organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

13-(Imidazol-1-yl)-11,13-dihydromelampomagnolide B monohydrate

Venumadhav Janganati,^a Narsimha Reddy Penthala,^a Sean Parkin^b and Peter A. Crooks^a*

^aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and ^bDepartment of Chemistry, University of Kentucky, Lexington KY 40506, USA Correspondence e-mail: pacrooks@uams.edu

Received 22 October 2013; accepted 23 October 2013

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.002 Å; R factor = 0.024; wR factor = 0.061; data-to-parameter ratio = 10.4.

The title compound, $C_{18}H_{24}N_2O_4 \cdot H_2O$ {systematic name: (1aR,7aS,8R,10aS,10bS,E)-5-hydroxymethyl-8-[(1H-imidazol-1-yl)methyl]-1a-methyl-2,3,6,7,7a,8,10a,10b-octahydro oxireno[2',3':9,10]cyclodeca[1,2-b]furan-9(1aH)-one monohydrate}, an imidazole derivative of melampomagnolide B was synthesized under Michael addition conditions. The molecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings. The internal double bond of the ten-membered ring identifies it as the *cis* or *E* isomer. The lactone ring has an envelope-type conformation, with the (chiral) C atom opposite the lactone O atoms as the flap atom. In the crystal, $O-H\cdots O$, $O-H\cdots N$ and weak $C-H\cdots O$ hydrogen bonds link the molecules (along with water) into sheets parallel to the *bc* plane.

Related literature

For the biological activity of similar compounds, see: El-Feraly (1984); Macias *et al.* (1992); Nasim *et al.* (2011); Nasim & Crooks (2008). For the structures of similar compounds, see; Neelakantan *et al.* (2009); Woods *et al.* (2011); Neukirch *et al.* (2003); Gonzalez *et al.* (1988).

Experimental

Crystal data

N

a

h

$_{18}H_{24}N_2O_4 \cdot H_2O_4$
$M_r = 350.41$
Aonoclinic, P2 ₁
a = 9.8073 (2) Å
e = 8.2784 (1) Å
= 10.7741 (2) Å
$B = 95.015 (1)^{\circ}$

Data collection

Bruker X8 Proteum diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008*a*) $T_{min} = 0.836, T_{max} = 0.942$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.061$	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$
S = 1.04	Absolute structure: Flack
2437 reflections	parameter determined using 747
235 parameters	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
1 restraint	(Parsons et al., 2013)
H atoms treated by a mixture of	Absolute structure parameter:
independent and constrained	-0.03 (5)
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H4\cdots N2^{i}$	0.84	1.93	2.7491 (17)	164
$C13-H13B\cdots O1W^{ii}$	0.99	2.45	3.388 (2)	157
$C15-H15B\cdots O3^{iii}$	0.98	2.55	3.282 (2)	131
$C16-H16A\cdots O1W^{iv}$	0.95	2.44	3.370 (2)	167
$C17 - H17A \cdots O3^{v}$	0.95	2.54	3.377 (2)	147
$C18-H18A\cdotsO1^{v}$	0.95	2.57	3.5016 (19)	167
$O1W - H1W \cdot \cdot \cdot O4$	0.87 (3)	1.93 (3)	2.7928 (17)	173 (3)
$O1W-H2W\cdots O3^{vi}$	0.85 (3)	2.14 (3)	2.9534 (19)	162 (2)
Symmetry codes: (i) $-x + 2, y + \frac{1}{2}, -z + 1;$ (iv)	-x + 1, y - x + 1; (y - x) = 0	$+\frac{1}{2}, -z + 1;$) x, y - 1, z; (v	(ii) $-x + 1, y - x + 1, y - 1$	$-\frac{1}{2}, -z;$ (iii)

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008b); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008b); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008b); software used to prepare material for publication: *SHELXL2013*.

This work was supported by NIH/NCI grant CA158275.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5362).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-Feraly, F. S. (1984). Phytochemistry, 23, 2372-2374.
- Gonzalez, A. G., Galindo, A., Mar Afonso, M., Mansilla, H. & Lopez, M. (1988). *Tetrahedron*, **44**, 4585–4589.
- Macias, F. A., Galindo, J. C. G. & Massanet, G. M. (1992). *Phytochemistry*, 31, 1969–1977.
- Nasim, S. & Crooks, P. A. (2008). Bioorg. Med. Chem. Lett. 18, 3870-3873.

Nasim, S., Pei, S. S., Hagan, F. K., Jordan, C. T. & Crooks, P. A. (2011). Bioorg. Med. Chem. 19, 1515–1519.

V = 871.39 (3) Å³

Cu $K\alpha$ radiation $\mu = 0.80 \text{ mm}^{-1}$

 $0.25 \times 0.20 \times 0.04 \text{ mm}$

10767 measured reflections

2437 independent reflections

2425 reflections with $I > 2\sigma(I)$

Z = 2

T = 90 K

 $R_{\rm int} = 0.030$

- Neelakantan, S., Nasim, S., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.
- Neukirch, H., Guerriero, A. & Ambrosio, M. D. (2003). Eur. J. Org. Chem. pp. 3969-3975.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Woods, J. R., Mo, H., Bieberich, A. A., Alavanja, T. & Colby, D. A. (2011). J. Med. Chem. 54, 7934–7941.

supporting information

Acta Cryst. (2013). E69, o1734-o1735 [doi:10.1107/S1600536813029188]

13-(Imidazol-1-yl)-11,13-dihydromelampomagnolide B monohydrate

Venumadhav Janganati, Narsimha Reddy Penthala, Sean Parkin and Peter A. Crooks

S1. Comment

Melampomagnolide B (MMB) was derived from parthenolide (PTL) via selenium oxide mediated oxidation of the C10 methyl group of PTL (Macias *et al.*, 1992; Neukirch *et al.*, 2003). MMB is a melampolide originally isolated from *Magnolia grandiflora* and characterized by X-ray diffraction analysis (El-Feraly, 1984; Gonzalez *et al.*, 1988), and has been identified as a new anti-leukemic sesquiterpene with properties similar to PTL (Nasim *et al.*, 2011).

Recently, Nasim *et al.* (2008) reported formation of amino-parthenolide derivatives under Michael addition reaction conditions. These compounds showed more potency as antileukemic agents and improved water solubility relative to PTL. To further improve water solubility of melampomagnolide B, we synthesized an imidazole derivative by the reaction of MMB with imidazole via Michael addition chemistry (Neelakantan *et al.*, 2009; Woods *et al.*, 2011) to afford the title compound, which was re-crystallized from chloroform.

To obtain detailed information on the structural conformation of this molecule, establish the geometry of the double bond (C9=C10) and orientation of the imidazole moiety, a single-crystal X-ray structure determination has been carried out. This has revealed that the double bond of the title compound has the *E*-geometry. In the crystal, intermolecular O—H···O, O—H···N and weak C—H···O hydrogen bonds link the molecules (along with water) into sheets parallel to the *bc*-plane.

S2. Experimental

To a solution of MMB (50 mg, 0.189 m mol) in methanol, was added imidazole (19.31 mg, 0.284 m mol). The reaction mixture was stirred at ambient temperature for 24 h. After completion of the reaction (monitored by thin-layer chromatography), the reaction mixture was dissolved in dichloromethane. The organic layer was separated, washed with water, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford the crude product. The crude compound was recrystallized from chloroform to obtain the title compound as colorless crystals (56 mg, yield: 89%). Melting point 398-399°K. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H), 7.10 (s, 1H), 7.01 (s, 1H), 5.55 (t, *J*=8Hz, 1H), 4.48 (dd, *J*=14.4 Hz, 1H), 4.32 (dd, *J*=14.8, 1H), 3.93 (s, 2H), 3.89(t, *J*=9.6Hz, 1H), 2.68 (d, *J*=9.2 Hz, 2H), 2.34-1.90 (m, 11H), 1.88-1.53 (m, 3H), 1.04 (t, *J*=9.6 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 174.9, 139.1, 138.0, 130.3, 126.8, 119.4, 81.2, 65.2, 62.5, 60.3, 48.4, 43.8, 41.6, 36.7, 26.9, 24.6, 23.4, 17.9 ppm.

S3. Refinement

H atoms were found in difference Fourier maps and subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH₃), 0.99 Å (R₂CH₂), 1.00 Å (R₃CH), 0.95 Å (C_{sp2}H). Water hydrogen coordinates were refined. U_{iso}(H) values were set to either $1.2U_{eq}$ or $1.5U_{eq}$ (RCH₃, OH) of the attached atom.

The title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

(1a*R*,7a*S*,8*R*,10a*S*,10b*S*,*E*)-5-Hydroxymethyl-8-[(1*H*-imidazol-1-yl)methyl]-1a-methyl-2,3,6,7,7a,8,10a,10b-octahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-9(1a*H*)-one monohydrate

Crystal data

C₁₈H₂₄N₂O₄·H₂O $M_r = 350.41$ Monoclinic, P2₁ a = 9.8073 (2) Å b = 8.2784 (1) Å c = 10.7741 (2) Å $\beta = 95.015$ (1)° V = 871.39 (3) Å³ Z = 2

Data collection

Bruker X8 Proteum diffractometer Radiation source: fine-focus rotating anode Detector resolution: 5.6 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008*a*) $T_{\min} = 0.836, T_{\max} = 0.942$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ F(000) = 376 $D_x = 1.335 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9966 reflections $\theta = 4.1-68.1^{\circ}$ $\mu = 0.80 \text{ mm}^{-1}$ T = 90 KTablet, colourless $0.25 \times 0.20 \times 0.04 \text{ mm}$

10767 measured reflections 2437 independent reflections 2425 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 68.1^{\circ}, \theta_{min} = 4.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -9 \rightarrow 7$ $l = -12 \rightarrow 11$

 $wR(F^2) = 0.061$ S = 1.04 2437 reflections

235 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0332P)^2 + 0.170P]$	$\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ } SHELXL2013 \ ({\rm Sheldrick, \ 2008a}), \ {\rm Fc}^{*} = {\rm kFc}[1 + 0.001 {\rm xFc}^{2}\lambda^{3}/{\rm sin}(2\theta)]^{-1/4} \\ {\rm Extinction \ coefficient: \ 0.0090 \ (15)} \\ {\rm Absolute \ structure: \ Flack \ parameter \ determined \ using \ 747 \ quotients \ [(I^{+}) - (I^{-})]/[(I^{+}) + (I^{-})] \ ({\rm Parsons \ et \ al., \ 2013})} \\ {\rm Absolute \ structure \ parameter: \ -0.03 \ (5)} \end{array}$
$w = 1/[\sigma^2(F_o^2) + (0.0332P)^2 + 0.170P]$ where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure parameter: -0.03 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.63838 (13)	0.11358 (19)	0.56147 (12)	0.0159 (3)	
N2	0.61292 (14)	-0.0075 (2)	0.74068 (12)	0.0197 (3)	
01	0.92738 (12)	0.85603 (16)	0.33577 (10)	0.0183 (3)	
O2	0.83645 (12)	0.60393 (16)	0.51264 (9)	0.0185 (3)	
O3	0.71648 (13)	0.48872 (17)	0.65518 (10)	0.0221 (3)	
O4	0.47506 (11)	0.43708 (16)	0.02773 (10)	0.0179 (3)	
H4	0.4364	0.4648	0.0910	0.027*	
C1	0.71890 (15)	0.6089 (2)	0.02275 (13)	0.0161 (3)	
H1A	0.6293	0.6497	0.0017	0.019*	
C2	0.83497 (16)	0.7229 (2)	0.00040 (14)	0.0163 (3)	
H2A	0.8112	0.7803	-0.0791	0.020*	
H2B	0.9178	0.6576	-0.0099	0.020*	
C3	0.87106 (16)	0.8502 (2)	0.10296 (14)	0.0166 (4)	
H3A	0.9320	0.9330	0.0713	0.020*	
H3B	0.7864	0.9046	0.1245	0.020*	
C4	0.94124 (16)	0.7722 (2)	0.21808 (14)	0.0153 (3)	
C5	0.85016 (16)	0.7092 (2)	0.30889 (14)	0.0152 (3)	
H5A	0.7506	0.7274	0.2847	0.018*	
C6	0.87955 (16)	0.5643 (2)	0.38885 (14)	0.0152 (4)	
H6A	0.9790	0.5362	0.3940	0.018*	
C7	0.79086 (15)	0.4188 (2)	0.34526 (13)	0.0141 (3)	
H7A	0.7011	0.4603	0.3069	0.017*	
C8	0.85003 (16)	0.3049 (2)	0.25191 (14)	0.0165 (4)	
H8A	0.7947	0.2047	0.2465	0.020*	
H8B	0.9442	0.2750	0.2844	0.020*	
C9	0.85478 (15)	0.3742 (2)	0.11888 (14)	0.0164 (4)	
H9A	0.9322	0.4511	0.1193	0.020*	
H9B	0.8734	0.2847	0.0618	0.020*	
C10	0.72548 (15)	0.4597 (2)	0.06786 (13)	0.0147 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.76625 (16)	0.3373 (2)	0.46888 (14)	0.0153 (3)
H11A	0.8457	0.2653	0.4942	0.018*
C12	0.76819 (16)	0.4785 (2)	0.55787 (14)	0.0168 (3)
C13	0.63503 (16)	0.2376 (2)	0.46427 (14)	0.0179 (4)
H13A	0.5567	0.3107	0.4735	0.021*
H13B	0.6201	0.1848	0.3817	0.021*
C14	0.59851 (15)	0.3551 (2)	0.06538 (14)	0.0168 (4)
H14A	0.6089	0.2634	0.0080	0.020*
H14B	0.5918	0.3099	0.1497	0.020*
C15	1.08469 (16)	0.7115 (2)	0.20694 (15)	0.0181 (4)
H15A	1.1182	0.6563	0.2841	0.027*
H15B	1.1448	0.8029	0.1925	0.027*
H15C	1.0843	0.6358	0.1370	0.027*
C16	0.58471 (15)	0.1233 (2)	0.67287 (14)	0.0178 (4)
H16A	0.5334	0.2126	0.6989	0.021*
C17	0.68861 (16)	-0.1053 (2)	0.66946 (15)	0.0186 (4)
H17A	0.7239	-0.2084	0.6940	0.022*
C18	0.70535 (15)	-0.0320 (2)	0.55829 (14)	0.0167 (3)
H18A	0.7534	-0.0731	0.4923	0.020*
O1W	0.45357 (13)	0.47330 (19)	-0.23096 (12)	0.0248 (3)
H1W	0.458 (2)	0.470 (4)	-0.150 (2)	0.037*
H2W	0.534 (3)	0.492 (4)	-0.249 (2)	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0161 (6)	0.0167 (8)	0.0149 (6)	-0.0029 (6)	0.0018 (5)	0.0004 (6)
N2	0.0210 (7)	0.0198 (8)	0.0187 (6)	-0.0055 (6)	0.0036 (5)	0.0015 (6)
01	0.0228 (5)	0.0157 (7)	0.0168 (5)	-0.0042 (5)	0.0042 (4)	-0.0020 (5)
02	0.0261 (6)	0.0167 (7)	0.0131 (5)	-0.0028 (5)	0.0043 (4)	-0.0003 (5)
03	0.0317 (6)	0.0194 (7)	0.0163 (5)	0.0021 (6)	0.0088 (5)	0.0018 (5)
04	0.0141 (5)	0.0227 (7)	0.0170 (5)	0.0000 (5)	0.0021 (4)	-0.0003 (5)
C1	0.0143 (7)	0.0191 (9)	0.0149 (7)	0.0006 (7)	0.0003 (5)	-0.0004 (7)
C2	0.0173 (7)	0.0167 (9)	0.0147 (7)	0.0001 (7)	0.0005 (5)	0.0041 (7)
C3	0.0163 (7)	0.0151 (9)	0.0186 (7)	-0.0016 (7)	0.0022 (6)	0.0021 (7)
C4	0.0175 (7)	0.0134 (9)	0.0150 (7)	-0.0018 (6)	0.0014 (6)	-0.0012 (6)
C5	0.0161 (7)	0.0138 (9)	0.0157 (7)	0.0000 (7)	0.0022 (6)	-0.0008 (7)
C6	0.0161 (7)	0.0168 (10)	0.0130 (7)	0.0004 (6)	0.0031 (6)	0.0003 (6)
C7	0.0157 (7)	0.0130 (9)	0.0139 (7)	0.0004 (7)	0.0019 (5)	0.0019 (6)
C8	0.0185 (7)	0.0144 (9)	0.0166 (7)	0.0023 (7)	0.0016 (6)	0.0006 (7)
C9	0.0170 (7)	0.0172 (9)	0.0154 (7)	0.0014 (7)	0.0038 (6)	-0.0005 (7)
C10	0.0160 (7)	0.0174 (9)	0.0109 (6)	-0.0005 (7)	0.0021 (5)	-0.0018 (6)
C11	0.0171 (7)	0.0152 (9)	0.0135 (7)	0.0000 (7)	0.0012 (5)	0.0023 (6)
C12	0.0186 (7)	0.0159 (9)	0.0156 (7)	0.0002 (7)	-0.0008 (6)	0.0030 (6)
C13	0.0182 (7)	0.0188 (10)	0.0165 (7)	-0.0015 (7)	0.0001 (6)	0.0045 (7)
C14	0.0184 (7)	0.0157 (9)	0.0164 (7)	-0.0006 (7)	0.0019 (5)	0.0001 (7)
C15	0.0152 (7)	0.0223 (10)	0.0168 (7)	-0.0015 (7)	0.0006 (6)	0.0013 (7)
C16	0.0162 (7)	0.0190 (10)	0.0187 (7)	-0.0020 (7)	0.0044 (6)	-0.0017 (7)

supporting information

C17	0.0194 (7)	0.0144 (9)	0.0216 (8)	-0.0017 (7)	-0.0005 (6)	0.0009 (7)
C18	0.0174 (7)	0.0141 (9)	0.0186 (7)	-0.0012 (6)	0.0014 (6)	-0.0039 (7)
O1W	0.0252 (6)	0.0304 (8)	0.0190 (6)	0.0031 (6)	0.0024 (5)	0.0011 (6)

Geometric parameters (A, \circ)

N1—C16	1.354 (2)	C7—C8	1.529 (2)
N1	1.374 (2)	C7—C11	1.531 (2)
N1—C13	1.465 (2)	C7—H7A	1.0000
N2—C16	1.322 (2)	C8—C9	1.549 (2)
N2—C17	1.377 (2)	C8—H8A	0.9900
O1—C5	1.448 (2)	C8—H8B	0.9900
O1—C4	1.4623 (19)	C9—C10	1.513 (2)
O2—C12	1.350 (2)	С9—Н9А	0.9900
O2—C6	1.4709 (18)	С9—Н9В	0.9900
O3—C12	1.207 (2)	C10—C14	1.515 (2)
O4—C14	1.416 (2)	C11—C12	1.511 (2)
O4—H4	0.8400	C11—C13	1.526 (2)
C1—C10	1.327 (3)	C11—H11A	1.0000
C1—C2	1.514 (2)	C13—H13A	0.9900
C1—H1A	0.9500	C13—H13B	0.9900
C2—C3	1.545 (2)	C14—H14A	0.9900
C2—H2A	0.9900	C14—H14B	0.9900
C2—H2B	0.9900	C15—H15A	0.9800
C3—C4	1.510 (2)	C15—H15B	0.9800
С3—НЗА	0.9900	C15—H15C	0.9800
С3—Н3В	0.9900	C16—H16A	0.9500
C4—C5	1.477 (2)	C17—C18	1.365 (2)
C4—C15	1.509 (2)	C17—H17A	0.9500
C5—C6	1.490 (2)	C18—H18A	0.9500
С5—Н5А	1.0000	O1W—H1W	0.87 (3)
C6—C7	1.536 (2)	O1W—H2W	0.85 (3)
С6—Н6А	1.0000		
C16—N1—C18	107.33 (15)	С7—С8—Н8В	108.5
C16—N1—C13	127.27 (16)	C9—C8—H8B	108.5
C18—N1—C13	125.28 (14)	H8A—C8—H8B	107.5
C16—N2—C17	105.71 (14)	C10—C9—C8	114.69 (13)
C5—O1—C4	60.97 (10)	С10—С9—Н9А	108.6
C12—O2—C6	110.30 (13)	С8—С9—Н9А	108.6
C14—O4—H4	109.5	С10—С9—Н9В	108.6
C10—C1—C2	128.70 (15)	C8—C9—H9B	108.6
C10—C1—H1A	115.6	H9A—C9—H9B	107.6
C2—C1—H1A	115.7	C1—C10—C9	125.51 (15)
C1—C2—C3	116.07 (13)	C1—C10—C14	120.80 (14)
C1—C2—H2A	108.3	C9—C10—C14	113.61 (15)
C3—C2—H2A	108.3	C12—C11—C13	113.76 (13)
C1—C2—H2B	108.3	C12—C11—C7	102.53 (14)

C3—C2—H2B	108.3	C13—C11—C7	113.99 (12)
H2A—C2—H2B	107.4	C12—C11—H11A	108.8
C4—C3—C2	110.81 (14)	C13—C11—H11A	108.8
С4—С3—НЗА	109.5	C7—C11—H11A	108.8
С2—С3—НЗА	109.5	O3—C12—O2	121.27 (17)
C4—C3—H3B	109.5	O3—C12—C11	128.51 (17)
С2—С3—Н3В	109.5	O2—C12—C11	110.21 (13)
НЗА—СЗ—НЗВ	108.1	N1—C13—C11	112.93 (12)
O1—C4—C5	59.05 (10)	N1—C13—H13A	109.0
O1—C4—C15	112.65 (12)	C11—C13—H13A	109.0
C5—C4—C15	123.88 (15)	N1—C13—H13B	109.0
O1—C4—C3	116.05 (14)	C11—C13—H13B	109.0
C5—C4—C3	115.89 (13)	H13A—C13—H13B	107.8
C15—C4—C3	116.01 (13)	O4—C14—C10	114.33 (14)
O1—C5—C4	59.98 (10)	O4—C14—H14A	108.7
O1—C5—C6	119.25 (12)	C10—C14—H14A	108.7
C4—C5—C6	124.74 (15)	O4—C14—H14B	108.7
O1—C5—H5A	114.0	C10—C14—H14B	108.7
C4—C5—H5A	114.0	H14A—C14—H14B	107.6
С6—С5—Н5А	114.0	C4—C15—H15A	109.5
O2—C6—C5	106.78 (14)	C4—C15—H15B	109.5
O2—C6—C7	104.61 (12)	H15A—C15—H15B	109.5
C5—C6—C7	112.27 (12)	C4—C15—H15C	109.5
O2—C6—H6A	111.0	H15A—C15—H15C	109.5
С5—С6—Н6А	111.0	H15B—C15—H15C	109.5
С7—С6—Н6А	111.0	N2	111.24 (16)
C8—C7—C11	113.47 (14)	N2—C16—H16A	124.4
C8—C7—C6	116.59 (13)	N1—C16—H16A	124.4
C11—C7—C6	102.00 (12)	C18—C17—N2	109.84 (16)
С8—С7—Н7А	108.1	C18—C17—H17A	125.1
С11—С7—Н7А	108.1	N2—C17—H17A	125.1
С6—С7—Н7А	108.1	C17—C18—N1	105.87 (14)
C7—C8—C9	115.08 (14)	C17—C18—H18A	127.1
С7—С8—Н8А	108.5	N1—C18—H18A	127.1
С9—С8—Н8А	108.5	H1W—O1W—H2W	106 (2)
C10—C1—C2—C3	-98.0 (2)	C2-C1-C10-C14	-170.69 (14)
C1—C2—C3—C4	72.09 (17)	C8—C9—C10—C1	126.24 (17)
C5-01-C4-C15	-117.00 (17)	C8-C9-C10-C14	-56.95 (19)
C5-01-C4-C3	105.88 (16)	C8—C7—C11—C12	156.85 (12)
C2-C3-C4-O1	-154.00 (13)	C6—C7—C11—C12	30.61 (15)
C2—C3—C4—C5	-87.53 (18)	C8—C7—C11—C13	-79.73 (17)
C2—C3—C4—C15	70.32 (19)	C6—C7—C11—C13	154.03 (14)
C4—O1—C5—C6	115.52 (17)	C6—O2—C12—O3	-175.49 (14)
C15—C4—C5—O1	97.94 (17)	C6—O2—C12—C11	3.08 (17)
C3—C4—C5—O1	-106.14 (16)	C13—C11—C12—O3	32.8 (2)
O1—C4—C5—C6	-106.62 (16)	C7—C11—C12—O3	156.40 (16)
C15—C4—C5—C6	-8.7 (3)	C13—C11—C12—O2	-145.62 (13)

C3—C4—C5—C6	147.24 (15)	C7—C11—C12—O2	-22.05 (16)
C12—O2—C6—C5	136.46 (13)	C16—N1—C13—C11	97.44 (18)
C12—O2—C6—C7	17.28 (15)	C18—N1—C13—C11	-78.22 (19)
O1—C5—C6—O2	67.27 (17)	C12-C11-C13-N1	-85.46 (18)
C4—C5—C6—O2	139.25 (15)	C7—C11—C13—N1	157.44 (14)
O1—C5—C6—C7	-178.64 (13)	C1-C10-C14-O4	-8.0 (2)
C4—C5—C6—C7	-106.66 (17)	C9—C10—C14—O4	174.99 (12)
O2—C6—C7—C8	-153.79 (12)	C17—N2—C16—N1	0.21 (18)
C5—C6—C7—C8	90.80 (17)	C18—N1—C16—N2	-0.26 (18)
O2—C6—C7—C11	-29.62 (15)	C13—N1—C16—N2	-176.55 (14)
C5—C6—C7—C11	-145.03 (13)	C16—N2—C17—C18	-0.07 (17)
C11—C7—C8—C9	170.63 (12)	N2-C17-C18-N1	-0.08 (17)
C6—C7—C8—C9	-71.29 (17)	C16—N1—C18—C17	0.20 (17)
C7—C8—C9—C10	-45.1 (2)	C13—N1—C18—C17	176.58 (13)
C2-C1-C10-C9	5.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O4—H4···N2 ⁱ	0.84	1.93	2.7491 (17)	164
C13—H13 <i>B</i> ····O1 <i>W</i> ⁱⁱ	0.99	2.45	3.388 (2)	157
C15—H15 <i>B</i> ····O3 ⁱⁱⁱ	0.98	2.55	3.282 (2)	131
C16—H16 A ···O1 W ^{iv}	0.95	2.44	3.370 (2)	167
C17—H17 <i>A</i> ···O3 ^v	0.95	2.54	3.377 (2)	147
C18—H18A…O1 ^v	0.95	2.57	3.5016 (19)	167
O1 <i>W</i> —H1 <i>W</i> ···O4	0.87 (3)	1.93 (3)	2.7928 (17)	173 (3)
O1 <i>W</i> —H2 <i>W</i> ····O3 ^{vi}	0.85 (3)	2.14 (3)	2.9534 (19)	162 (2)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) -*x*+1, *y*-1/2, -*z*; (iii) -*x*+2, *y*+1/2, -*z*+1; (iv) *x*, *y*, *z*+1; (v) *x*, *y*-1, *z*; (vi) *x*, *y*, *z*-1.