

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(benzylammonium) dihydrogen diphosphate

Ahlem Ben Saad,^a Adel Elboulali,^a Nicolas Ratel-Ramond,^b Rzaigui Mohamed^a and Samah Akriche Toumi^a*

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and ^bCEMES-CNRS, 29 rue leanne Marvig, 31055 Toulouse cedex 4. France Correspondence e-mail: samah.akriche@fsb.rnu.tn

Received 15 November 2013; accepted 28 November 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.127; data-to-parameter ratio = 32.2.

The asymmetric unit of the title salt, $2C_6H_5CH_2NH_3^+$.- $H_2P_2O_7^{2-}$, contains two independent benzylammonium cations and a dihydrogen diphosphate dianion. In the crystal, $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds link the cations and anions, forming a two-dimensional network parallel to (010). Within this network, weak $C-H \cdots O$ hydrogen bonds are observed.

Related literature

For the chemistry of diphosphate materials, see: Ernester (1992); Lipscomb & Strater (1996); Centi et al. (1988); Chen & Munson (2002); Ballarini et al. (2006). For details of hydrogen bonds, see: Desiraju (1991); Steiner (2002). For related structures, see: Akriche & Rzaigui (2005, 2008); Ahmed et al. (2006); Elboulali et al. (2013).

Experimental

Crystal data

 $2C_7H_{10}N^+ \cdot H_2P_2O_7^{2-}$ $M_r = 392.27$ Monoclinic, $P2_1/c$ a = 8.1337 (2) Å b = 28.9015 (9) Å c = 8.4727 (2) Å $\beta = 113.449 \ (1)^{\circ}$

Data collection

Z = 4

V = 1827.24 (9) Å³

Mo Ka radiation

 $\mu = 0.28 \text{ mm}^-$ T = 293 K $0.3 \times 0.2 \times 0.1 \text{ mm}$

Nonius KappaCCD diffractometer 27919 measured reflections 7410 independent reflections

5946 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.127$ S = 1.067410 reflections

230 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.28~{\rm e}~{\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H10106 ⁱ	0.82	1.90	2.7208 (13)	174
O5−H5O5···O3 ⁱⁱ	0.82	1.83	2.6061 (13)	158
$N1 - H1N1 \cdots O2$	0.89	2.07	2.9292 (13)	162
$N1 - H2N1 \cdots O6^{iii}$	0.89	2.10	2.9698 (15)	166
$N1 - H2N1 \cdots O4^{iii}$	0.89	2.53	3.1493 (13)	127
$N1 - H3N1 \cdots O7^{iv}$	0.89	1.88	2.7645 (15)	169
$N2-H1N2\cdots O3^{ii}$	0.89	1.94	2.7956 (15)	160
$N2 - H2N2 \cdot \cdot \cdot O2$	0.89	1.98	2.8637 (15)	169
$N2-H3N2\cdots O6^{iii}$	0.89	1.99	2.8053 (14)	152
$C1 - H1B \cdots O5^{ii}$	0.97	2.52	3.3333 (19)	141
$C8-H8B\cdots O7$	0.97	2.40	3.1558 (17)	135

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x, -y, -z + 1; (iii) x - 1, y, z; (iv) -x, -v, -z + 2.

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5670).

References

- Ahmed, S., Samah, A. & Mohamed, R. (2006), Acta Cryst. E62, m1796-m1798. Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607-o2609.
- Akriche, S. & Rzaigui, M. (2008). Struct. Chem. 19, 827-831.
- Ballarini, N., Cavani, F., Cortelli, C., Ligi, S., Pierelli, F., Trifiro, F., Fumagalli, C., Mazzoni, G. & Monti, T. (2006). Top. Catal. 38, 147-156.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Centi, G., Trifirò, F., Ebner, J. R. & Franchetti, V. M. (1988). Chem. Rev. 88, 55-80.
- Chen, B. & Munson, E. J. (2002). J. Am. Chem. Soc. 124, 1638-1652.
- Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
- Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.
- Elboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213-o214.
- Ernester, L. (1992). In Molecular Mechanism in Bioenergetics. Amsterdam: Elsevier.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Lipscomb, W. N. & Strater, N. (1996). Chem. Rev. 96, 2375-2433.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

supporting information

Acta Cryst. (2014). E70, o3 [https://doi.org/10.1107/S1600536813032455]

Bis(benzylammonium) dihydrogen diphosphate

Ahlem Ben Saad, Adel Elboulali, Nicolas Ratel-Ramond, Rzaigui Mohamed and Samah Akriche Toumi

S1. Comment

There is current interest in the chemistry of diphosphate materials. They are involved in a variety of bioenergetic (Ernester, 1992; Lipscomb & Strater, 1996) and catalytic processes (Centi *et al.*, 1988; Chen *et al.*, 2002; Ballarini *et al.*, 2006). Considering their relevance in several application areas, we are interested in this type of anion in building new hybrid materials associated to organic cations. We report here, the synthesis and the crystal structure of the title compound (I).

The asymmetric unit of (I) shown in Fig. 1, contains one diphosphate $[H_2P_2O_7]^{2-}$ anion and two crystallographically independent benzylammonium cations. The two PO₄ tetrahedral groups are bridged *via* the O4 bridging oxygen atom with P1—O4—P2 = 133.33 (6)° so as to form the diphosphate anion with a bent configuration. The conformation is eclipsed evidenced by the psuedo-torsion angle O3—P1···P2—O7 = -6.9°. In the diphosphate group, the longest P—O distances correspond to the bridging oxygen atom with average value d(P—O4) = 1.6104 (8) Å, the intermediate distances are the P—OH bonding [d(P1—O1) = 1.5693 (9) Å, d(P2—O5) = 1.5607 (10) Å], whereas the shortest distances, ranging between 1.4762 (9) Å and 1.4987 (8) Å are related to the terminal oxygen atoms. The average value of the O—P—O angles is 109.25 (5)°. These geometrical features are in same magnitude as observed for diphosphate groups (Akriche *et al.*, 2005; Ahmed *et al.*, 2006; Akriche *et al.*, 2008; Elboulali *et al.*, 2013).

In the crystal, O—H…O and N—H…O hydrogen bonds link the cations and anions forming a two-dimensional network parallel to (010) (Table 1 and Fig. 2). Within this network, weak C—H…O hydrogen bonds are observed (Desiraju, 1991; Steiner 2002).

S2. Experimental

Prismatic single crystals of the title compound were prepared at room temperature by slow evaporation of a mixture of an aqueous solution (20 ml) of diphosphoric acid (5 mmol) and an ethanolic solution (10 ml) of benzylamine (4 mmol, 0.44 ml). The diphosphoric acid was produced from $Na_4P_2O_7$ by using a cation-exchange resin (Amberlite IR 120).

S3. Refinement

All H atoms were placed in calculated positions and treated as riding, with C—H = 0.93 and 0.97 Å respectively for benzene rings and CH₂ groups, N—H = 0.89 Å and O—H = 0.82 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(N,O)$.

Figure 1

An *ORTEP* (Farrugia, 2012) view of (I) with displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.

Figure 2

Part of the crystal structure of (I) with hydrogen bonds represented as red dashed lines. The H-atoms not involved in H-bonds are omitted.

Bis(benzylammonium) dihydrogen diphosphate

Crystal data	
$2C_7H_{10}N^+ \cdot H_2P_2O_7{}^{2-}$	F(000) = 824
$M_r = 392.27$	$D_{\rm x} = 1.426 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.1337 (2) Å	Cell parameters from 25 reflections
b = 28.9015 (9) Å	$\theta = 9 - 11^{\circ}$
c = 8.4727 (2) Å	$\mu = 0.28 \text{ mm}^{-1}$
$\beta = 113.449(1)^{\circ}$	T = 293 K
V = 1827.24 (9) Å ³	Prism, colourless
Z = 4	$0.3 \times 0.2 \times 0.1 \text{ mm}$
Data collection	
Nonius KappaCCD	5946 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.025$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 34.3^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Detector resolution: 9 pixels mm ⁻¹	$h = -12 \rightarrow 11$
CCD rotation images, thick slices scans	$k = -45 \rightarrow 45$
27919 measured reflections	$l = -13 \rightarrow 12$
7410 independent reflections	
1	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 0.3854P]$
S = 1.06	where $P = (F^2 + 2F^2)/3$
7410 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
230 parameters	$\Delta\rho_{\text{max}} = 0.52 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta\rho_{\text{min}} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	
P1	0.16846 (4)	0.04396 (2)	0.78619 (4)	0.02353 (7)	
P2	0.35638 (4)	-0.03781 (2)	0.72893 (4)	0.02459 (8)	
01	0.27096 (13)	0.08328 (3)	0.91571 (12)	0.0351 (2)	
H1O1	0.3218	0.0723	1.0123	0.053*	
O2	0.05569 (11)	0.01565 (3)	0.85084 (12)	0.03180 (19)	
03	0.07455 (11)	0.06475 (3)	0.61148 (11)	0.03265 (19)	
O4	0.33579 (11)	0.01439 (3)	0.78719 (13)	0.03276 (19)	
05	0.25728 (13)	-0.03691 (4)	0.52889 (12)	0.0401 (2)	
H5O5	0.1642	-0.0519	0.4998	0.060*	
06	0.55388 (11)	-0.04139 (3)	0.77466 (12)	0.0332 (2)	
07	0.27351 (13)	-0.07023 (4)	0.81039 (13)	0.0367 (2)	
N1	-0.27361 (14)	0.05080 (4)	0.87008 (14)	0.0304 (2)	
H1N1	-0.1667	0.0467	0.8665	0.046*	
H2N1	-0.3407	0.0258	0.8287	0.046*	
H3N1	-0.2600	0.0554	0.9784	0.046*	
N2	-0.16351 (14)	-0.06105 (4)	0.67481 (15)	0.0320 (2)	
H1N2	-0.1638	-0.0614	0.5697	0.048*	
H2N2	-0.0859	-0.0399	0.7386	0.048*	
H3N2	-0.2727	-0.0541	0.6681	0.048*	
C1	-0.36307 (19)	0.09184 (5)	0.76385 (18)	0.0384 (3)	
H1A	-0.4815	0.0955	0.7640	0.046*	
H1B	-0.3769	0.0869	0.6460	0.046*	
C2	-0.25602 (19)	0.13517 (5)	0.83218 (19)	0.0372 (3)	
C3	-0.1281 (3)	0.14896 (6)	0.7728 (3)	0.0544 (4)	
H3	-0.1092	0.1318	0.6887	0.065*	
C4	-0.0272 (3)	0.18878 (8)	0.8397 (4)	0.0820 (8)	
H4	0.0598	0.1978	0.8008	0.098*	
C5	-0.0551 (4)	0.21432 (8)	0.9606 (4)	0.0865 (8)	
H5	0.0111	0.2411	1.0026	0.104*	
C6	-0.1804 (3)	0.20080 (7)	1.0213 (3)	0.0717 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H6	-0.1980	0.2183	1.1055	0.086*
C7	-0.2814 (2)	0.16112 (6)	0.9578 (2)	0.0498 (4)
H7	-0.3662	0.1520	0.9996	0.060*
C8	-0.11012 (18)	-0.10755 (5)	0.75535 (19)	0.0381 (3)
H8A	-0.1077	-0.1069	0.8707	0.046*
H8B	0.0098	-0.1148	0.7643	0.046*
C9	-0.23714 (18)	-0.14468 (5)	0.65266 (18)	0.0367 (3)
C10	-0.2192 (2)	-0.16351 (7)	0.5112 (2)	0.0522 (4)
H10	-0.1301	-0.1526	0.4781	0.063*
C11	-0.3324 (3)	-0.19860 (8)	0.4172 (3)	0.0655 (5)
H11	-0.3191	-0.2111	0.3219	0.079*
C12	-0.4640 (3)	-0.21471 (7)	0.4657 (3)	0.0689 (6)
H12	-0.5382	-0.2388	0.4050	0.083*
C13	-0.4863 (3)	-0.19547 (8)	0.6032 (3)	0.0708 (6)
H13	-0.5781	-0.2058	0.6334	0.085*
C14	-0.3720 (3)	-0.16037 (7)	0.6985 (3)	0.0563 (4)
H14	-0.3868	-0.1476	0.7928	0.068*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
P1	0.01799 (12)	0.03007 (15)	0.02214 (13)	0.00091 (9)	0.00756 (9)	0.00035 (10)
P2	0.01780 (12)	0.03298 (16)	0.02239 (13)	0.00009 (9)	0.00736 (9)	-0.00164 (10)
01	0.0328 (4)	0.0354 (5)	0.0301 (4)	0.0006 (4)	0.0051 (3)	-0.0056 (3)
O2	0.0255 (4)	0.0393 (5)	0.0350 (4)	0.0009 (3)	0.0167 (3)	0.0055 (4)
O3	0.0284 (4)	0.0423 (5)	0.0243 (4)	0.0000 (3)	0.0073 (3)	0.0042 (3)
O4	0.0219 (4)	0.0333 (5)	0.0454 (5)	-0.0004 (3)	0.0159 (3)	-0.0050(4)
O5	0.0276 (4)	0.0650 (7)	0.0250 (4)	-0.0070(4)	0.0076 (3)	-0.0027 (4)
O6	0.0191 (3)	0.0444 (5)	0.0345 (4)	0.0029 (3)	0.0089 (3)	-0.0056 (4)
07	0.0382 (5)	0.0374 (5)	0.0379 (5)	-0.0049 (4)	0.0187 (4)	0.0000 (4)
N1	0.0269 (4)	0.0310 (5)	0.0351 (5)	-0.0003 (4)	0.0143 (4)	-0.0008(4)
N2	0.0294 (5)	0.0337 (6)	0.0367 (5)	-0.0035 (4)	0.0174 (4)	-0.0033 (4)
C1	0.0359 (6)	0.0401 (7)	0.0359 (6)	0.0054 (5)	0.0109 (5)	0.0047 (5)
C2	0.0370 (6)	0.0323 (6)	0.0423 (7)	0.0083 (5)	0.0158 (5)	0.0087 (5)
C3	0.0575 (9)	0.0460 (9)	0.0719 (11)	0.0067 (7)	0.0387 (9)	0.0124 (8)
C4	0.0679 (13)	0.0560 (13)	0.132 (2)	-0.0072 (10)	0.0504 (15)	0.0200 (14)
C5	0.0729 (14)	0.0381 (10)	0.127 (2)	-0.0086 (10)	0.0175 (15)	0.0029 (12)
C6	0.0788 (14)	0.0419 (10)	0.0772 (14)	0.0134 (9)	0.0128 (11)	-0.0112 (9)
C7	0.0545 (9)	0.0426 (8)	0.0528 (9)	0.0113 (7)	0.0217 (7)	0.0000 (7)
C8	0.0315 (6)	0.0387 (7)	0.0395 (6)	-0.0033 (5)	0.0093 (5)	0.0023 (5)
C9	0.0324 (6)	0.0309 (6)	0.0426 (7)	-0.0009 (5)	0.0106 (5)	0.0053 (5)
C10	0.0475 (8)	0.0508 (9)	0.0612 (10)	-0.0059 (7)	0.0247 (8)	-0.0099 (8)
C11	0.0687 (12)	0.0545 (11)	0.0703 (12)	-0.0080(9)	0.0244 (10)	-0.0220(9)
C12	0.0640 (12)	0.0480 (10)	0.0782 (14)	-0.0195 (9)	0.0110 (10)	-0.0093 (10)
C13	0.0656 (12)	0.0685 (13)	0.0795 (14)	-0.0334 (10)	0.0301 (11)	-0.0005 (11)
C14	0.0568 (10)	0.0588 (11)	0.0584 (10)	-0.0203 (8)	0.0283 (8)	-0.0006 (8)

Geometric parameters (Å, °)

P1—O2	1.4869 (9)	C3—C4	1.396 (3)
P1—O3	1.4953 (9)	С3—Н3	0.9300
P1—O1	1.5693 (9)	C4—C5	1.353 (4)
P1—O4	1.6042 (9)	C4—H4	0.9300
Р2—О7	1.4762 (10)	C5—C6	1.369 (4)
P2—O6	1.4987 (9)	С5—Н5	0.9300
P2—O5	1.5607 (10)	C6—C7	1.388 (3)
P2—O4	1.6166 (10)	С6—Н6	0.9300
01—H101	0.8200	С7—Н7	0.9300
O5—H5O5	0.8200	C8—C9	1.5035 (19)
N1-C1	1.4917 (17)	C8—H8A	0.9700
N1—H1N1	0.8900	C8—H8B	0.9700
N1—H2N1	0.8900	C9—C10	1.376 (2)
N1—H3N1	0.8900	C9—C14	1.378 (2)
N2—C8	1.4914 (18)	C10—C11	1.388 (3)
N2—H1N2	0.8900	C10—H10	0.9300
N2—H2N2	0.8900	C11—C12	1.372 (3)
N2—H3N2	0.8900	C11—H11	0.9300
C1—C2	1.504 (2)	C12—C13	1.366 (3)
C1—H1A	0.9700	C12—H12	0.9300
C1—H1B	0.9700	C13—C14	1.396 (3)
C2—C3	1.382 (2)	C13—H13	0.9300
C2—C7	1.383 (2)	C14—H14	0.9300
O2—P1—O3	116.03 (5)	С4—С3—Н3	120.1
O2—P1—O1	112.01 (6)	C5—C4—C3	120.6 (2)
O3—P1—O1	108.73 (5)	C5—C4—H4	119.7
O2—P1—O4	110.57 (5)	C3—C4—H4	119.7
O3—P1—O4	108.51 (5)	C4—C5—C6	120.2 (2)
01—P1—O4	99.70 (5)	C4—C5—H5	119.9
O7—P2—O6	118.50 (6)	C6—C5—H5	119.9
O7—P2—O5	112.56 (6)	C5—C6—C7	120.3 (2)
O6—P2—O5	108.61 (5)	С5—С6—Н6	119.9
O7—P2—O4	109.12 (5)	С7—С6—Н6	119.9
O6—P2—O4	102.49 (5)	C2—C7—C6	119.97 (19)
O5—P2—O4	104.16 (6)	С2—С7—Н7	120.0
P1-01-H101	109.5	С6—С7—Н7	120.0
P1—O4—P2	133.33 (6)	N2—C8—C9	111.74 (11)
Р2—О5—Н5О5	109.5	N2—C8—H8A	109.3
C1—N1—H1N1	109.5	C9—C8—H8A	109.3
C1—N1—H2N1	109.5	N2—C8—H8B	109.3
H1N1—N1—H2N1	109.5	C9—C8—H8B	109.3
C1—N1—H3N1	109.5	H8A—C8—H8B	107.9
H1N1—N1—H3N1	109.5	C10—C9—C14	119.20 (15)
H2N1—N1—H3N1	109.5	C10—C9—C8	119.97 (14)
C8—N2—H1N2	109.5	C14—C9—C8	120.83 (15)

C8—N2—H2N2	109.5	C9—C10—C11	120.81 (18)
H1N2—N2—H2N2	109.5	C9—C10—H10	119.6
C8—N2—H3N2	109.5	C11—C10—H10	119.6
H1N2—N2—H3N2	109.5	C12—C11—C10	119.7 (2)
H2N2—N2—H3N2	109.5	C12—C11—H11	120.2
N1—C1—C2	111.18 (11)	C10-C11-H11	120.2
N1—C1—H1A	109.4	C13—C12—C11	120.08 (18)
C2—C1—H1A	109.4	C13—C12—H12	120.0
N1—C1—H1B	109.4	C11—C12—H12	120.0
C2—C1—H1B	109.4	C12—C13—C14	120.38 (19)
H1A—C1—H1B	108.0	С12—С13—Н13	119.8
C3—C2—C7	119.23 (16)	C14—C13—H13	119.8
C3—C2—C1	120.29 (15)	C9—C14—C13	119.82 (19)
C7—C2—C1	120.46 (14)	C9—C14—H14	120.1
C2—C3—C4	119.7 (2)	C13—C14—H14	120.1
С2—С3—Н3	120.1		
O2—P1—O4—P2	44.21 (10)	C3—C2—C7—C6	0.7 (2)
O3—P1—O4—P2	-84.10 (10)	C1—C2—C7—C6	179.28 (15)
O1—P1—O4—P2	162.27 (9)	C5—C6—C7—C2	-0.2 (3)
O7—P2—O4—P1	-51.43 (10)	N2-C8-C9-C10	81.81 (18)
O6—P2—O4—P1	-177.87 (9)	N2-C8-C9-C14	-98.38 (17)
O5—P2—O4—P1	68.98 (10)	C14—C9—C10—C11	-1.4 (3)
N1-C1-C2-C3	90.66 (17)	C8-C9-C10-C11	178.43 (17)
N1-C1-C2-C7	-87.87 (16)	C9-C10-C11-C12	0.1 (3)
C7—C2—C3—C4	-0.2 (3)	C10-C11-C12-C13	1.7 (4)
C1—C2—C3—C4	-178.79 (18)	C11—C12—C13—C14	-2.0 (4)
C2—C3—C4—C5	-0.8 (4)	C10—C9—C14—C13	1.0 (3)
C3—C4—C5—C6	1.3 (4)	C8—C9—C14—C13	-178.81 (18)
C4—C5—C6—C7	-0.8 (4)	C12—C13—C14—C9	0.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1 <i>0</i> 1····O6 ⁱ	0.82	1.90	2.7208 (13)	174
O5—H5 <i>O</i> 5…O3 ⁱⁱ	0.82	1.83	2.6061 (13)	158
N1—H1 <i>N</i> 1····O2	0.89	2.07	2.9292 (13)	162
N1—H2 <i>N</i> 1····O6 ⁱⁱⁱ	0.89	2.10	2.9698 (15)	166
N1—H2 <i>N</i> 1····O4 ⁱⁱⁱ	0.89	2.53	3.1493 (13)	127
N1—H3 <i>N</i> 1····O7 ^{iv}	0.89	1.88	2.7645 (15)	169
N2—H1 <i>N</i> 2····O3 ⁱⁱ	0.89	1.94	2.7956 (15)	160
N2—H2 <i>N</i> 2····O2	0.89	1.98	2.8637 (15)	169
N2—H3 <i>N</i> 2····O6 ⁱⁱⁱ	0.89	1.99	2.8053 (14)	152
C1—H1 <i>B</i> ···O5 ⁱⁱ	0.97	2.52	3.3333 (19)	141
C8—H8 <i>B</i> …O7	0.97	2.40	3.1558 (17)	135

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*, -*y*, -*z*+1; (iii) *x*-1, *y*, *z*; (iv) -*x*, -*y*, -*z*+2.