organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Amino-12-methylsulfonyloxy-[2.2]paracyclophane

Xiangchao Meng,^a Wenzeng Duan^{b,c}* and Yinfeng Han^b

^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, ^bSchool of Chemistry and Chemical Engineering, Taian University, Taian 271021, People's Republic of China, and ^cSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China

Correspondence e-mail: duanwenzeng@163.com

Received 6 November 2013; accepted 30 November 2013

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.084; data-to-parameter ratio = 13.4.

The title compound, C₁₇H₁₉NO₃S, was synthesized from 4benzhydrylideneamino-12-hydroxy-[2.2]paracyclophane and methanesulfonyl chloride. In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. In the crystal, weak $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds link the molecules into layers parallel to the *ac* plane.

Related literature

For background to [2.2]paracyclophane, see: Cram et al. (1959); Liebman & Greenberg (1976); Dyson et al. (1998). For its synthesis and applications in catalysis, see: Hou et al. (2000); Duan et al. (2008, 2012). For a related structure, see: Ma et al. (2012).

7769 measured reflections 2676 independent reflections

 $R_{\rm int} = 0.037$

2266 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₇ H ₁₉ NO ₃ S	$V = 1517 (2) \text{ Å}^3$
$M_r = 317.39$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 8.017 (7) Å	$\mu = 0.23 \text{ mm}^{-1}$
b = 11.734 (9) Å	T = 273 K
c = 16.131 (13) Å	$0.13 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.084$	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.04	Absolute structure: Flack (1983),
2676 reflections	1122 Friedel pairs
200 parameters	Absolute structure parameter:
H-atom parameters constrained	0.02 (9)
-	

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots O2^{i}$ C10 - H10B \cdots O1^{ii}	0.86 0.97	2.43 2.52	3.262 (3) 3.390 (4)	163 149
······	1.5 1.1	1. (2) 1		

Symmetry codes: (i) $-x + \frac{5}{2}$, -y + 1, $z - \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from Shandong Province Natural Science Foundation (ZR2012BL08) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5436).

References

Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cram, D. J. (1959). Rec. Chem. Prog. 20, 71-93.

Duan, W. Z., Ma, Y. D., Qu, B., Zhao, L., Chen, J. Q. & Song, C. (2012). Tetrahedron Asymmetry, 23, 1369-1375.

Duan, W. Z., Ma, Y. D., Xia, H. Q., Liu, X. Y., Ma, Q. S. & Sun, J. S. (2008). J. Org. Chem. 73, 4330-4333.

Dyson, P. J., Johnson, B. F. G. & Martin, C. M. (1998). Coord. Chem. Rev. 175, 59-89.

Flack, H. D. (1983). Acta Crvst. A39, 876-881.

Hou, X. L., Wu, X. W., Dai, L. X., Cao, B. X. & Sun, J. (2000). Chem. Commun. pp. 1195-1196.

Liebman, J. F. & Greenberg, A. (1976). Chem. Rev. 76, 311-365.

Ma, K., Duan, W., He, F. & Ma, Y. (2012). Acta Cryst. E68, 01380.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o18 [https://doi.org/10.1107/S1600536813032595]

4-Amino-12-methylsulfonyloxy-[2.2]paracyclophane

Xiangchao Meng, Wenzeng Duan and Yinfeng Han

S1. Comment

Since the first synthesis of [2.2]paracyclophane (Cram, 1959), its structure attracted considerable interest (Liebman *et al.*, 1976; Dyson *et al.*, 1998). [2.2]Paracyclophane needs only one substituent to become planar chiral, so, there has been notable progress with regard to the synthesis of new derivatives and their applications in asymmetric catalysis(Hou *et al.*, 2000; Duan *et al.*, 2008).

In the title compound (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Ma *et al.*, 2012). In the molecule, the distance between the centroids of two aromatic rings is 2.960 (5) Å. The crystal packing exhibits weak intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), which link the molecules into layers parallel to the *ac* plane.

S2. Experimental

The title compound was prepared by the method reported by Duan *et al.* (2012). The crystals were obtained by recrystallization from hexane and ethyl acetate.

S3. Refinement

All the H atoms were located in difference maps, but placed in idealized positions (N—H 0.86 Å, C—H 0.93–0.97 Å), and refined as riding, with with $U_{iso}(H) = 1.2-1.5 U_{eq}$ of the parent atom.

Figure 1

The molecular structure of the title compound showing the atom-numbering scheme and 50% probability displacement ellipsoids.

4-Amino-12-methylsulfonyloxy-[2.2]paracyclophane

Crystal data

C ₁₇ H ₁₉ NO ₃ S	F(000) = 672
$M_r = 317.39$	$D_x = 1.389 \text{ Mg m}^{-3}$
Orthorhombic, P2 ₁ 2 ₁ 2 ₁	Mo K α radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: P 2ac 2ab	Cell parameters from 2210 reflections
a = 8.017 (7) Å	$\theta = 2.8-23.1^{\circ}$
b = 11.734 (9) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 16.131 (13) Å	T = 273 K
$V = 1517 (2) \text{ Å}^{3}$ $Z = 4$	Block, colourless $0.13 \times 0.12 \times 0.10 \text{ mm}$
Bruker SMART CCD	7769 measured reflections
diffractometer	2676 independent reflections
Radiation source: fine-focus sealed tube	2266 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.037$
phi and ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(<i>SADABS</i> ; Bruker, 2007)	$k = -13 \rightarrow 13$
$T_{\min} = 0.971, T_{\max} = 0.978$	$l = -11 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.0218P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
2676 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
200 parameters	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \text{ e} \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1122 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.02 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	1.0276 (4)	0.2690 (2)	0.10319 (15)	0.0464 (7)
H1C	1.0358	0.1905	0.0849	0.056*
H1D	1.1386	0.3019	0.1019	0.056*
C2	0.9100 (3)	0.3373 (2)	0.04181 (16)	0.0484 (7)
H2A	0.9781	0.3785	0.0022	0.058*
H2B	0.8411	0.2839	0.0113	0.058*
C3	0.7987 (3)	0.4208 (2)	0.08747 (14)	0.0386 (6)
C4	0.6334 (4)	0.3938 (2)	0.10371 (16)	0.0478 (7)
H4	0.5785	0.3439	0.0682	0.057*
C5	0.5469 (3)	0.4382 (2)	0.17062 (18)	0.0492 (7)
Н5	0.4357	0.4188	0.1794	0.059*
C6	0.6281 (3)	0.5120 (2)	0.22456 (16)	0.0412 (6)
C7	0.7798 (3)	0.5569 (2)	0.19893 (15)	0.0402 (6)
H7	0.8257	0.6175	0.2283	0.048*
C8	0.8654 (3)	0.5139 (2)	0.13052 (15)	0.0376 (6)
С9	0.5778 (4)	0.5230 (3)	0.31434 (17)	0.0551 (8)
H9A	0.4571	0.5206	0.3180	0.066*
H9B	0.6140	0.5967	0.3348	0.066*
C10	0.6529 (3)	0.4269 (2)	0.37183 (16)	0.0491 (7)
H10A	0.7088	0.4625	0.4185	0.059*
H10B	0.5624	0.3808	0.3935	0.059*
C11	0.7741 (3)	0.3510 (2)	0.32766 (15)	0.0359 (6)
C12	0.7184 (3)	0.2616 (2)	0.27724 (15)	0.0425 (7)

H12	0.6159	0.2280	0.2886	0.051*
C13	0.8110 (3)	0.2222 (2)	0.21135 (16)	0.0432 (7)
H13	0.7716	0.1612	0.1802	0.052*
C14	0.9620 (3)	0.27203 (19)	0.19075 (14)	0.0358 (6)
C15	1.0336 (3)	0.34300 (19)	0.24992 (15)	0.0336 (6)
H15	1.1437	0.3666	0.2440	0.040*
C16	0.9421 (3)	0.37825 (19)	0.31712 (14)	0.0304 (6)
C17	1.0148 (4)	0.3455 (2)	0.51017 (17)	0.0548 (8)
H17A	0.9649	0.2812	0.4830	0.082*
H17B	0.9287	0.3953	0.5303	0.082*
H17C	1.0816	0.3196	0.5558	0.082*
N1	1.0226 (3)	0.5546 (2)	0.11279 (15)	0.0610(7)
H1A	1.0668	0.6060	0.1438	0.073*
H1B	1.0764	0.5286	0.0707	0.073*
01	1.2545 (2)	0.34091 (17)	0.40407 (12)	0.0602 (6)
O2	1.2004 (2)	0.52194 (15)	0.47560 (11)	0.0553 (5)
03	1.0125 (2)	0.46195 (13)	0.37118 (10)	0.0355 (4)
S1	1.14007 (8)	0.41905 (5)	0.43999 (4)	0.03807 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0554 (18)	0.0443 (15)	0.0395 (15)	0.0054 (14)	0.0040 (13)	-0.0094 (12)
C2	0.059 (2)	0.0540 (16)	0.0325 (15)	-0.0026 (14)	0.0012 (12)	-0.0085 (12)
C3	0.0400 (15)	0.0459 (14)	0.0298 (13)	-0.0008 (13)	-0.0051 (10)	0.0041 (11)
C4	0.0484 (17)	0.0558 (17)	0.0393 (15)	-0.0035 (15)	-0.0172 (14)	-0.0016 (12)
C5	0.0306 (15)	0.0631 (18)	0.0538 (17)	0.0011 (14)	-0.0059 (13)	0.0068 (14)
C6	0.0382 (16)	0.0432 (15)	0.0421 (15)	0.0115 (13)	0.0007 (13)	0.0056 (11)
C7	0.0513 (17)	0.0289 (13)	0.0404 (15)	0.0050 (12)	-0.0003 (12)	-0.0003 (10)
C8	0.0431 (15)	0.0360 (13)	0.0338 (13)	-0.0012 (12)	0.0014 (12)	0.0090 (10)
C9	0.056 (2)	0.0561 (17)	0.0530 (18)	0.0177 (16)	0.0161 (14)	0.0021 (14)
C10	0.0341 (14)	0.0767 (19)	0.0365 (14)	0.0078 (15)	0.0061 (12)	0.0012 (14)
C11	0.0330 (15)	0.0466 (15)	0.0281 (13)	-0.0016 (12)	-0.0026 (11)	0.0087 (11)
C12	0.0351 (15)	0.0496 (16)	0.0429 (16)	-0.0107 (13)	-0.0067 (12)	0.0127 (12)
C13	0.0544 (19)	0.0347 (14)	0.0404 (15)	-0.0060 (13)	-0.0051 (13)	-0.0017 (11)
C14	0.0388 (16)	0.0315 (12)	0.0372 (14)	0.0068 (12)	-0.0027 (11)	0.0004 (11)
C15	0.0270 (14)	0.0386 (13)	0.0353 (13)	0.0041 (11)	-0.0025 (11)	0.0011 (11)
C16	0.0300 (14)	0.0328 (12)	0.0283 (13)	0.0000 (11)	-0.0044 (11)	0.0015 (10)
C17	0.064 (2)	0.0572 (17)	0.0435 (17)	-0.0100 (16)	-0.0063 (14)	0.0125 (13)
N1	0.0609 (17)	0.0645 (16)	0.0575 (15)	-0.0188 (14)	0.0172 (13)	-0.0116 (12)
01	0.0347 (11)	0.0791 (13)	0.0669 (14)	0.0165 (11)	-0.0073 (10)	-0.0073 (10)
O2	0.0593 (13)	0.0522 (11)	0.0543 (12)	-0.0180 (10)	-0.0204 (9)	-0.0005 (9)
O3	0.0377 (10)	0.0345 (8)	0.0344 (9)	0.0015 (8)	-0.0078 (8)	-0.0002 (7)
S 1	0.0327 (3)	0.0438 (3)	0.0377 (3)	-0.0030 (3)	-0.0080 (3)	0.0024 (3)

Geometric parameters (Å, °)

C1—C14	1.508 (4)	C10—H10A	0.9700
C1—C2	1.585 (4)	C10—H10B	0.9700
C1—H1C	0.9700	C11—C16	1.394 (3)
C1—H1D	0.9700	C11—C12	1.401 (4)
C2—C3	1.516 (4)	C12—C13	1.377 (4)
C2—H2A	0.9700	C12—H12	0.9300
C2—H2B	0.9700	C13—C14	1.384 (4)
C3—C4	1.387 (4)	C13—H13	0.9300
C3—C8	1.400 (3)	C14—C15	1.391 (3)
C4—C5	1.385 (4)	C15—C16	1.373 (3)
C4—H4	0.9300	C15—H15	0.9300
C5—C6	1.390 (4)	C16—O3	1.430 (3)
С5—Н5	0.9300	C17—S1	1.742 (3)
C6—C7	1.389 (4)	C17—H17A	0.9600
С6—С9	1.509 (4)	C17—H17B	0.9600
С7—С8	1.394 (4)	C17—H17C	0.9600
С7—Н7	0.9300	N1—H1A	0.8600
C8—N1	1.377 (3)	N1—H1B	0.8600
C9—C10	1.579 (4)	O1—S1	1.421 (2)
С9—Н9А	0.9700	O2—S1	1.422 (2)
С9—Н9В	0.9700	O3—S1	1.5908 (18)
C10-C11	1.499 (4)		
C14—C1—C2	111.5 (2)	C9—C10—H10A	109.0
C14—C1—H1C	109.3	C11—C10—H10B	109.0
C2—C1—H1C	109.3	C9-C10-H10B	109.0
C14—C1—H1D	109.3	H10A—C10—H10B	107.8
C2—C1—H1D	109.3	C16—C11—C12	114.1 (2)
H1C—C1—H1D	108.0	C16—C11—C10	123.2 (2)
C3—C2—C1	111.9 (2)	C12—C11—C10	120.9 (2)
C3—C2—H2A	109.2	C13—C12—C11	121.9 (2)
C1—C2—H2A	109.2	C13—C12—H12	119.1
C3—C2—H2B	109.2	C11—C12—H12	119.1
C1—C2—H2B	109.2	C12—C13—C14	121.0 (2)
H2A—C2—H2B	107.9	C12—C13—H13	119.5
C4—C3—C8	116.7 (2)	C14—C13—H13	119.5
C4—C3—C2	120.4 (2)	C13—C14—C15	116.7 (2)
C8—C3—C2	121.3 (2)	C13—C14—C1	121.3 (2)
C5—C4—C3	122.7 (3)	C15—C14—C1	120.9 (2)
С5—С4—Н4	118.7	C16—C15—C14	120.1 (2)
C3—C4—H4	118.7	C16—C15—H15	119.9
C4—C5—C6	119.2 (3)	C14—C15—H15	120.0
C4—C5—H5	120.4	C15—C16—C11	122.9 (2)
С6—С5—Н5	120.4	C15—C16—O3	118.5 (2)
C5—C6—C7	117.4 (2)	C11—C16—O3	117.7 (2)
C5—C6—C9	122.0 (3)	S1—C17—H17A	109.5

С7—С6—С9	119.2 (3)	S1—C17—H17B	109.5
C6—C7—C8	122.0 (3)	H17A—C17—H17B	109.5
С6—С7—Н7	119.0	S1—C17—H17C	109.5
С8—С7—Н7	119.0	H17A—C17—H17C	109.5
N1	119.3 (2)	H17B—C17—H17C	109.5
N1—C8—C3	121.1 (2)	C8—N1—H1A	120.0
C7—C8—C3	119.1 (3)	C8—N1—H1B	120.0
C6—C9—C10	113.6 (2)	H1A—N1—H1B	120.0
С6—С9—Н9А	108.8	C16—O3—S1	117.52 (14)
С10—С9—Н9А	108.8	O1—S1—O2	119.55 (14)
С6—С9—Н9В	108.8	O1—S1—O3	109.55 (12)
С10—С9—Н9В	108.8	O2—S1—O3	103.40 (10)
Н9А—С9—Н9В	107.7	O1—S1—C17	108.54 (14)
С11—С10—С9	113.1 (2)	O2—S1—C17	110.74 (14)
C11-C10-H10A	109.0	O3—S1—C17	103.86 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1B···O2 ⁱ	0.86	2.43	3.262 (3)	163
C10—H10 <i>B</i> ···O1 ⁱⁱ	0.97	2.52	3.390 (4)	149

Symmetry codes: (i) -x+5/2, -y+1, z-1/2; (ii) x-1, y, z.