20B	0.9600	C19B—H19F	0.9600
C20—H20C	0.9600	S1—O3	1.449 (2)

O1A—C15A	1.371 (7)	S1—O2	1.454 (2)
01A—C18A	1.475 (8)	S1—O4	1.457 (2)
C11A—C12A	1.467 (8)	S1—C21	1.788 (3)
C11A—H11A	0.9300	F1—C24	1.367 (4)
C12A—C13A	1.392 (8)	C21—C22	1.388 (5)
C12A—C17A	1.403 (8)	C21—C26	1.389 (4)
C13A—C14A	1.388 (8)	C22—C23	1.388 (5)
С13А—Н13А	0.9300	C22—H22A	0.9300
C14A—C15A	1.375 (8)	C23—C24	1.380 (5)
C14A—H14A	0.9300	C23—H23A	0.9300
C15A-C16A	1 394 (9)	C24—C25	1 369 (5)
C16A - C17A	1 394 (8)	C_{25} C_{25} C_{26}	1.385(4)
C16A—H16A	0.9300	C25—H25A	0.9300
C17A—H17A	0.9300	C26—H26A	0.9300
C18A - C19A	1 492 (8)	020 112011	0.9500
CIOR-CIDR	1.472 (0)		
C9—N1—C1	121.7 (2)	C12A—C17A—H17A	119.7
C9—N1—C20	119.0 (2)	O1A—C18A—C19A	108.5 (6)
C1—N1—C20	119.3 (2)	O1A—C18A—H18A	110.0
C6-C1-N1	118.7 (2)	C19A—C18A—H18A	110.0
C6-C1-C2	119.5 (2)	O1A—C18A—H18B	110.0
N1-C1-C2	121.8 (2)	C19A—C18A—H18B	110.0
C3—C2—C1	118.3 (3)	H18A—C18A—H18B	108.4
С3—С2—Н2А	120.8	C15B—O1B—C18B	120.8 (8)
С1—С2—Н2А	120.8	C10—C11B—C12B	127 (2)
C2—C3—C4	122.6 (3)	C10—C11B—H11B	116.7
С2—С3—НЗА	118.7	C12B—C11B—H11B	116.7
С4—С3—НЗА	118.7	C17B—C12B—C13B	118.3 (11)
C5—C4—C3	118.9 (3)	C17B—C12B—C11B	124.3 (14)
С5—С4—Н4А	120.6	C13B—C12B—C11B	117.2 (13)
С3—С4—Н4А	120.6	C14B—C13B—C12B	119.8 (11)
C4—C5—C6	121.0 (3)	C14B—C13B—H13B	120.1
С4—С5—Н5А	119.5	C12B—C13B—H13B	120.1
С6—С5—Н5А	119.5	C15B—C14B—C13B	119.8 (11)
C5—C6—C1	119.6 (2)	C15B—C14B—H14B	120.1
C5—C6—C7	121.3 (3)	C13B—C14B—H14B	120.1
C1—C6—C7	119.1 (2)	C14B—C15B—O1B	121.5 (10)
C8—C7—C6	120.6 (3)	C14B—C15B—C16B	120.8 (10)
С8—С7—Н7А	119.7	O1B—C15B—C16B	117.6 (9)
С6—С7—Н7А	119.7	C17B—C16B—C15B	120.0 (10)
C7—C8—C9	121.0 (2)	C17B—C16B—H16B	120.0
C7—C8—H8A	119.5	C15B-C16B-H16B	120.0
C9—C8—H8A	119.5	C16B-C17B-C12B	121.1(11)
N1-C9-C8	118.8 (2)	C16B—C17B—H17B	119 5
N1-C9-C10	119.6 (2)	C12B-C17B-H17B	119.5
C8—C9—C10	1216(2)	O1B-C18B-C19B	105 9 (8)
C11A - C10 - C9	121.0 (2)	O1B - C18B - H18C	110.6
C11B-C10-C9	127.2 (0)	C19B - C18B - H18C	110.6
	14/11/10/		110.0

C11A—C10—H10A	119.1	O1B—C18B—H18D	110.6
C11B—C10—H10A	112.9	C19B—C18B—H18D	110.6
C9-C10-H10A	119.8	H18C—C18B—H18D	108.7
C11A—C10—H10B	121.6	C18B—C19B—H19D	109.5
C11B—C10—H10B	115.8	C18B—C19B—H19E	109.5
C9—C10—H10B	117.1	H19D—C19B—H19E	109.5
N1—C20—H20A	109.5	C18B—C19B—H19F	109.5
N1—C20—H20B	109.5	H19D—C19B—H19F	109.5
H20A—C20—H20B	109.5	H19E—C19B—H19F	109.5
N1 - C20 - H20C	109.5	03 - 81 - 02	113 38 (14)
H_{20}^{-1}	109.5	03 - 51 - 04	113.36 (13)
H20B_C20_H20C	109.5	02 - 51 - 04	113.04(13)
$C_{1200} = C_{20} = H_{200} = H_{200}$	109.5	02 - 51 - 04	115.04(13) 105.18(12)
C10 $C11A$ $C12A$	117.4(0) 124.0(12)	03 - 31 - 021	105.16(13) 106.51(12)
C10 - C11A - C12A	124.9 (12)	02-51-021	100.31(13)
CIO—CIIA—HIIA	117.5	04 - 51 - 021	104.35 (13)
CI2A—CIIA—HIIA	117.5	C22—C21—C26	120.1 (3)
C13A—C12A—C17A	117.9 (7)	C22—C21—S1	119.3 (2)
C13A—C12A—C11A	118.9 (8)	C26—C21—S1	120.6 (2)
C17A—C12A—C11A	123.2 (9)	C21—C22—C23	120.5 (3)
C14A—C13A—C12A	121.6 (7)	C21—C22—H22A	119.8
C14A—C13A—H13A	119.2	C23—C22—H22A	119.8
C12A—C13A—H13A	119.2	C24—C23—C22	117.7 (3)
C15A—C14A—C13A	119.9 (7)	С24—С23—Н23А	121.2
C15A—C14A—H14A	120.0	С22—С23—Н23А	121.2
C13A—C14A—H14A	120.0	F1—C24—C25	118.8 (3)
O1A—C15A—C14A	117.2 (7)	F1-C24-C23	118.0 (3)
O1A—C15A—C16A	122.7 (7)	C25—C24—C23	123.2 (3)
C14A—C15A—C16A	120.0 (7)	C24—C25—C26	118.5 (3)
C15A—C16A—C17A	119.9 (7)	C24—C25—H25A	120.7
C15A - C16A - H16A	120.0	C26—C25—H25A	120.7
C17A - C16A - H16A	120.0	$C_{25} = C_{26} = C_{21}$	120.0(3)
C_{16A} C_{17A} C_{12A}	120.5 (7)	$C_{25} = C_{26} = H_{26A}$	120.0 (5)
$C_{10A} = C_{17A} = C_{12A}$	120.5 (7)	$C_{25} = C_{20} = H_{20} A$	120.0
CIOA-CI/A-III/A	119.7	C21—C20—1120A	120.0
C9—N1—C1—C6	1.9 (4)	O1A—C15A—C16A—C17A	178.5 (10)
C20—N1—C1—C6	-177.6 (3)	C14A—C15A—C16A—C17A	2.1 (16)
C9—N1—C1—C2	-178.2 (3)	C15A—C16A—C17A—C12A	0.1 (15)
C20—N1—C1—C2	2.4 (4)	C13A—C12A—C17A—C16A	-3.0(17)
C6—C1—C2—C3	-1.3 (4)	C11A—C12A—C17A—C16A	178.8 (13)
N1—C1—C2—C3	178.7 (3)	C15A—O1A—C18A—C19A	177.1 (8)
C1 - C2 - C3 - C4	2.1.(5)	C11A - C10 - C11B - C12B	140 (19)
$C_2 - C_3 - C_4 - C_5$	-0.7(5)	C9-C10-C11B-C12B	-1790(19)
C_{3} C_{4} C_{5} C_{6}	-1.5(5)	C10-C11B-C12B-C17B	6 (4)
C4-C5-C6-C1	22(4)	C10 $C11B$ $C12B$ $C13B$	-178(3)
$C_{1} = C_{2} = C_{1} = C_{1}$	-1760(3)	C17R C12P C12D C14P	-4(2)
$C_{-} C_{-} C_{-$	170.7(3)	$C_{11}D - C_{12}D - C_{13}D - C_{14}D$ $C_{11}D - C_{12}D - C_{14}D$	+(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/7.2(3)	C12D - C12D - C13D - C14B	100(2)
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	-0.8(4)	$C_{12}B = C_{13}B = C_{14}B = C_{15}B$	2 (3)
NI-CI-C6-C/	-1.7 (4)	C13B—C14B—C15B—O1B	1/6.6(19)

C2-C1-C6-C7	178.4 (3)	C13B—C14B—C15B—C16B	0 (3)
C5—C6—C7—C8	179.0 (3)	C18B—O1B—C15B—C14B	3 (2)
C1—C6—C7—C8	-0.2 (4)	C18B—O1B—C15B—C16B	180.0 (14)
C6—C7—C8—C9	1.9 (5)	C14B—C15B—C16B—C17B	-1 (3)
C1—N1—C9—C8	-0.2 (4)	O1B—C15B—C16B—C17B	-177.5 (16)
C20—N1—C9—C8	179.3 (3)	C15B—C16B—C17B—C12B	-1 (3)
C1—N1—C9—C10	179.8 (3)	C13B—C12B—C17B—C16B	3 (3)
C20-N1-C9-C10	-0.7 (4)	C11B—C12B—C17B—C16B	180 (2)
C7—C8—C9—N1	-1.7 (4)	C15B—O1B—C18B—C19B	177.8 (12)
C7—C8—C9—C10	178.3 (3)	O3—S1—C21—C22	-48.2 (3)
N1-C9-C10-C11A	178.9 (12)	O2—S1—C21—C22	-168.8 (2)
C8—C9—C10—C11A	-1.0 (12)	O4—S1—C21—C22	71.3 (3)
N1-C9-C10-C11B	173 (2)	O3—S1—C21—C26	134.5 (2)
C8—C9—C10—C11B	-7 (2)	O2—S1—C21—C26	13.9 (3)
C11B—C10—C11A—C12A	-36 (15)	O4—S1—C21—C26	-105.9 (2)
C9—C10—C11A—C12A	-178.3 (12)	C26—C21—C22—C23	2.0 (5)
C10-C11A-C12A-C13A	173.8 (18)	S1—C21—C22—C23	-175.2 (3)
C10-C11A-C12A-C17A	-8 (2)	C21—C22—C23—C24	-0.3 (6)
C17A—C12A—C13A—C14A	4 (2)	C22—C23—C24—F1	178.5 (3)
C11A—C12A—C13A—C14A	-177.8 (15)	C22—C23—C24—C25	-1.1 (6)
C12A—C13A—C14A—C15A	-2 (2)	F1-C24-C25-C26	-178.9 (3)
C18A—O1A—C15A—C14A	179.0 (10)	C23—C24—C25—C26	0.7 (6)
C18A—O1A—C15A—C16A	2.5 (15)	C24—C25—C26—C21	1.1 (4)
C13A—C14A—C15A—O1A	-177.8 (12)	C22—C21—C26—C25	-2.4 (4)
C13A—C14A—C15A—C16A	-1.2 (18)	S1—C21—C26—C25	174.8 (2)

Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the C12B–C17B and C21–C26 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H…A
C2—H2A····O2 ⁱ	0.93	2.55	3.456 (4)	166
C8—H8A····O4 ⁱⁱ	0.93	2.41	3.306 (3)	161
C10—H10A…O3	0.96	2.55	3.483 (4)	164
C11 <i>A</i> —H11 <i>A</i> ···O4 ⁱⁱ	0.93	2.52	3.408 (19)	159
C17A—H17A····O3	0.93	2.58	3.510 (10)	177
C20—H20 <i>B</i> ···O2 ⁱ	0.96	2.53	3.441 (4)	158
C20—H20C···O3	0.96	2.44	3.085 (4)	124
C25—H25 <i>A</i> ···O4 ⁱⁱⁱ	0.93	2.55	3.264 (4)	134
C13 <i>A</i> —H13 <i>A</i> ··· <i>Cg</i> 5 ⁱⁱ	0.93	2.82	3.575 (10)	139
C16A—H16A…Cg5	0.93	2.98	3.826 (9)	151
C19 <i>A</i> —H19 <i>B</i> … <i>Cg</i> 4 ⁱⁱⁱ	0.96	2.99	3.862 (11)	152
C13 <i>B</i> —H13 <i>B</i> ··· <i>Cg</i> 5 ⁱⁱ	0.93	2.95	3.765 (16)	147
C16B—H16B…Cg5	0.93	2.70	3.562 (13)	155

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) *x*-1, *y*, *z*.