Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Poly[µ-aqua-µ<sub>5</sub>-[2-(2,3,6-trichlorophenyl)acetato]-caesium]

#### **Graham Smith**

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 22 October 2013; accepted 25 October 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.009 Å; R factor = 0.050; wR factor = 0.111; data-to-parameter ratio = 16.8.

In the structure of the title complex,  $[Cs(C_8H_4Cl_3O_2)(H_2O)]_n$ , the caesium salt of the commercial herbicide fenac [(2,3,6-trichlorophenyl)acetic acid], the irregular eight-coordination about Cs<sup>+</sup> comprises a bidentate *O:Cl*-chelate interaction involving a carboxylate-O atom and an *ortho*-related ring-substituted Cl atom, which is also bridging, a triple-bridging carboxylate-O atom and a bridging water molecule. A two-dimensional polymer is generated, lying parallel to (100), within which there are water–carboxylate O–H···O hydrogen-bonding interactions.

#### **Related literature**

For background information on the herbicide fenac, see: O'Neil (2001). For the structure of fenac, see: White *et al.* (1979). For examples of caesium complexes involving coordinating carbon-bound Cl, see: Levitskaia *et al.* (2000); Smith (2013).



#### Experimental

Crystal data  $[Cs(C_8H_4Cl_3O_2)(H_2O)]$   $M_r = 389.39$ 

Monoclinic,  $P2_1/c$ a = 17.0606 (12) Å b = 4.9834 (3) Å c = 13.9283 (10) Å  $\beta = 98.127 (6)^{\circ}$   $V = 1172.29 (14) \text{ Å}^{3}$ Z = 4

#### Data collection

| Oxford Diffraction Gemini-S CCD-       | 7585 measured reflections              |
|----------------------------------------|----------------------------------------|
| detector diffractometer                | 2284 independent reflections           |
| Absorption correction: multi-scan      | 1873 reflections with $I > 2\sigma(I)$ |
| (CrysAlis PRO; Agilent, 2012)          | $R_{\rm int} = 0.034$                  |
| $T_{\min} = 0.582, \ T_{\max} = 0.980$ |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.050$ | 136 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.111$               | H-atom parameters constrained                              |
| S = 1.09                        | $\Delta \rho_{\rm max} = 2.18 \text{ e} \text{ Å}^{-3}$    |
| 2284 reflections                | $\Delta \rho_{\rm min} = -1.86 \text{ e } \text{\AA}^{-3}$ |

Mo  $K\alpha$  radiation

 $0.20 \times 0.15 \times 0.07 \text{ mm}$ 

 $\mu = 3.82 \text{ mm}^{-1}$ 

T = 200 K

#### Table 1

Selected bond lengths (Å).

| Cs1—Cl6       | 3.711 (2) | $Cs1 - O1W^{i}$           | 3.148 (6) |
|---------------|-----------|---------------------------|-----------|
| Cs1—O1W       | 3.131 (6) | $Cs1 - O12^{ii}$          | 3.213 (5) |
| Cs1—O13       | 3.246 (7) | $Cs1 - O12^{iii}$         | 3.103 (6) |
| $Cs1 - Cl6^i$ | 3.646 (2) | Cs1-O12<br>$Cs1-O12^{iv}$ | 3.242 (6) |

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y + 2, -z + 1; (iii)  $x, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (iv)  $x, -y + \frac{5}{2}, z + \frac{1}{2}$ .

## Table 2

Hydrogen-bond geometry (Å,  $^\circ).$ 

| $D - H \cdots A$                                                                | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $\begin{array}{c} O1W-H11W\cdots O13^{ii}\\ O1W-H12W\cdots O12^{v} \end{array}$ | 0.97 | 1.70                    | 2.638 (8)    | 161                                  |
|                                                                                 | 0.84 | 2.40                    | 3.191 (8)    | 158                                  |

Symmetry codes: (ii) -x + 2, -y + 2, -z + 1; (v) -x + 2, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 2012); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2781).

#### References

- Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Levitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. & Moyer, B. A. (2000). J. Am. Chem. Soc. **122**, 554–562.
- O'Neil, M. J. (2001). Editor. *The Merck Index*, 13th ed., p. 360. Whitehouse Station, NJ, USA: Merck & Co. Inc.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. (2013). Acta Cryst. E69, m22-m23.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- White, A. H., Raston, C. L., Kennard, C. H. L. & Smith, G. (1979). Cryst. Struct. Commun. 8, 63–67.

# supporting information

Acta Cryst. (2013). E69, m628 [doi:10.1107/S1600536813029395]

# Poly[ $\mu$ -aqua- $\mu_5$ -[2-(2,3,6-trichlorophenyl)acetato]-caesium]

## **Graham Smith**

### S1. Comment

(2,3,6-Trichlorophenyl)acetic acid (fenac) is a commercial herbicide (O'Neil, 2001) and its crystal structure (White *et al.*, 1979) represents the only entry for this compound in the crystallographic literature. My interest in aromatic carboxylic acid herbicides and in polymeric coordination structures of the alkali metal complexes led to the preparation of the title compound,  $[Cs(C_8H_4Cl_3O_2)(H_2O)]_n$ , from the reaction of fenac with caesium hydroxide in aqueous ethanol, and the structure is reported herein.

In this structure (Fig. 1), the irregular eight-coordinate CsClO<sub>7</sub> polyhedron comprises a bidentate *O*:*Cl*-chelate interaction involving a carboxylate O-atom (O13) and an *ortho*-related ring substituted Cl-atom (Cl6) which is also bridging, a triple-bridging carboxylate O-atom (O12) and a bridging water molecule O1W (Table 1). A partial expansion of the asymmetric unit in the polymer structure is shown in Fig. 2, forming 4-, 7- and 8-membered cyclic associations linking Cs<sup>+</sup> ions (a triple bridge involving Cl6, O1W and O12<sup>iii</sup>, extending down *b*). The minimum Cs···Cs<sup>vi</sup> bridging distance in the structure is 4.4336 (9) Å [for symmetry code (i), see Table 1. For code (vi): -*x* + 2, *y* + 1/2, -*z* + 3/2]. In the Cl bridge, the Cs—Cl bond lengths [3.646 (2) and 3.711 (2) Å] are long compared to those commonly present in the few known examples of caesium complexes having coordinating carbon-bound Cl atoms, *e.g.* 3.46–3.56 Å for a complex in which 1,2-dichloroethane acts as a bidentate chelate ligand (Levitskaia *et al.*, 2000). However, I have previously reported values similar to those in the title complex in the analogous polymeric structure of caesium 4-amino-3,5,6-trichloro-pyridine-2-carboxylate monohydrate [3.6052 (11)– 3.7151 (11) Å], in which all three ring-substituted Cl-atoms are coordinated (Smith, 2013).

In the crystal structure of the title complex, a polymer with a sheet structure is generated which lies parallel to (100) (Fig. 3), and within which there are  $_{water}O$ —H···O<sub>carboxylate</sub> hydrogen-bonding interactions (Table 2).

#### **S2. Experimental**

The title compound was synthesized by heating together under reflux for 10 minutes, 0.5 mmol of (2,3,6-trichlorophenyl)acetic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave thin colourless crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.

#### **S3. Refinement**

Carbon-bound hydrogen atoms were placed in calculated positions [aromatic C—H = 0.93 Å and methylene C—H = 0.97 Å] and allowed to ride in the refinement, with  $U_{iso}(H) = 1.2U_{eq}(C)$ . Hydrogen atoms of the coordinating water molecule were located in a difference-Fourier synthesis but were subsequently allowed to ride, with  $U_{iso}(H) = 1.5U_{eq}(O)$ . A large maximum residual electron density peak was present (2.176 e<sup>-</sup> Å<sup>-3</sup>) located at 0.82 Å from Cs1. A short O1W···O1W<sup>ii</sup> non-bonding contact [2.804 (8) Å] across an inversion centre was also found.



## Figure 1

The molecular configuration and atom-numbering scheme for the title compound, with non-H atoms drawn as 40% probability displacement ellipsoids. [For symmetry codes, see Table 1.]



#### Figure 2

A partial expansion of the Cs<sup>+</sup> coordination in the polymer generated by cyclic links through carboxylate, chlorine and water bridges. Ligand H-atoms are omitted. [For symmetry code (vi): -x + 2, y + 1/2, -z + 3/2. For other codes, see Fig. 1 and Table 1.]



## Figure 3

The packing of the sheet structure in the unit cell viewed down b.

#### Poly[µ-aqua-µ<sub>5</sub>-[2-(2,3,6-trichlorophenyl)acetato]-caesium]

Crystal data

 $[Cs(C_8H_4Cl_3O_2)(H_2O)]$   $M_r = 389.39$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 17.0606 (12) Å b = 4.9834 (3) Å c = 13.9283 (10) Å  $\beta = 98.127 (6)^{\circ}$   $V = 1172.29 (14) \text{ Å}^3$ Z = 4

### Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator F(000) = 736  $D_x = 2.206 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2248 reflections  $\theta = 3.3-28.0^{\circ}$   $\mu = 3.82 \text{ mm}^{-1}$  T = 200 KPlate, colourless  $0.20 \times 0.15 \times 0.07 \text{ mm}$ 

Detector resolution: 16.077 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012)

| $T_{\min} = 0.582, \ T_{\max} = 0.980$ | $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 3.4^\circ$ |
|----------------------------------------|-----------------------------------------------------------------|
| 7585 measured reflections              | $h = -20 \rightarrow 21$                                        |
| 2284 independent reflections           | $k = -6 \rightarrow 6$                                          |
| 1873 reflections with $I > 2\sigma(I)$ | $l = -17 \rightarrow 12$                                        |
| $R_{\rm int} = 0.034$                  |                                                                 |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.050$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.111$                               | neighbouring sites                                         |
| <i>S</i> = 1.09                                 | H-atom parameters constrained                              |
| 2284 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 9.056P]$           |
| 136 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                     |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 2.18 \text{ e} \text{ Å}^{-3}$    |
| direct methods                                  | $\Delta \rho_{\rm min} = -1.86 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|-------------|--------------|-----------------------------|
| Cs1  | 0.91683 (3)  | 1.08611 (9) | 0.65098 (4)  | 0.0524 (2)                  |
| Cl2  | 0.66412 (12) | 1.1809 (4)  | 0.23490 (12) | 0.0501 (6)                  |
| C13  | 0.53476 (12) | 1.4225 (4)  | 0.34892 (17) | 0.0616 (8)                  |
| C16  | 0.76993 (11) | 0.5765 (4)  | 0.54801 (14) | 0.0508 (6)                  |
| O1W  | 1.0140 (3)   | 0.5882 (12) | 0.5977 (4)   | 0.065 (2)                   |
| O12  | 0.8947 (3)   | 0.8961 (12) | 0.2855 (4)   | 0.0529 (19)                 |
| O13  | 0.8658 (3)   | 1.0892 (13) | 0.4175 (5)   | 0.072 (2)                   |
| C1   | 0.7124 (3)   | 0.8850 (12) | 0.3931 (4)   | 0.0274 (17)                 |
| C2   | 0.6586 (4)   | 1.0773 (13) | 0.3521 (4)   | 0.0326 (19)                 |
| C3   | 0.6013 (4)   | 1.1852 (14) | 0.4022 (5)   | 0.0367 (19)                 |
| C4   | 0.5961 (4)   | 1.1051 (15) | 0.4948 (5)   | 0.040 (2)                   |
| C5   | 0.6479 (4)   | 0.9137 (15) | 0.5385 (5)   | 0.039 (2)                   |
| C6   | 0.7052 (4)   | 0.8101 (13) | 0.4877 (5)   | 0.0322 (19)                 |
| C11  | 0.7748 (4)   | 0.7685 (14) | 0.3401 (5)   | 0.036 (2)                   |
| C12  | 0.8505 (4)   | 0.9352 (12) | 0.3479 (4)   | 0.0307 (19)                 |
| H4   | 0.55790      | 1.17900     | 0.52840      | 0.0480*                     |
| Н5   | 0.64430      | 0.85520     | 0.60120      | 0.0470*                     |
| H11A | 0.75320      | 0.75000     | 0.27210      | 0.0430*                     |
| H11B | 0.78800      | 0.59030     | 0.36530      | 0.0430*                     |
| H11W | 1.06400      | 0.68180     | 0.60200      | 0.0970*                     |
| H12W | 1.02500      | 0.45100     | 0.63200      | 0.0970*                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

# supporting information

| 1711        |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                                                      |                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| $U^{\mu}$   | $U^{22}$                                                                                                                                                                                                                                             | $U^{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $U^{12}$                                             | $U^{13}$                                             | $U^{23}$                                             |
| 0.0581 (3)  | 0.0302 (3)                                                                                                                                                                                                                                           | 0.0667 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0028 (2)                                          | 0.0012 (2)                                           | 0.0010 (2)                                           |
| 0.0655 (12) | 0.0500 (11)                                                                                                                                                                                                                                          | 0.0322 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0108 (9)                                          | -0.0020 (8)                                          | 0.0071 (8)                                           |
| 0.0487 (12) | 0.0503 (12)                                                                                                                                                                                                                                          | 0.0787 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0179 (9)                                           | -0.0157 (10)                                         | -0.0073 (11)                                         |
| 0.0477 (11) | 0.0492 (11)                                                                                                                                                                                                                                          | 0.0530 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0041 (9)                                           | -0.0016 (8)                                          | 0.0152 (9)                                           |
| 0.067 (4)   | 0.073 (4)                                                                                                                                                                                                                                            | 0.061 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.041 (3)                                           | 0.031 (3)                                            | -0.027 (3)                                           |
| 0.039 (3)   | 0.075 (4)                                                                                                                                                                                                                                            | 0.049 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.016 (3)                                           | 0.021 (2)                                            | -0.026 (3)                                           |
| 0.061 (4)   | 0.081 (4)                                                                                                                                                                                                                                            | 0.083 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.042 (3)                                           | 0.041 (3)                                            | -0.050 (4)                                           |
| 0.025 (3)   | 0.026 (3)                                                                                                                                                                                                                                            | 0.031 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.006 (3)                                           | 0.003 (2)                                            | -0.004 (3)                                           |
| 0.035 (4)   | 0.032 (3)                                                                                                                                                                                                                                            | 0.029 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.011 (3)                                           | -0.002 (3)                                           | -0.004 (3)                                           |
| 0.022 (3)   | 0.034 (3)                                                                                                                                                                                                                                            | 0.051 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003 (3)                                            | -0.006 (3)                                           | -0.011 (3)                                           |
| 0.032 (4)   | 0.051 (4)                                                                                                                                                                                                                                            | 0.039 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.001 (3)                                           | 0.011 (3)                                            | -0.017 (3)                                           |
| 0.042 (4)   | 0.047 (4)                                                                                                                                                                                                                                            | 0.030 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.009 (3)                                           | 0.013 (3)                                            | -0.005 (3)                                           |
| 0.025 (3)   | 0.030 (3)                                                                                                                                                                                                                                            | 0.039 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.002 (3)                                           | -0.004 (3)                                           | -0.003 (3)                                           |
| 0.035 (4)   | 0.035 (4)                                                                                                                                                                                                                                            | 0.038 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.003 (3)                                           | 0.010 (3)                                            | -0.010 (3)                                           |
| 0.038 (4)   | 0.026 (3)                                                                                                                                                                                                                                            | 0.029 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001 (3)                                            | 0.008 (3)                                            | -0.005 (3)                                           |
|             | $\begin{array}{c} 0.0581 \ (3) \\ 0.0655 \ (12) \\ 0.0487 \ (12) \\ 0.0477 \ (11) \\ 0.067 \ (4) \\ 0.039 \ (3) \\ 0.061 \ (4) \\ 0.025 \ (3) \\ 0.035 \ (4) \\ 0.042 \ (4) \\ 0.025 \ (3) \\ 0.035 \ (4) \\ 0.035 \ (4) \\ 0.038 \ (4) \end{array}$ | $\begin{array}{cccccc} 0.0581 \ (3) & 0.0302 \ (3) \\ 0.0655 \ (12) & 0.0500 \ (11) \\ 0.0487 \ (12) & 0.0503 \ (12) \\ 0.0477 \ (11) & 0.0492 \ (11) \\ 0.067 \ (4) & 0.073 \ (4) \\ 0.039 \ (3) & 0.075 \ (4) \\ 0.061 \ (4) & 0.081 \ (4) \\ 0.025 \ (3) & 0.026 \ (3) \\ 0.035 \ (4) & 0.032 \ (3) \\ 0.032 \ (4) & 0.051 \ (4) \\ 0.042 \ (4) & 0.047 \ (4) \\ 0.025 \ (3) & 0.030 \ (3) \\ 0.035 \ (4) & 0.035 \ (4) \\ 0.038 \ (4) & 0.026 \ (3) \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Atomic displacement parameters  $(Å^2)$ 

## Geometric parameters (Å, °)

| Cs1—Cl6                    | 3.711 (2)   | O1W—H12W                                  | 0.8400      |  |
|----------------------------|-------------|-------------------------------------------|-------------|--|
| Cs1—O1W                    | 3.131 (6)   | C1—C2                                     | 1.392 (9)   |  |
| Cs1—013                    | 3.246 (7)   | C1—C11                                    | 1.496 (9)   |  |
| Cs1—Cl6 <sup>i</sup>       | 3.646 (2)   | C1—C6                                     | 1.392 (9)   |  |
| Cs1—O1W <sup>i</sup>       | 3.148 (6)   | C2—C3                                     | 1.387 (9)   |  |
| Cs1—O12 <sup>ii</sup>      | 3.213 (5)   | C3—C4                                     | 1.365 (10)  |  |
| Cs1—O12 <sup>iii</sup>     | 3.103 (6)   | C4—C5                                     | 1.382 (10)  |  |
| Cs1—O12 <sup>iv</sup>      | 3.242 (6)   | C5—C6                                     | 1.385 (10)  |  |
| Cl2—C2                     | 1.727 (6)   | C11—C12                                   | 1.527 (10)  |  |
| Cl3—C3                     | 1.732 (7)   | C4—H4                                     | 0.9300      |  |
| Cl6—C6                     | 1.737 (7)   | С5—Н5                                     | 0.9300      |  |
| O12—C12                    | 1.244 (8)   | C11—H11A                                  | 0.9700      |  |
| O13—C12                    | 1.235 (9)   | C11—H11B                                  | 0.9700      |  |
| O1W—H11W                   | 0.9700      |                                           |             |  |
|                            |             |                                           |             |  |
| Cl6—Cs1—O1W                | 73.58 (10)  | Cs1 <sup>ii</sup> —O12—Cs1 <sup>vi</sup>  | 89.15 (14)  |  |
| Cl6—Cs1—O13                | 62.95 (11)  | Cs1 <sup>ii</sup> —O12—Cs1 <sup>vii</sup> | 86.76 (13)  |  |
| Cl6—Cs1—Cl6 <sup>i</sup>   | 85.27 (4)   | Cs1 <sup>vi</sup> —O12—Cs1 <sup>vii</sup> | 103.50 (16) |  |
| Cl6—Cs1—O1W <sup>i</sup>   | 143.35 (11) | Cs1—O13—C12                               | 141.3 (5)   |  |
| Cl6—Cs1—O12 <sup>ii</sup>  | 136.07 (11) | Cs1—O1W—H12W                              | 126.00      |  |
| Cl6—Cs1—O12 <sup>iii</sup> | 64.54 (11)  | H11W—O1W—H12W                             | 103.00      |  |
| Cl6—Cs1—O12 <sup>iv</sup>  | 129.83 (10) | Cs1—O1W—H11W                              | 95.00       |  |
| 01W—Cs1—013                | 80.93 (15)  | Cs1 <sup>v</sup> —O1W—H11W                | 149.00      |  |
| Cl6 <sup>i</sup> —Cs1—O1W  | 142.70 (11) | C2-C1-C11                                 | 122.6 (5)   |  |
| O1W-Cs1-O1W <sup>i</sup>   | 105.07 (14) | C6-C1-C11                                 | 121.8 (5)   |  |
| O1W—Cs1—O12 <sup>ii</sup>  | 62.90 (14)  | C2—C1—C6                                  | 115.6 (5)   |  |
| O1W-Cs1-O12 <sup>iii</sup> | 69.09 (14)  | Cl2—C2—C1                                 | 118.2 (5)   |  |

| O1W—Cs1—O12 <sup>iv</sup>                                                                                                                                                               | 151.22 (14)            | Cl2—C2—C3                                | 119.7 (5)            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|----------------------|
| Cl6 <sup>i</sup> —Cs1—O13                                                                                                                                                               | 62.00 (11)             | C1—C2—C3                                 | 122.1 (5)            |
| O1W <sup>i</sup> —Cs1—O13                                                                                                                                                               | 80.54 (15)             | C2—C3—C4                                 | 120.4 (6)            |
| O12 <sup>ii</sup> —Cs1—O13                                                                                                                                                              | 113.08 (14)            | Cl3—C3—C4                                | 118.6 (5)            |
| O12 <sup>iii</sup> —Cs1—O13                                                                                                                                                             | 124.78 (15)            | Cl3—C3—C2                                | 121.0 (5)            |
| $O12^{iv}$ —Cs1—O13                                                                                                                                                                     | 122.59 (15)            | C3—C4—C5                                 | 119.7 (6)            |
| $Cl6^{i}$ — $Cs1$ — $OlW^{i}$                                                                                                                                                           | 74.34 (10)             | C4—C5—C6                                 | 119.1 (6)            |
| $Cl6^{i}$ — $Cs1$ — $Ol2^{ii}$                                                                                                                                                          | 134.05 (11)            | C16—C6—C5                                | 116.7 (5)            |
| $Cl6^{i}$ — $Cs1$ — $O12^{iii}$                                                                                                                                                         | 128 39 (10)            | C1 - C6 - C5                             | 123.2 (6)            |
| $Cl6^{i}$ — $Cs1$ — $O12^{iv}$                                                                                                                                                          | 64.16 (10)             | Cl6—C6—C1                                | 120.2(5)             |
| $01W^{i}$ Cs1 012 <sup>ii</sup>                                                                                                                                                         | 60 21 (14)             | C1 - C11 - C12                           | 1141(5)              |
| $01W^{i}$ Cs1 $012^{iii}$                                                                                                                                                               | 15059(14)              | 012 - C12 - C11                          | 117.1 (6)            |
| $01W^{i}$ Cs1 012                                                                                                                                                                       | 67 16 (14)             | 012 - 012 - 011                          | 117.1(0)<br>118.5(6) |
| $012^{ii}$ $Cs1 - 012^{iii}$                                                                                                                                                            | 93 30 (14)             | 012 - 012 011                            | 1243(7)              |
| $012^{ii}$ $Cs1$ $012^{iv}$                                                                                                                                                             | 90.73 (14)             | $C_3 - C_4 - H_4$                        | 124.5 (7)            |
| $012^{iii}$ $012^{iii}$ $012^{iv}$                                                                                                                                                      | 103.50(15)             | $C_{5}$ $C_{4}$ $H_{4}$                  | 120.00               |
| $C_{s1} = C_{s1} = C_{s1}$                                                                                                                                                              | 04.4(2)                | $C_4$ $C_5$ $H_5$                        | 120.00               |
| $C_{s1}$ $C_{l6}$ $C_{s1}^{v}$                                                                                                                                                          | 94.4 (2)<br>85.27 (4)  | C4-C5-H5                                 | 120.00               |
| $C_{S1}$ $C_{10}$ $C_{16}$ $C_{6}$                                                                                                                                                      | 0.5.27(4)              | $C_1 = C_1 = H_{11A}$                    | 120.00               |
| $C_{s1} = C_{10} = C_{0}$                                                                                                                                                               | 1/5.7(2)               |                                          | 109.00               |
| $C_{S1} = O_1 W = C_{S1}$                                                                                                                                                               | 103.07(13)<br>110.0(4) |                                          | 109.00               |
| $Cs1^{ii}$ $O12$ $C12$                                                                                                                                                                  | 119.0 (4)              | C12—C11—HIIA                             | 109.00               |
| $C_{S1} = 012 = C_{12}$                                                                                                                                                                 | 132.9 (4)              |                                          | 109.00               |
| Cs1 <sup>···</sup> 012C12                                                                                                                                                               | 114.3 (4)              | HIIA—CII—HIIB                            | 108.00               |
| $O_1W$ Cs1 Cl6 C6                                                                                                                                                                       | -1426(3)               | $O1W$ Cs1 $O12^{iii}$ C12 <sup>iii</sup> | -1723(6)             |
| $O1W C_{s1} C_{l6} C_{s1}$                                                                                                                                                              | 142.0(3)               | $013$ Cs1 $012^{iii}$ Cs1                | 172.3(0)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                    | -54.6(3)               | 013 - 012 - 012 - 012                    | -1104(6)             |
| 013 - 013 - 010 - 00                                                                                                                                                                    | 110 12 (12)            | $C_{15} = C_{11} = C_{12} = C_{12}$      | -112.05(12)          |
| $C16^{i}$ $C_{21}$ $C16$ $C6$                                                                                                                                                           | (12)                   | $C_{10} = C_{51} = O_{12} = C_{51}$      | 112.03(13)           |
| $C_{10} = C_{10} = C_{10} = C_{10}$                                                                                                                                                     | (2)                    | $C_{10} = C_{11} = C_{12} = C_{12}$      | 139.00(3)            |
| C10 - Cs1 - C10 - Cs1                                                                                                                                                                   | 100.00(3)              | $C_{10}$ $C_{21}$ $C_{12}$ $C_{12}$      | 39.1(3)              |
| $O1W_{i} = Cs1 = C16 = Co1v$                                                                                                                                                            | -49.3(3)               | O1W = Cs1 = O12 = Cs1                    | 109.0(3)             |
| $O12^{\text{ii}}$ $C_{2}1$ $C16$ $C6$                                                                                                                                                   | 124.40(17)<br>150.5(2) | O1W = Cs1 = O12iv = Cs1 = O12iv          | 20.7(3)              |
| O12 - Cs1 - Cl0 - C0                                                                                                                                                                    | -130.3(3)              | O12 $Ca1$ $O12iv$ $Ca1i$                 | -99.8(3)             |
| $O12^{\text{cm}}$ $Cs1$ $Clo$ $Cs1$                                                                                                                                                     | 25.15(10)              | $013 - Cs1 - 012^{\circ} - Cs1^{\circ}$  | -31.8(2)             |
| $012^{$                                                                                                                                                                                 | 143.2(3)               | $013 - 012 - 012^{11} - 012^{11}$        | -120.17(14)          |
| $O12^{\text{III}}$ $O12^{\text{IIII}}$ $O12^{\text{IIII}}$ $O12^{\text{IIII}}$ $O12^{\text{IIII}}$ $O12^{\text{IIIII}}$ $O12^{\text{IIIII}}$ $O12^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$ | -43.13(11)             | $013 - 012^{\circ} - 012^{\circ}$        | 119.5 (4)            |
| $O12^{ii}$ $Cs1$ $Cl6$ $Cs1x$                                                                                                                                                           | 50.0(3)                |                                          | 89.9 (5)             |
| $O12^{N}$ — $Cs1$ — $C16$ — $Cs1^{V}$                                                                                                                                                   | -129.68(13)            | $C_{S1}$ — $C_{10}$ — $C_{0}$ — $C_{5}$  | -90.0 (5)            |
| $C16 - Cs1 - O1W - Cs1^{\vee}$                                                                                                                                                          | -38.11 (11)            | $C_{s1} = 012 = 012$                     | 153.4 (5)            |
| $OI3 - CsI - OIW - CsI^{\vee}$                                                                                                                                                          | -102.44 (17)           | $C_{s1} = 012 = 012 = 013$               | -66.4 (8)            |
| $Cl6^{-}$ $Cs1$ $-OlW$ $-Cs1^{\vee}$                                                                                                                                                    | -96.19 (19)            | Cs1 <sup>#</sup> —O12—C12—C11            | -142.5 (5)           |
| $O1W^{1}$ — $Cs1$ — $O1W$ — $Cs1^{v}$                                                                                                                                                   | 180.00 (15)            | $Cs1^{v_1}$ —012—C12—C11                 | -23.0 (9)            |
| $O12^{n}$ — $Cs1$ — $O1W$ — $Cs1^{v}$                                                                                                                                                   | 135.7 (2)              | Cs1 <sup>vii</sup> —O12—C12—C11          | 117.2 (5)            |
| O12 <sup>m</sup> —Cs1—O1W—Cs1 <sup>v</sup>                                                                                                                                              | 30.36 (15)             | Cs1 <sup>n</sup> —O12—C12—O13            | 33.9 (9)             |
| $O12^{iv}$ —Cs1—O1W—Cs1 <sup>v</sup>                                                                                                                                                    | 110.2 (3)              | Cs1—O13—C12—O12                          | -107.6 (8)           |
| Cl6—Cs1—O13—C12                                                                                                                                                                         | -395(7)                | $C_{1} = 013 = C_{12} = C_{11}$          | 68 8 (9)             |
|                                                                                                                                                                                         | 55.5 (1)               | 015 012 011                              | 00.0 ())             |
| O1W—Cs1—O13—C12                                                                                                                                                                         | 36.7 (7)               | C6-C1-C2-C3                              | -0.5(9)              |

| $\begin{array}{c} 01W^{i} - Cs1 - 013 - C12 \\ 012^{ii} - Cs1 - 013 - C12 \\ 012^{iii} - Cs1 - 013 - C12 \\ 012^{iv} - Cs1 - 013 - C12 \\ C16 - Cs1 - C16^{i} - Cs1^{i} \\ 01W - Cs1 - C16^{i} - Cs1^{i} \\ 013 - Cs1 - C16^{i} - Cs1^{i} \\ C16 - Cs1 - 01W^{i} - Cs1^{i} \\ 01W - Cs1 - 01W^{i} - Cs1^{i} \\ 01W - Cs1 - 01W^{i} - Cs1^{i} \\ 013 - Cs1 - 01W^{i} - Cs1^{i} \\ 013 - Cs1 - 01W^{i} - Cs1^{i} \\ \end{array}$ | 143.7 (7)<br>92.0 (7)<br>-19.9 (8)<br>-161.3 (7)<br>180.00 (4)<br>-125.21 (17)<br>-118.22 (12)<br>97.39 (19)<br>179.98 (16)<br>102.15 (17) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                  | $179.8 (5) \\ -178.8 (5) \\ 1.1 (9) \\ -179.6 (6) \\ 0.3 (9) \\ -179.8 (6) \\ 85.3 (7) \\ -93.7 (7) \\ 0.2 (8) \\ 179.9 (6) $ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} Cl6Cs1O12^{ii}C12^{ii}\\ O1WCs1O12^{ii}Cs1^{viii}\\ O1WCs1O12^{ii}C12^{ii}\\ O13Cs1O12^{ii}Cs1^{viii}\\ O13Cs1O12^{ii}Cs1^{vi}\\ Cl6Cs1O12^{iii}Cs1^{v}\\ Cl6Cs1O12^{iii}Cs1^{v}\\ O1WCs1O12^{iii}Cs1^{v}\\ \end{array}$                                                                                                                                                                                     | 62.1 (5)<br>-166.04 (19)<br>53.6 (5)<br>128.20 (15)<br>-12.2 (5)<br>52.02 (11)<br>-91.1 (6)<br>-29.16 (14)                                 | C1-C2-C3-C4 $C2-C3-C4-C5$ $C13-C3-C4-C5$ $C3-C4-C5-C6$ $C4-C5-C6-C16$ $C4-C5-C6-C1$ $C1-C11-C12-O12$ $C1-C11-C12-O13$ | 0.2 (10)<br>-0.5 (11)<br>179.2 (6)<br>1.1 (11)<br>178.4 (6)<br>-1.5 (11)<br>-160.0 (6)<br>23.4 (9)                            |

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+2, -*y*+2, -*z*+1; (iii) *x*, -*y*+3/2, *z*+1/2; (iv) *x*, -*y*+5/2, *z*+1/2; (v) *x*, *y*-1, *z*; (vi) *x*, -*y*+3/2, *z*-1/2; (vii) *x*, -*y*+5/2, *z*-1/2; (viii) -*x*+2, *y*+1/2, -*z*+3/2.

Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>                        | D—H  | H···A | D····A    | D—H··· $A$ |  |
|------------------------------------------------|------|-------|-----------|------------|--|
| O1 <i>W</i> —H11 <i>W</i> …O13 <sup>ii</sup>   | 0.97 | 1.70  | 2.638 (8) | 161        |  |
| O1 <i>W</i> —H12 <i>W</i> ···O12 <sup>ix</sup> | 0.84 | 2.40  | 3.191 (8) | 158        |  |
| C11—H11A····Cl2                                | 0.97 | 2.64  | 3.026 (7) | 104        |  |
| C11—H11 <i>B</i> ···Cl6                        | 0.97 | 2.61  | 3.062 (7) | 109        |  |

Symmetry codes: (ii) -x+2, -y+2, -z+1; (ix) -x+2, -y+1, -z+1.