Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1Z)-1-(1-Benzofuran-2-yl)ethanone oxime

D. B. Arunakumar,^a R. Desai Nivedita,^a S. Sreenivasa,^a S. Madan Kumar,^b N. K. Lokanath^b and P. A. Suchetan^{c*}

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103. India. ^bDepartment of Studies in Physics. University of Mysore. Manasagangotri, Mysore, India, and ^cDepartment of Studies and Research in Chemistry, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India Correspondence e-mail: pasuchetan@yahoo.co.in

Received 4 December 2013; accepted 7 December 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.062; wR factor = 0.146; data-to-parameter ratio = 11.1.

The title compound, C₁₀H₉NO₂, is almost planar (r.m.s. deviation for the non-H atoms = 0.027 Å) and the conformation across the C=N bond is syn. Further, the O atom of the benzofuran ring is syn to the CH₃ group in the side chain. In the crystal, molecules are linked into C(3) chains propagating in [010] by $O-H \cdots N$ hydrogen bonds.

Related literature

For the broad range of biological activities of the benzofuran moiety, see: Mehnaz et al. (2011). For the antifungal activity of (benzofuran-2-yl) keoximes, see: Demirayak et al. (2002).

Experimental

Crystal data C10H9NO2 $M_r = 175.18$

Monoclinic, $P2_1/c$ a = 9.5727 (12) Å

<i>b</i> = 4.7303 (8) Å	
c = 18.756 (2) Å	
$\beta = 96.178 \ (6)^{\circ}$	
V = 844.4 (2) Å ³	
Z = 4	

Data collection Prukar ADEVILCOD

Bruker APEXII CCD	2478 measured reflections
diffractometer	1333 independent reflections
Absorption correction: multi-scan	1199 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.019$
$T_{\rm min} = 0.772, \ T_{\rm max} = 0.839$	

Cu Ka radiation $\mu = 0.80 \text{ mm}^{-1}$

 $0.35 \times 0.27 \times 0.22 \text{ mm}$

T = 293 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	120 parameters
$wR(F^2) = 0.146$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
1333 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$O2-H2\cdots N1^{i}$	0.82	2.03	2.838 (2)	166	
Symmetry code: (i) $-x + 1$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.					

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: Mercurv (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge the IOE X-ray diffractometer Facility, University of Mysore, Mysore, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7169).

References

- Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Demirayak, S., Ucucu, U., Benkli, K., Gundogdu, K. N. & Karaburun, A. C. (2002). II Farmaco, 57, 609-612.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Mehnaz, K., Shakya, A. K. & Jawaid, T. (2011). IJMPS, 3, 1-15.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o40 [https://doi.org/10.1107/S1600536813033102]

(1*Z*)-1-(1-Benzofuran-2-yl)ethanone oxime

D. B. Arunakumar, R. Desai Nivedita, S. Sreenivasa, S. Madan Kumar, N. K. Lokanath and P. A. Suchetan

S1. Comment

Benzofurans are bicyclic ring systems with multiple applications. The literature indicates that compounds having benzofuran nucleus possesses broad range of biological activities like anifungal, antiarrythmic, uricisuric, vasodilator and antimigraine agent (Mehnaz *et al.*, 2011). Further, (benzofuran-2-yl) keoximes shows good antifungal activity (Demirayak *et al.*, 2002). Keeping this thing in mind, the title compound was synthesized and its crystal structure determined.

In the title compound, $C_{10}H_9NO_2$, the molecule is almost planar (r.m.s. deviation for the non-H atoms = 0.027 Å) and the conformation across the C=N bond is *syn*. Further, the oxygen atom of the benzofuran ring is *syn* to the CH₃ group in the side chain. In the crystal structure, the molecules are linked into C(3) chains through O2—H2…N1 hydrogen bonds.

S2. Experimental

2-Acetylbenzofuran (0.0062 mmol), hydroxyaminehydrochloride (0.0093 mmol) and anhydrous potassium carbonate (0.0093 mmol) were taken in a round bottom flask containing ethanol and water taken in the ratio 3:1. The reaction mixture was refluxed for 3 hrs. The progress of the reaction was monitored by thin layer chromatography. The reaction mixture was poured into ice cold water. The title compound separated as white solid. It was filtered, washed with water, dried and recrystallized from ethanol.

Colourless prisms were obtained from the solvent system: ethyl acetate: methanol (4:1) by recrystallisation.

S3. Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å and O—H = 0.82 Å. The isotropic displacement parameters for all H atoms were set to 1.2 times U_{eq} (C_{aromatic}) and 1.5 times U_{eq} (C_{methyl}, O)...

Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

Linking of molecules into C(3) chains through O-H···N hydrogen bonds. H-atoms not involved in H-bonding are omitted for clarity purpose.

(1Z)-1-(1-Benzofuran-2-yl)ethanone oxime

Crystal data	
$C_{10}H_9NO_2$	
$M_r = 175.18$	

Hall symbol: -P 2ybc a = 9.5727 (12) Åb = 4.7303 (8) Å

Monoclinic, $P2_1/c$

Cu *K* α radiation, $\lambda = 1.54178$ Å

 $\theta = 4.7 - 64.6^{\circ}$

 $\mu = 0.80 \text{ mm}^{-1}$

Prism, colourless

 $0.35 \times 0.27 \times 0.22 \text{ mm}$

T = 293 K

Cell parameters from 1331 reflections

c = 18.756 (2) Å $\beta = 96.178 (6)^{\circ}$ $V = 844.4 (2) \text{ Å}^{3}$ Z = 4 F(000) = 368Prism $D_x = 1.378 \text{ Mg m}^{-3}$ Melting point: 473 K

Data collection

Bruker APEXII CCD	2478 measured reflections
diffractometer	1333 independent reflections
Radiation source: fine-focus sealed tube	1199 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
φ and ω scans	$\theta_{\rm max} = 64.6^\circ, \theta_{\rm min} = 4.7^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 10$
(SADABS; Bruker, 2009)	$k = -5 \rightarrow 2$
$T_{\min} = 0.772, \ T_{\max} = 0.839$	$l = -20 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
S = 1.07	H-atom parameters constrained
1333 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1028P)^2 + 0.2023P]$
120 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.04643 (18)	0.3538 (4)	0.41182 (10)	0.0348 (5)	
C2	1.06183 (18)	0.5553 (4)	0.35964 (10)	0.0354 (5)	
C3	1.1963 (2)	0.6670 (5)	0.35443 (12)	0.0458 (6)	
H3	1.2109	0.8023	0.3200	0.055*	
C4	1.3051 (2)	0.5706 (5)	0.40151 (12)	0.0464 (6)	
H4	1.3950	0.6408	0.3985	0.056*	
C5	1.2848 (2)	0.3703 (5)	0.45370 (12)	0.0473 (6)	
H5	1.3612	0.3125	0.4851	0.057*	
C6	1.1547 (2)	0.2556 (5)	0.46007 (12)	0.0464 (6)	

supporting information

Н6	1.1406	0.1206	0.4946	0.056*	
C7	0.92452 (19)	0.5946 (4)	0.32240 (10)	0.0377 (5)	
H7	0.9003	0.7176	0.2844	0.045*	
C8	0.83702 (18)	0.4191 (4)	0.35294 (9)	0.0318 (5)	
С9	0.68805 (17)	0.3508 (4)	0.34237 (9)	0.0312 (5)	
C10	0.63408 (19)	0.1283 (5)	0.38897 (11)	0.0402 (5)	
H10A	0.5356	0.0996	0.3752	0.060*	
H10B	0.6482	0.1879	0.4381	0.060*	
H10C	0.6838	-0.0453	0.3835	0.060*	
N1	0.59615 (15)	0.4690 (3)	0.29671 (8)	0.0351 (4)	
01	0.90954 (12)	0.2666 (3)	0.40845 (7)	0.0375 (4)	
O2	0.65313 (13)	0.6771 (3)	0.25538 (7)	0.0417 (4)	
H2	0.5897	0.7764	0.2361	0.063*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0229 (9)	0.0405 (11)	0.0394 (10)	-0.0014 (7)	-0.0031 (7)	-0.0013 (8)
C2	0.0281 (9)	0.0408 (11)	0.0362 (9)	-0.0008(7)	-0.0014 (7)	-0.0015 (8)
C3	0.0338 (10)	0.0546 (14)	0.0491 (12)	-0.0073 (9)	0.0052 (8)	0.0056 (10)
C4	0.0256 (9)	0.0568 (14)	0.0560 (12)	-0.0056 (8)	0.0009 (8)	-0.0058 (10)
C5	0.0294 (10)	0.0572 (14)	0.0526 (12)	0.0018 (9)	-0.0084(8)	-0.0023 (10)
C6	0.0316 (11)	0.0553 (14)	0.0497 (12)	-0.0009 (9)	-0.0075 (8)	0.0113 (10)
C7	0.0312 (10)	0.0441 (11)	0.0361 (9)	-0.0003 (8)	-0.0036 (7)	0.0064 (8)
C8	0.0275 (9)	0.0341 (10)	0.0318 (9)	0.0022 (7)	-0.0059 (7)	-0.0009 (7)
C9	0.0255 (9)	0.0332 (10)	0.0332 (9)	0.0006 (7)	-0.0041 (7)	-0.0045 (7)
C10	0.0317 (10)	0.0418 (12)	0.0455 (11)	-0.0051 (8)	-0.0034 (8)	0.0028 (8)
N1	0.0286 (8)	0.0373 (10)	0.0376 (8)	-0.0004 (6)	-0.0043 (6)	-0.0024 (6)
01	0.0254 (7)	0.0431 (9)	0.0417 (8)	-0.0027 (5)	-0.0068 (5)	0.0092 (6)
O2	0.0326 (7)	0.0471 (9)	0.0432 (8)	0.0027 (6)	-0.0059 (6)	0.0107 (6)

Geometric parameters (Å, °)

C1—01	1.369 (2)	C7—C8	1.350 (3)
C1—C6	1.381 (3)	С7—Н7	0.9300
C1—C2	1.385 (3)	C8—O1	1.390 (2)
C2—C3	1.404 (3)	C8—C9	1.455 (2)
С2—С7	1.433 (3)	C9—N1	1.288 (2)
C3—C4	1.370 (3)	C9—C10	1.495 (3)
С3—Н3	0.9300	C10—H10A	0.9600
C4—C5	1.391 (3)	C10—H10B	0.9600
C4—H4	0.9300	C10—H10C	0.9600
C5—C6	1.375 (3)	N1—O2	1.400 (2)
С5—Н5	0.9300	O2—H2	0.8200
С6—Н6	0.9300		
O1—C1—C6	125.18 (18)	C8—C7—C2	106.98 (17)
O1—C1—C2	110.42 (15)	С8—С7—Н7	126.5

$C_{6}-C_{1}-C_{2}$	124 40 (17)	С2—С7—Н7	126.5
$C_1 - C_2 - C_3$	124.40(17) 118.42(17)	$C_2 = C_1 = 117$	120.5
C1 - C2 - C7	105.72(17)	C7 - C8 - C9	136.28(17)
$C_1 = C_2 = C_7$	105.77(10) 125.81(10)	$C_1 = C_2 = C_2$	130.26(17) 112.06(15)
$C_{3} = C_{2} = C_{7}$	133.81(19) 118.0(2)	$V_1 = C_0 = C_7$	112.90(13) 125.71(18)
C4 = C3 = C2	110.0 (2)	NIC9C8	123.71(10) 116.12(15)
$C_4 = C_3 = H_3$	121.0	NI = C9 = C10	110.12(13)
$C_2 = C_3 = H_3$	121.0	C_{0}	118.10(15)
$C_3 - C_4 - C_5$	121.75 (18)	C9 - C10 - H10A	109.5
C3—C4—H4	119.1	C9—C10—H10B	109.5
С5—С4—Н4	119.1	H10A—C10—H10B	109.5
C6—C5—C4	121.77 (19)	C9—C10—H10C	109.5
С6—С5—Н5	119.1	H10A—C10—H10C	109.5
C4—C5—H5	119.1	H10B—C10—H10C	109.5
C5—C6—C1	115.7 (2)	C9—N1—O2	113.26 (14)
С5—С6—Н6	122.2	C1—O1—C8	106.06 (14)
С1—С6—Н6	122.2	N1—O2—H2	109.5
O1—C1—C2—C3	-179.18 (17)	C2C7C8O1	0.1 (2)
C6—C1—C2—C3	0.6 (3)	C2—C7—C8—C9	-179.9 (2)
O1—C1—C2—C7	0.5 (2)	C7—C8—C9—N1	-3.0(4)
C6—C1—C2—C7	-179.7 (2)	O1-C8-C9-N1	177.02 (16)
C1—C2—C3—C4	-0.1 (3)	C7—C8—C9—C10	178.2 (2)
C7—C2—C3—C4	-179.7 (2)	O1—C8—C9—C10	-1.7(2)
C2—C3—C4—C5	-0.6 (3)	C8—C9—N1—O2	0.6 (3)
C3—C4—C5—C6	1.0 (4)	C10—C9—N1—O2	179.33 (15)
C4—C5—C6—C1	-0.5(3)	C6-C1-O1-C8	179.8 (2)
01-C1-C6-C5	179.47 (19)	$C_{2}-C_{1}-O_{1}-C_{8}$	-0.4(2)
$C_{2}-C_{1}-C_{6}-C_{5}$	-0.3(3)	C7—C8—O1—C1	0.2 (2)
C1-C2-C7-C8	-0.3(2)	C9-C8-O1-C1	-179.84(14)
$C_{3}-C_{2}-C_{7}-C_{8}$	179 2 (2)		1,7.01(11)
05 02 07 00	1, , , , , , , (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2···N1 ⁱ	0.82	2.03	2.838 (2)	166

Symmetry code: (i) -x+1, y+1/2, -z+1/2.