Structure Reports

Online
ISSN 1600-5368

catena-Poly[[triaquamagnesium]- $\mu_{2}{ }^{-}$ malonato]

Tim de Klijn and Martin Lutz*

Bijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Correspondence e-mail: m.lutz@uu.nl

Received 14 November 2013; accepted 19 December 2013

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.023 ; w R$ factor $=0.061$; data-to-parameter ratio $=12.9$.

In the title compound, $\left[\mathrm{Mg}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, the metal atom is in an octahedral environment. The octahedra are connected by malonate anions, forming chains along the c-axis direction. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link these chains into a threedimensional network.

Related literature

For related divalent metal malonates, see: Walter-Levy et al. (1973); Ray \& Hathaway (1982); Delgado et al. (2004); Zheng \& Xie (2004). For the synthesis, see: Delgado et al. (2004). For the geometry of coordinating water molecules, see: PtasiewiczBak et al. (1999). For the determination of the molecular symmetry, see: Pilati \& Forni (1998). For ring puckering analysis, see: Evans \& Boeyens (1989).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Mg}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]} \\
& M_{r}=180.40 \\
& \text { Orthorhombic, } \mathrm{Pna2}_{1} \\
& a=19.8109 \text { (15) £ } \\
& b=5.9314 \text { (4) A } \\
& c=6.0920 \text { (4) } \AA \\
& V=715.84(9) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.24 \mathrm{~mm}^{-1} \\
& c=6.0920 \text { (4) } \AA \\
& T=150 \mathrm{~K} \\
& 0.51 \times 0.23 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker Kappa APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2012)
$T_{\text {min }}=0.618, T_{\text {max }}=0.746$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.10$
1603 reflections
124 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement

7334 measured reflections 1603 independent reflections 1533 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.22$ e \AA^{-3}
Absolute structure: Flack parameter determined using 674 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013)
Absolute structure parameter: 0.00 (9)

Table 1
Selected bond lengths (\AA).

$\mathrm{Mg} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.0323(18)$	$\mathrm{Mg} 1-\mathrm{O} 6$	$2.0706(15)$
$\mathrm{Mg} 1-\mathrm{O} 5$	$2.0377(15)$	$\mathrm{Mg} 1-\mathrm{O} 1$	$2.0725(15)$
$\mathrm{Mg} 1-\mathrm{O} 4$	$2.0700(16)$	$\mathrm{Mg} 1-\mathrm{O} 7$	$2.1273(14)$

Symmetry code: (i) $x, y, z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 1 O \cdots \mathrm{O} 2^{\text {ii }}$	0.91 (3)	1.80 (3)	2.701 (2)	170 (3)
$\mathrm{O} 5-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O}^{\text {iii }}$	0.85 (4)	1.85 (4)	2.678 (2)	165 (3)
$\mathrm{O} 6-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O}_{4}{ }^{\text {iv }}$	0.83 (3)	1.93 (3)	2.759 (2)	175 (3)
$\mathrm{O} 6-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O}^{\text {v }}$	0.73 (4)	2.11 (4)	2.838 (2)	177 (3)
$\mathrm{O} 7-\mathrm{H} 5 \mathrm{O} \cdots \mathrm{O}^{\text {vi }}$	0.86 (3)	2.11 (3)	2.963 (2)	172 (3)
$\mathrm{O} 7-\mathrm{H} 6 \mathrm{O} \cdots \mathrm{O}^{\text {iii }}$	0.78 (3)	1.93 (3)	2.703 (2)	169 (3)

Symmetry codes: (ii) $-x+2,-y+1, z+\frac{1}{2}$; (iii) $x, y+1, z$; (iv) $-x+\frac{3}{2}, y-\frac{1}{2}, z+\frac{1}{2}$; (v) $-x+\frac{3}{2}, y-\frac{1}{2}, z-\frac{1}{2}$; (vi) $-x+\frac{3}{2}, y+\frac{1}{2}, z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: Peakref (Schreurs, 2013); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DRAWxtl (Finger et al., 2007); method used to prepare material for publication: manual editing of the SHELXL output.

The X-ray diffractometer was financed by the Netherlands Organization for Scientific Research (NWO).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2236).

References

Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., RodriguezMartin, Y., Lopez, T., Lloret, F. \& Julve, M. (2004). CrystEngComm, 6, 106111.

Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Finger, L. W., Kroeker, M. \& Toby, B. H. (2007). J. Appl. Cryst. 40, 188-192. Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249-259.

metal-organic compounds

Pilati, T. \& Forni, A. (1998). J. Appl. Cryst. 31, 503-504.
Ptasiewicz-Bak, H., Olovsson, I. \& McIntyre, G. J. (1999). Acta Cryst. B55, 830-840.
Ray, N. J. \& Hathaway, B. J. (1982). Acta Cryst. B38, 770-773.
Schreurs, A. M. M. (2013). Peakref. Utrecht University, The Netherlands. Schreurs, A. M. M., Xian, X. \& Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Walter-Levy, L., Perrotey, J. \& Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351-1354.
Zheng, Y.-Q. \& Xie, H. Z. (2004). J. Coord. Chem. 57, 17-18.

supporting information

Acta Cryst. (2014). E70, m25-m26 [https://doi.org/10.1107/S1600536813034193]

catena-Poly[[triaquamagnesium]- μ_{2}-malonato]

Tim de Klijn and Martin Lutz

S1. Comment

The malonates of the divalent metals Zn, Ni, and Co are isostructural and crystallize as dihydrates in the monoclinic space group C2/m (Walter-Levy et al., 1973; Ray \& Hathaway, 1982; Delgado et al., 2004; Zheng \& Xie, 2004). The metals are located on sites with $2 / \mathrm{m}$ symmetry, octahedrally surrounded by six O atoms. The water molecules and the malonate ligand have mirror symmetry. Overall, this leads to a two-dimensional coordination network in which the layers are interlinked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
In this context we set out to synthesize the corresponding Mg (II) complex. Interestingly, the title compound is not isostructural to the above mentioned Zn, Ni, and Co complexes but crystallizes as a trihydrate in the orthorhombic space group Pna 2_{1}. All atoms are located on general positions without symmetry. The magnesium centers are surrounded by six O atoms in a slightly distorted octahedral geometry. Three O atoms are from the deprotonated malonate ligand, and three O atoms are from the coordinated water molecules (Figure 1). The $\mathrm{Mg}-\mathrm{O}$ distance to O 7 is the largest. O7 is donor of two and acceptor of one hydrogen bond. Water O atoms O 5 and O 6 do not accept hydrogen bonds. According to the definition by Ptasiewicz-Bak et al. (1999), water molecule O5 is trigonally coordinated, and water molecules O6 and O7 in tetrahedral direction. The angles between the planes of the water molecules and the $\mathrm{O}-\mathrm{Mg}$ bonds are 7(4), 29 (3), and $42(3)^{\circ}$ for O5, O6, and O7, respectively.
While the malonate dianion has no crystallographic symmetry, it still has an approximate mirror symmetry with an r.m.s. deviation of $0.20 \AA$ (Pilati \& Forni, 1998). By coordination to the Mg, a six-membered chelate ring is formed (Figure 2). According to the algorithm by Evans \& Boeyens (1989), the conformation of the ring can be described as linear combination of 75% boat, 23% twist-boat, and 2% chair conformation.

In the title compound, the malonate dianion acts as a bridging ligand, which connects the Mg octahedra into a onedimensional chain in the direction of the c axis (Figure 3). This distance between the Mg centers is consequently the length of the c axis $[6.0920(4) \AA]$. The one-dimensional coordination chains are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network (Table 2). All three water molecules act as hydrogen bond donors. The non-coordinated O2 accepts two hydrogen bonds. Each of the coordinated O atoms $\mathrm{O} 1, \mathrm{O} 3$, and O 4 accept one hydrogen bond, respectively, and one hydrogen bond is accepted by the water molecule at O 7 .

S2. Experimental

Crystals were prepared according to the method by Delgado et al. (2004). 2.15 g (10.0 mmol) of magnesium acetate tetrahydrate (Fluka) were dissolved in 20 ml water. This solution was slowly added to a solution of $1.16 \mathrm{~g}(11.1 \mathrm{mmol})$ of malonic acid (Fluka) in 20 ml water. The resulting mixture was concentrated by evaporation at 333 K and normal pressure. After standing at room temperature over night, the crystals were obtained.

S3. Refinement

The crystal consisted of two fragments and was consequently integrated with two orientation matrices. The two matrices are related by a rotation angle of 8.6° about an axis approximately collinear with the c axis. Only the non-overlapping reflections were used for the structure refinement.

Figure 1
Asymmetric unit in the crystal structure of title compound. View along the b axis. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii.

Figure 2
Puckering of the six-membered chelate ring obtained by the coordination of the malonate dianion to the $\mathrm{Mg}(\mathrm{II})$ cation.

Figure 3
One-dimensional coordination chain in the direction of the c axis.
catena-Poly[[triaquamagnesium]- μ_{2}-malonato]

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=180.40$
Orthorhombic, Pna $_{1}$
$a=19.8109$ (15) \AA
$b=5.9314$ (4) \AA
$c=6.0920$ (4) \AA
$V=715.84(9) \AA^{3}$
$Z=4$
$F(000)=376$
$D_{\mathrm{x}}=1.674 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6736 reflections
$\theta=2.1-27.6^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Irregular block, colourless
$0.51 \times 0.23 \times 0.07 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII
diffractometer
Radiation source: sealed tube
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
$T_{\min }=0.618, T_{\text {max }}=0.746$
7334 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.10$
1603 reflections
124 parameters
1 restraint
Primary atom site location: heavy-atom method
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map

$$
\begin{aligned}
& 1603 \text { independent reflections } \\
& 1533 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.023 \\
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=2.1^{\circ} \\
& h=-25 \rightarrow 25 \\
& k=-7 \rightarrow 7 \\
& l=-7 \rightarrow 7
\end{aligned}
$$

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0408 P)^{2}+0.0476 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}$

Absolute structure: Flack parameter determined using 674 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)
Absolute structure parameter: 0.00 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Mg 1	$0.83901(3)$	$0.75469(12)$	$0.46114(12)$	$0.01041(16)$
O 1	$0.87901(7)$	$0.4456(2)$	$0.3702(2)$	$0.0147(3)$
O 2	$0.95295(7)$	$0.2264(2)$	$0.1994(3)$	$0.0191(3)$
O 3	$0.83004(7)$	$0.6848(3)$	$-0.2136(3)$	$0.0169(3)$
O 4	$0.83378(6)$	$0.8126(3)$	$0.1265(2)$	$0.0145(3)$
O 5	$0.93242(7)$	$0.8953(3)$	$0.4907(3)$	$0.0213(3)$
H 1 O	$0.9704(15)$	$0.838(5)$	$0.554(6)$	$0.038(7)^{*}$
H 2 O	$0.9365(14)$	$1.016(6)$	$0.417(6)$	$0.037(8)^{*}$
O 6	$0.73907(7)$	$0.6562(3)$	$0.4342(3)$	$0.0162(3)$
H 3 O	$0.7155(13)$	$0.558(5)$	$0.494(5)$	$0.023(6)^{*}$
H 4 O	$0.7272(17)$	$0.641(6)$	$0.322(7)$	$0.041(9)^{*}$
O7	$0.80241(7)$	$1.0903(2)$	$0.4929(2)$	$0.0140(3)$
H 5 O	$0.7656(14)$	$1.115(5)$	$0.421(5)$	$0.024(7)^{*}$
H 6 O	$0.8277(13)$	$1.189(5)$	$0.471(6)$	$0.023(7)^{*}$
C1	$0.91739(8)$	$0.3990(3)$	$0.2095(3)$	$0.0128(4)$
C2	$0.92180(9)$	$0.5614(3)$	$0.0138(3)$	$0.0177(4)$
H2A	0.9595	0.6678	0.0394	0.021^{*}
H2B	0.9326	0.4735	-0.1198	0.021^{*}

C 3	$0.85780(9)$	$0.6960(3)$	$-0.0275(3)$	$0.0124(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	$0.0125(3)$	$0.0134(3)$	$0.0053(3)$	$0.0000(2)$	$0.0001(2)$	$0.0004(2)$
O1	$0.0191(6)$	$0.0153(6)$	$0.0097(7)$	$0.0016(5)$	$0.0040(5)$	$0.0016(5)$
O2	$0.0192(6)$	$0.0199(7)$	$0.0182(8)$	$0.0055(5)$	$0.0062(6)$	$0.0022(6)$
O3	$0.0225(7)$	$0.0229(8)$	$0.0053(6)$	$0.0001(5)$	$-0.0014(5)$	$0.0012(6)$
O4	$0.0175(7)$	$0.0187(7)$	$0.0072(7)$	$0.0033(5)$	$0.0002(5)$	$0.0009(6)$
O5	$0.0163(6)$	$0.0232(7)$	$0.0245(8)$	$-0.0034(6)$	$-0.0070(6)$	$0.0103(7)$
O6	$0.0176(6)$	$0.0225(7)$	$0.0085(7)$	$-0.0062(5)$	$-0.0014(5)$	$0.0018(6)$
O7	$0.0143(6)$	$0.0146(6)$	$0.0131(7)$	$-0.0006(5)$	$0.0012(5)$	$0.0008(5)$
C1	$0.0122(7)$	$0.0158(9)$	$0.0104(8)$	$-0.0011(6)$	$-0.0004(6)$	$0.0011(7)$
C2	$0.0169(8)$	$0.0253(10)$	$0.0110(9)$	$0.0053(7)$	$0.0046(7)$	$0.0061(8)$
C3	$0.0144(8)$	$0.0164(8)$	$0.0065(8)$	$-0.0014(6)$	$0.0018(7)$	$0.0030(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Mg} 1-\mathrm{O}^{\text {i }}$	2.0323 (18)	O5-H1O	0.91 (3)
Mg 1 -O5	2.0377 (15)	$\mathrm{O} 5-\mathrm{H} 2 \mathrm{O}$	0.85 (4)
Mg1-O4	2.0700 (16)	O6-H3O	0.83 (3)
Mg1-O6	2.0706 (15)	O6-H4O	0.73 (4)
Mg1-O1	2.0725 (15)	O7- H 5 O	0.86 (3)
$\mathrm{Mg} 1-\mathrm{O} 7$	2.1273 (14)	O7-H6O	0.78 (3)
O1-C1	1.270 (2)	C1-C2	1.535 (3)
$\mathrm{O} 2-\mathrm{C} 1$	1.244 (2)	C2-C3	1.519 (2)
$\mathrm{O} 3-\mathrm{C} 3$	1.261 (3)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
$\mathrm{O} 3-\mathrm{Mg} 1^{\mathrm{ii}}$	2.0323 (18)	C2-H2B	0.9900
$\mathrm{O} 4-\mathrm{C} 3$	1.259 (3)		
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 5$	94.40 (7)	H1O-O5-H2O	117 (3)
O3 ${ }^{\text {i }}$ - $\mathrm{Mg} 1-\mathrm{O} 4$	171.80 (6)	$\mathrm{Mg} 1-\mathrm{O} 6-\mathrm{H} 3 \mathrm{O}$	134.5 (19)
O5-Mg1-O4	93.70 (7)	$\mathrm{Mg} 1-\mathrm{O} 6-\mathrm{H} 4 \mathrm{O}$	115 (3)
O3 ${ }^{\text {i }}$ - $\mathrm{Mg} 1-\mathrm{O} 6$	86.35 (6)	H3O-O6-H4O	98 (3)
O5-Mg1-O6	172.19 (7)	$\mathrm{Mg} 1-\mathrm{O} 7-\mathrm{H} 5 \mathrm{O}$	114 (2)
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 6$	85.46 (6)	$\mathrm{Mg} 1-\mathrm{O}-\mathrm{H6O}$	117.8 (19)
O3 ${ }^{\text {i }}$ - $\mathrm{Mg} 1-\mathrm{O} 1$	96.53 (6)	H5O-O7-H6O	109 (3)
$\mathrm{O} 5-\mathrm{Mg} 1-\mathrm{O} 1$	92.20 (6)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.80 (17)
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 1$	84.41 (6)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	116.45 (17)
O6-Mg1-O1	95.45 (6)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.75 (15)
O3 ${ }^{\text {i }}-\mathrm{Mg} 1-\mathrm{O} 7$	94.16 (7)	C3-C2-C1	114.27 (14)
O5-Mg1-O7	85.33 (7)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 7$	85.25 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7
O6-Mg1-O7	86.86 (6)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 7$	169.19 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Mg} 1$	128.87 (12)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{Mg} 1^{\text {ii }}$	145.80 (12)	$\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	122.26 (16)

supporting information

$\mathrm{C} 3-\mathrm{O} 4-\mathrm{Mg} 1$	$128.60(13)$	$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.72(17)$
$\mathrm{Mg} 1-\mathrm{O} 5-\mathrm{H} 1 \mathrm{O}$	$129.3(19)$	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$119.02(17)$
$\mathrm{Mg} 1-\mathrm{O} 5-\mathrm{H} 2 \mathrm{O}$	$112.6(19)$		
			$-30.2(2)$
$\mathrm{Mg} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$160.10(14)$	$\mathrm{Mg} 1-\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 2$	$115.7(2)$
$\mathrm{Mg} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-19.6(2)$	$\mathrm{Mg} 1-\mathrm{O} 3-\mathrm{C} 3-\mathrm{O} 4$	$-65.3(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$150.96(18)$	$\mathrm{Mg} 1^{1 i}-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$55.5(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-29.3(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 4$	$-123.53(19)$
$\mathrm{Mg} 1-\mathrm{O} 4-\mathrm{C} 3-\mathrm{O} 3$	$148.73(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	

Symmetry codes: (i) $x, y, z+1$; (ii) $x, y, z-1$.
Hydrogen-bond geometry (A, o)

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	${ }^{\cdots \cdots}$	$D-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{O} 5-\mathrm{H} 1 O \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.91 (3)	1.80 (3)	2.701 (2)	170 (3)
$\mathrm{O} 5-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O}^{\text {iv }}$	0.85 (4)	1.85 (4)	2.678 (2)	165 (3)
O6-H3O $\cdots{ }^{\text {a }}$	0.83 (3)	1.93 (3)	2.759 (2)	175 (3)
$\mathrm{O} 6-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O}^{\mathrm{vi}}$	0.73 (4)	2.11 (4)	2.838 (2)	177 (3)
O7- $\mathrm{H} 5 \mathrm{O} \cdots \mathrm{O}^{\text {vii }}$	0.86 (3)	2.11 (3)	2.963 (2)	172 (3)
O7-H6O $\cdots \mathrm{Ol}^{\text {iv }}$	0.78 (3)	1.93 (3)	2.703 (2)	169 (3)

Symmetry codes: (iii) $-x+2,-y+1, z+1 / 2$; (iv) $x, y+1, z$; (v) $-x+3 / 2, y-1 / 2, z+1 / 2$; (vi) $-x+3 / 2, y-1 / 2, z-1 / 2$; (vii) $-x+3 / 2, y+1 / 2, z+1 / 2$.

