

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[*N*,*N*,*N'*,*N'*-tetramethylethylendiammonium [[tetrabromidoantimonate(III)]-*µ*-bromido] hemihydrate]

Houda Kharrat,^a* Slaheddine Kamoun^a and François Michaud^b

^aLaboratoire de Génie des Matériaux et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1173, Sfax, Tunisia, and ^bService commun d'analyse par diffraction des rayons X, Université de Brest, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France Correspondence e-mail: kharrat_houda@yahoo.fr

Received 23 September 2013; accepted 21 October 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.047; wR factor = 0.089; data-to-parameter ratio = 37.1.

The asymmetric unit of the title compound $\{(C_6H_{18}N_2)_2 : [Sb_2Br_{10}] \cdot H_2O\}_n$, consists of two tetramethylethylendiammonium cations that are located on centres of inversion, as well as one tetramethylethylendiammonium cation, one water molecule, one distorted octahedral $[SbBr_6]^{3-}$ anion and one bisphenoidal $[SbBr_4]^-$ anion in general positions. The $[SbBr_6]^{3-}$ and $[SbBr_4]^-$ anions are linked together by two long Sb-Br bonds of 3.2709 (8) and 3.5447 (7) Å into $\{[Sb_2Br_{10}]^{4-}\}_n$ chains along [001]. One of the three tetramethylethylendiammonium cations is disordered and was refined using a split model (occupancy ratio 0.58:0.42). The cations and the water molecule are connected to the $\{[Sb_2Br_{10}]^{4-}\}_n$ polymeric anions by weak N-H \cdots Br and O(water)-H \cdots Br hydrogen bonding.

Related literature

For crystal structures of related organic antimonate(III) halogenides, see: Bujak & Angel (2005); Chaabouni *et al.* (1997, 1998). For a similar structure, see: Owczarek *et al.* (2012). The bond-valence sum was calculated using the parameters given by Brown & Altermatt (1985).

Experimental

Crystal data

$C_6H_{18}N_2$)[Sb ₂ Br ₁₀]·H ₂ O	
$M_r = 1297.06$	
Orthorhombic, Pbca	
a = 18.0860 (4) Å	
p = 19.1755 (4) Å	
r = 19.4619 (4) Å	

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\rm min} = 0.011, T_{\rm max} = 0.078$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.089$ S = 1.0110770 reflections 290 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···Br1	0.91	2.59	3.362 (4)	143
$N2 - H2 \cdots Br1$	0.91	2.56	3.353 (5)	146
$N3-H3\cdots Br7^{i}$	0.91	2.5	3.352 (4)	157
N4–H4···Br3	0.91	2.52	3.318 (4)	147
OW−H1W···Br4 ⁱⁱ	0.83	3.03	3.759 (7)	148
$OW-H2W\cdots Br3$	0.83	2.67	3.449 (7)	157

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *publCIF* (Westrip, 2010).

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2318).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

P. A. (2008). J. Appl. Cryst. 41, 466-470.

- Bujak, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237-2246.
- Chaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1997). J. Chem. Crystallogr. 27, 401–404.
- Chaabouni, S., Kamoun, S. & Jaud, J. (1998). Mater. Res. Bull. 33, 377–388. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood,

 $V = 6749.5 (2) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 13.45 \text{ mm}^{-1}$ T = 298 K $0.43 \times 0.30 \times 0.19 \text{ mm}$

65748 measured reflections 10770 independent reflections 5721 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.096$

H-atom parameters constrained

15 restraints

 $\Delta \rho_{\rm max} = 1.92 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -1.98 \text{ e} \text{ Å}^{-3}$

Owczarek, M., Szklarz, P., Jakubas, R. & Miniewicz, A. (2012). *Dalton Trans.* **41**, 7285–7294.

Oxford Diffraction (2009). *CrystAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.

supporting information

Acta Cryst. (2013). E69, m637-m638 [doi:10.1107/S1600536813028894]

catena-Poly[N,N,N',N'-tetramethylethylendiammonium [[tetrabromidoantimonate(III)]- μ -bromido] hemihydrate]

Houda Kharrat, Slaheddine Kamoun and François Michaud

S1. Comment

The structure determination is part of a larger project related to the synthesis, structure and phase transitions in the group of new ferroic crystals of halogenoantimonates (III) with organic cations of various sizes and symmetries (Bujak & Angel, 2005; Chaabouni *et al.*, 1997; Chaabouni *et al.*, 1998). In these compounds the Sb atom shows a tendency toward distorded octahedral coordination with some rather long Sb—X bonds, which is attributed to the aspherical distribution of the lone pair electron (LP) at the Sb(III) cation.

The asymetric unit of the title compound consists of both, [SbBr₆]³⁻ and [SbBr₄]⁻ anions, a water molecule and three tetramethylethylene diammonium cations of which two are located on centers of inversion (Fig. 1). One of these cations is disordered and was refined using a split model. The anionic substructure is composed of distordered $[Sb(1)Br_6]^{3-1}$ octahedra that share two *trans* corners with two others $[Sb(2)Br_4]$ anions that shows a saw-horse coordination. These anions are linked into zig zag { $[Sb_2Br_1]^4$ }, pseudo chains that elongate along the [001] direction (Fig. 2). Two types of Sb—Br distances are present within these chains: eight short Sb—Br (terminal) distances [2.5405 (7) - 2.9906 (7) Å] and two long Sb—Br (bridging) distances [Sb(2)…Br(5) = 3.2709 (8) Å and Sb(2)…Br(6) = 3.5447 (7) Å], all of them are shorter than the sum of the Van der Waals radii (4.1 Å). A similar structural behavior was already reported by Owczarek (Owczarek et al., 2012). By taking into account the sixth-fold coordination of antimony atom, we have proceeded to calculate the bond-valence sum (BVS) of this metal using the parameters given by Brown (Brown & Altermatt, 1985). The BVS calculation of the Sb(1) and Sb(2) ions confirm the presumed oxidation state of Sb (III). The difference between the longest and the shortest Sb—Br distances in the Sb(1)Br₆ and Sb(2)Br₆ units amount to 0.3353 (7) Å and 1.0042 (7) Å. Differences were also found in the Br—Sb—Br angles involving Br atoms that are mutually *cis* configurated. The differences are 13.79 (2)° for Sb(1)Br6 and 23.50 (2)° for Sb(2)Br6. Taking into account the differences described above the lone pair electron at the Sb(III) cations may be considered as stereochemical active. The [C₆H₁₈N₂]²⁺ cations are located between the inorganic chains with their ammonium group facing the oppositely charged $\{[Sb_2Br_{10}]^4\}_n$ polyanions. In the crystal structure the cations, anions and water molecules are linked by weak intermolecular N—H…Br and O(W)— H…Br hydrogen bonding (Table 1).

S2. Experimental

Crystals of the title compound were obtained by dissolving a stoichiometric mixture of antimony (III) oxide Sb_2O_3 (5 g, 17 mmol) and N, N, N', N' - tetramethylethylendiamine ($C_6H_{16}N_2$) (5 ml, 34 mmol) in 100 ml of a solution of HBr (24%) . The resulting aqueous solution was then kept at room temperature. After several weeks prismatic shaped single crystals of the title compound were obtained by slow evaporation of the solvent at room temperature. They were washed with diethyl ether and dried for 4 h over CaCl₂.

S3. Refinement

All C-H and N-H H atoms were positioned with idealized geometry and refined with $U_{iso}(H) = 1.2 U_{eq}(C,N)$ (1.5 for methyl H atoms) using a riding model with C-H = 0.96 Å for methyl, C-H = 0.97 Å for methylene and N—H = 0.91 Å for ammonium H atoms. The H atoms of the water molecules were located in difference map, their bond lengths were set to ideal values and finally they were refined using a riding model with $U_{iso}(H) = 1.5 U_{eq}(O)$. The tetramethylethylendi-ammonium cation in a general position is disordered and was refined using a split model with occupancy ratio 58:42 using restraints. The O atom of the water molecule shows slightly enlarged anisotropic displacement parameters indicating for some disordering that cannot be resolved successfully.

Figure 1

View of the asymmetric unit of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Figure 2

View of the anionic substructure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x + 1, y + 0.5, -z + 1.5; (ii) -x + 1, -y + 1, -z + 1.

catena-Poly[*N*,*N*,*N*',*N*'-tetramethylethylendiammonium [[tetrabromidoantimonate(III)]-µ-bromido] hemihydrate]

Z = 8

F(000) = 4784

 $\mu = 13.45 \text{ mm}^{-1}$

T = 298 K

 $D_{\rm x} = 2.553 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Prismatic, axis [1 0 0], yellow

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.92 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -1.98 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.43 \times 0.30 \times 0.19 \text{ mm}$

Crystal data

 $(C_6H_{18}N_2)[Sb_2Br_{10}] \cdot H_2O$ $M_r = 1297.06$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 18.0860 (4) Å b = 19.1755 (4) Å c = 19.4619 (4) Å V = 6749.5 (2) Å³

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer	65748 measured reflections 10770 independent reflections
Radiation source: sealed X-ray tube	5721 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.096$
Detector resolution: 8.3622 pixels mm ⁻¹	$\theta_{\rm max} = 31.6^\circ, \ \theta_{\rm min} = 3.1^\circ$
ω scans	$h = -25 \rightarrow 26$
Absorption correction: multi-scan	$k = -28 \rightarrow 26$
(CrysAlis RED; Oxford Diffraction, 2009)	$l = -26 \rightarrow 28$
$T_{\min} = 0.011, \ T_{\max} = 0.078$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.089$	neighbouring sites
<i>S</i> = 1.01	H-atom parameters constrained
10770 reflections	$w = 1/[\sigma^{\bar{2}}(F_o^2) + (0.033P)^2 + 2.8328P]$

direct methods

Primary atom site location: structure-invariant

Special details

290 parameters

15 restraints

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlis RED (Oxford Diffraction, 2009)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sb1	0.626802 (19)	0.755771 (18)	0.520272 (17)	0.02825 (9)	
Sb2	0.351898 (18)	0.442769 (18)	0.734954 (18)	0.02673 (9)	

Br1	0.54458 (4)	0.65129(3)	0.59658 (3)	0.04546 (16)	
Br2	0.70124 (4)	0.85628 (3)	0.45458 (4)	0.05252 (18)	
Br3	0.48610 (3)	0.81097 (4)	0.46063 (3)	0.04992 (18)	
Br4	0.75101 (4)	0.70887 (4)	0.57645 (3)	0.0591 (2)	
Br5	0.59238 (4)	0.83959 (4)	0.64163 (4)	0.0646 (2)	
Br6	0.64208 (4)	0.66424 (3)	0.41346 (3)	0.04907 (17)	
Br7	0.50362(3)	0.48013(3)	0.70652 (3)	0.03898(15)	
Br8	0.21218(3)	0.41314 (4)	0.76132(4)	0.0591 (2)	
Br9	0.35219(3)	0 53266 (3)	0.83085(3)	0.04420(16)	
Br10	0.31213(3)	0.53122(3)	0.64461(3)	0.04336(16)	
N1	0.6426(2)	0.6779(3)	0.7410(2)	0.0377(12)	
H1	0.6259	0.6911	0.6989	0.045*	
N2	0.0239 0.4676 (3)	0.0911 0.7303(3)	0.0909	0.0423(12)	
H2	0.4908	0.7383 (3)	0.6911	0.051*	
C1	0.6693 (4)	0.6051(3)	0.7355(4)	0.051	
	0.6291	0.5753	0.7333 (4)	0.001 (2)	
HIR HIR	0.6883	0.5902	0.7222	0.091*	
HIC	0.0005	0.6026	0.7015	0.091*	
C^2	0.7077 0.7034 (4)	0.0020 0.7249 (4)	0.7603 (4)	0.051	
U2	0.7034 (4)	0.7249 (4)	0.7633	0.003 (2)	
112A 112D	0.0851	0.7718	0.7055	0.098*	
	0.7410	0.7223	0.7202	0.098*	
П2C	0.725 0.5702 (4)	0.711	0.804	0.098°	
	0.5793 (4)	0.0819 (4)	0.7901 (5)	0.000 (2)	0.50
пра	0.5344	0.0372	0.7885	0.08*	0.58
нэв	0.6004	0.6859	0.8357	0.08*	0.58
нэс	0.5908	0.6497	0.827	0.08*	0.42
H3D	0.5812	0.7282	0.8099	0.08*	0.42
C4A	0.5236 (6)	0.7339(6)	0.7848 (5)	0.04/(3)	0.58
H4A	0.5486	0.7783	0.7793	0.056*	0.58
H4B	0.4984	0.7356	0.8288	0.056*	0.58
C5A	0.41/8 (12)	0.6752 (8)	0.7351 (13)	0.0/1(6)	0.58
НЗА	0.3847	0.6781	0.6966	0.107*	0.58
НЗВ	0.3899	0.6776	0.777	0.107*	0.58
H5C	0.4443	0.6319	0.7333	0.107*	0.58
C6A	0.4223 (7)	0.8015 (6)	0.7363 (7)	0.058 (4)	0.58
H6A	0.4559	0.8402	0.7345	0.087*	0.58
H6B	0.3947	0.8032	0.7784	0.087*	0.58
H6C	0.3888	0.8041	0.6981	0.087*	0.58
C4B	0.5103 (7)	0.6709 (6)	0.7744 (6)	0.031 (3)	0.42
H4C	0.4835	0.6626	0.8167	0.037*	0.42
H4D	0.5079	0.6282	0.7476	0.037*	0.42
C5B	0.3998 (18)	0.6842 (15)	0.7092 (19)	0.080 (10)	0.42
H5E	0.417	0.6468	0.6807	0.12*	0.42
H5F	0.3656	0.7125	0.6838	0.12*	0.42
H5G	0.3756	0.6654	0.749	0.12*	0.42
C6B	0.4477 (2)	0.7858 (2)	0.7706 (2)	0.092 (9)	0.42
H6E	0.4911	0.8112	0.784	0.138*	0.42
H6F	0.4219	0.7702	0.8109	0.138*	0.42

H6G	0.4159	0.8154	0.7441	0.138*	0.42
N3	0.4164 (2)	0.5295 (2)	0.4486 (2)	0.0347 (11)	
H3	0.4377	0.5133	0.4094	0.042*	
C7	0.4592 (3)	0.4993 (3)	0.5075 (3)	0.0318 (13)	
H7A	0.4436	0.4515	0.5154	0.038*	
H7B	0.4492	0.5259	0.5489	0.038*	
C8	0.3390 (3)	0.5050 (4)	0.4484 (3)	0.0513 (18)	
H8A	0.3381	0.4551	0.4524	0.077*	
H8B	0.3156	0.5187	0.4062	0.077*	
H8C	0.313	0.5253	0.4865	0.077*	
C9	0.4198 (4)	0.6065 (3)	0.4455 (4)	0.0596 (19)	
H9A	0.389	0.6229	0.4087	0.089*	
H9B	0.4699	0.6209	0.4376	0.089*	
H9C	0.4027	0.6256	0.4882	0.089*	
N4	0.4240 (2)	0.9494 (2)	0.5451 (2)	0.0348 (11)	
H4	0.4463	0.9071	0.5405	0.042*	
C10	0.4578 (3)	0.9977 (3)	0.4958 (3)	0.0373 (14)	
H10A	0.4366	1.0437	0.502	0.045*	
H10B	0.4464	0.9824	0.4495	0.045*	
C11	0.4316 (4)	0.9720 (4)	0.6179 (3)	0.064 (2)	
H11A	0.4058	0.9399	0.6472	0.095*	
H11B	0.411	1.0178	0.6232	0.095*	
H11C	0.483	0.9728	0.6302	0.095*	
C12	0.3444 (3)	0.9408 (4)	0.5294 (4)	0.061 (2)	
H12A	0.3231	0.9076	0.5605	0.091*	
H12B	0.3389	0.9243	0.4831	0.091*	
H12C	0.3198	0.9848	0.5343	0.091*	
OW	0.3596 (4)	0.7703 (5)	0.5870 (4)	0.159 (3)	
H1W	0.3219	0.7677	0.563	0.238*	
H2W	0.3989	0.7757	0.566	0.238*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Sb1	0.0396 (2)	0.02096 (19)	0.02414 (17)	-0.00123 (16)	0.00398 (16)	-0.00193 (15)
Sb2	0.02741 (18)	0.02436 (19)	0.02841 (18)	0.00197 (15)	-0.00144 (15)	0.00237 (16)
Br1	0.0683 (4)	0.0336 (3)	0.0345 (3)	-0.0137 (3)	0.0033 (3)	-0.0023 (3)
Br2	0.0636 (4)	0.0405 (4)	0.0535 (4)	-0.0205 (3)	0.0045 (3)	0.0098 (3)
Br3	0.0512 (4)	0.0541 (4)	0.0444 (4)	0.0098 (3)	-0.0033 (3)	-0.0109 (3)
Br4	0.0503 (4)	0.0776 (5)	0.0493 (4)	0.0205 (4)	-0.0013 (3)	0.0034 (4)
Br5	0.0788 (5)	0.0500 (4)	0.0650 (5)	-0.0101 (4)	0.0015 (4)	-0.0271 (4)
Br6	0.0785 (5)	0.0318 (3)	0.0369 (3)	-0.0005 (3)	0.0089 (3)	-0.0031 (3)
Br7	0.0333 (3)	0.0463 (4)	0.0373 (3)	-0.0007 (3)	0.0038 (2)	0.0046 (3)
Br8	0.0324 (3)	0.0653 (5)	0.0795 (5)	-0.0106 (3)	0.0040 (3)	0.0040 (4)
Br9	0.0542 (4)	0.0467 (4)	0.0318 (3)	0.0074 (3)	-0.0061 (3)	-0.0070 (3)
Br10	0.0519 (4)	0.0484 (4)	0.0298 (3)	0.0162 (3)	-0.0033 (3)	0.0071 (3)
N1	0.036 (3)	0.050 (3)	0.027 (2)	0.008 (2)	-0.004 (2)	-0.001 (2)
N2	0.033 (3)	0.048 (3)	0.046 (3)	0.008 (2)	0.003 (2)	-0.002 (3)

C1	0.060 (5)	0.045 (4)	0.078 (5)	0.021 (3)	-0.009 (4)	-0.005 (4)
C2	0.067 (5)	0.068 (5)	0.060 (5)	-0.019 (4)	0.001 (4)	-0.008 (4)
C3	0.061 (5)	0.100 (7)	0.038 (4)	0.028 (4)	0.011 (3)	0.012 (4)
C4A	0.048 (7)	0.052 (8)	0.039 (6)	0.019 (6)	0.002 (5)	-0.007 (6)
C5A	0.054 (13)	0.050 (9)	0.11 (2)	-0.011 (8)	0.003 (10)	-0.008 (11)
C6A	0.042 (7)	0.041 (7)	0.092 (10)	0.021 (6)	-0.007 (7)	0.008 (7)
C4B	0.050 (9)	0.015 (7)	0.028 (7)	0.004 (6)	0.002 (6)	-0.008 (6)
C5B	0.041 (15)	0.12 (2)	0.07 (2)	-0.020 (13)	-0.018 (11)	0.002 (16)
C6B	0.056 (14)	0.034 (11)	0.19 (3)	0.023 (10)	0.029 (15)	0.003 (15)
N3	0.036 (3)	0.039 (3)	0.029 (3)	-0.001 (2)	0.003 (2)	-0.006 (2)
C7	0.036 (3)	0.034 (3)	0.025 (3)	-0.004 (3)	0.004 (2)	-0.003 (3)
C8	0.031 (3)	0.073 (5)	0.050 (4)	0.002 (3)	-0.003 (3)	-0.002 (4)
C9	0.073 (5)	0.037 (4)	0.068 (5)	0.009 (3)	-0.012 (4)	0.005 (4)
N4	0.038 (3)	0.028 (3)	0.039 (3)	0.008 (2)	0.006 (2)	-0.001 (2)
C10	0.038 (3)	0.045 (4)	0.029 (3)	-0.002 (3)	-0.003 (3)	0.000 (3)
C11	0.062 (4)	0.100 (6)	0.028 (3)	-0.003 (4)	0.001 (3)	0.006 (4)
C12	0.050 (4)	0.065 (5)	0.067 (5)	-0.010 (4)	0.002 (3)	-0.006 (4)
OW	0.128 (6)	0.243 (10)	0.105 (5)	-0.005 (6)	-0.008 (5)	0.028 (6)

Geometric parameters (Å, °)

Sb1—Br1	2.9035 (7)	С6А—Н6А	0.96
Sb1—Br2	2.6762 (7)	C6A—H6B	0.96
Sb1—Br3	2.9906 (7)	C6A—H6C	0.96
Sb1—Br4	2.6553 (7)	C4B—H4C	0.97
Sb1—Br5	2.9240 (8)	C4B—H4D	0.97
Sb1—Br6	2.7347 (7)	C5B—H5E	0.96
Br5—Sb2 ⁱ	3.2709 (8)	C5B—H5F	0.96
Sb2—Br6 ⁱⁱ	3.5447 (7)	C5B—H5G	0.96
Sb2—Br7	2.8895 (6)	C6B—H6E	0.96
Sb2—Br8	2.6403 (7)	C6B—H6F	0.96
Sb2—Br9	2.5405 (7)	C6B—H6G	0.96
Sb2—Br10	2.5466 (7)	N3—C8	1.477 (7)
N1C2	1.471 (7)	N3—C9	1.479 (7)
N1—C1	1.480 (7)	N3—C7	1.500 (6)
N1—C3	1.493 (8)	N3—H3	0.91
N1—H1	0.91	C7—C7 ⁱⁱ	1.503 (10)
N2—C6B	1.345 (7)	C7—H7A	0.97
N2—C5A	1.389 (19)	C7—H7B	0.97
N2—C4A	1.437 (10)	C8—H8A	0.96
N2—C5B	1.58 (2)	C8—H8B	0.96
N2—C6A	1.596 (11)	C8—H8C	0.96
N2—C4B	1.598 (13)	С9—Н9А	0.96
N2—H2	0.91	С9—Н9В	0.96
C1—H1A	0.96	С9—Н9С	0.96
C1—H1B	0.96	N4—C10	1.467 (7)
C1—H1C	0.96	N4—C12	1.480 (7)
C2—H2A	0.96	N4—C11	1.487 (7)

C2—H2B	0.96	N4—H4	0.91
C2—H2C	0.96	C10-C10 ⁱⁱⁱ	1.537 (10)
C3—C4B	1.302 (13)	C10—H10A	0.97
C3—C4A	1 422 (11)	C10—H10B	0.97
$C_3 H_3 \Lambda$	0.07		0.96
	0.97		0.90
C3—H3B	0.97		0.96
C3—H3C	0.97	CII—HIIC	0.96
C3—H3D	0.97	C12—H12A	0.96
C4A—H4A	0.97	C12—H12B	0.96
C4A—H4B	0.97	C12—H12C	0.96
C5A—H5A	0.96	OW—H1W	0.828
C5A—H5B	0.96	OW—H2W	0.8264
С5А—Н5С	0.96		
Br1—Sb1—Br2	177.35 (2)	H3A—C3—H3D	147.2
Br1—Sb1—Br3	90.40 (2)	H3B—C3—H3D	63.1
Br1—Sb1—Br4	89.37 (2)	H3C—C3—H3D	106.3
Br1—Sb1—Br5	81.78 (2)	C3—C4A—N2	121.0 (9)
Br1—Sb1—Br6	89.87 (2)	$C_3 - C_4 A - H_4 A$	107.1
\mathbf{Pr}_{2}^{2} Sh1 \mathbf{Pr}_{2}^{2}	80.30(2)	N2 C_{4A} H4A	107.1
Dr2 = Sb1 = Dr4	09.30(2)	$N_2 - C_4 A - \Pi_4 A$	107.1
B12 - S01 - B14	90.80 (3)		107.1
Br2—Sb1—Br5	95.57 (2)	N2—C4A—H4B	107.1
Br2—Sb1—Br6	92.77 (2)	H4A—C4A—H4B	106.8
Br3—Sb1—Br4	178.37 (2)	N2—C5A—H5A	109.5
Br3—Sb1—Br5	86.43 (2)	N2—C5A—H5B	109.5
Br3—Sb1—Br6	91.03 (2)	Н5А—С5А—Н5В	109.5
Br4—Sb1—Br5	91.93 (2)	N2—C5A—H5C	109.5
Br4—Sb1—Br6	90.58 (2)	Н5А—С5А—Н5С	109.5
Br5—Sb1—Br6	171.25 (2)	H5B—C5A—H5C	109.5
Br5 ^{iv} —Sb2—Br6 ⁱⁱ	$103 \ 81 \ (2)$	N2—C6A—H6A	109 5
$Br5^{iv}$ Sb2 $Br7$	80.80(2)	N2 C6A H6B	109.5
Br5 = 502 - Br7 Br5 iv Sh2 Br9	09.09(2)		109.5
$BI5^{**} - S02 - BI8$	91.20 (2)	NOA-COA-HOB	109.5
Br5	82.55 (2)		109.5
Br5 ⁿ —Sb2—Br10	175.44 (2)	Н6А—С6А—Н6С	109.5
Br6 ⁿ —Sb2—Br7	87.61 (2)	H6B—C6A—H6C	109.5
Br6 ⁱⁱ —Sb2—Br8	93.62 (2)	C3—C4B—N2	117.8 (10)
Br6 ⁱⁱ —Sb2—Br9	172.43 (2)	C3—C4B—H4C	107.9
Br6 ⁱⁱ —Sb2—Br10	80.31 (2)	N2—C4B—H4C	107.9
Br7—Sb2—Br8	178.07 (3)	C3—C4B—H4D	107.9
Br7—Sb2—Br9	88.31 (2)	N2—C4B—H4D	107.9
Br7—Sb2—Br10	88.33 (2)	H4C—C4B—H4D	107.2
Br8—Sb2—Br9	90.30(2)	N2—C5B—H5F	109 5
Br8 - Sb2 - Br10	90.41 (2)	N2 - C5B - H5E	109.5
Br0 Sb2 $Br10$	03.20(2)	HSE CSB USE	109.5
$D_1 = 002 - D_1 0$	140.22(2)	N2 C5D U5C	109.5
502 - DI3 - 501	149.32 (3)		109.5
Sb2"—Brb—Sb1	1/3.75 (3)	HSE-CSB-HSG	109.5
C2—N1—C1	110.7 (5)	нэг—С5В—Н5G	109.5
C2—N1—C3	112.2 (5)	N2—C6B—H6E	109.5

C1—N1—C3	110.2 (5)	N2—C6B—H6F	109.5
C2—N1—H1	107.9	H6E—C6B—H6F	109.5
C1—N1—H1	107.9	N2—C6B—H6G	109.5
C3—N1—H1	107.9	H6E—C6B—H6G	109.5
C6B—N2—C5A	114.1 (12)	H6F—C6B—H6G	109.5
C6B—N2—C4A	76.2 (5)	C8—N3—C9	110.9 (5)
C5A—N2—C4A	118.1 (10)	C8—N3—C7	111.6 (4)
C6B—N2—C5B	113.2 (15)	C9—N3—C7	113.3 (4)
C5A—N2—C5B	23.1 (17)	C8—N3—H3	106.9
C4A—N2—C5B	141.2 (13)	С9—N3—H3	106.9
C6B—N2—C6A	32.9 (5)	C7—N3—H3	106.9
C5A—N2—C6A	108.4 (10)	N3—C7—C7 ⁱⁱ	110.5 (5)
C4A—N2—C6A	106.8 (7)	N3—C7—H7A	109.6
C5B—N2—C6A	95.3 (13)	C7 ⁱⁱ —C7—H7A	109.6
C6B—N2—C4B	114.4 (6)	N3—C7—H7B	109.6
C5A—N2—C4B	75.8 (9)	C7 ⁱⁱ —C7—H7B	109.6
C4A—N2—C4B	48.3 (6)	H7A—C7—H7B	108.1
C5B—N2—C4B	97.1 (11)	N3—C8—H8A	109.5
C6A—N2—C4B	146.8 (8)	N3—C8—H8B	109.5
C6B—N2—H2	129.6	H8A—C8—H8B	109.5
C5A—N2—H2	107.7	N3—C8—H8C	109.5
C4A—N2—H2	107.7	H8A—C8—H8C	109.5
C5B—N2—H2	94.8	H8B—C8—H8C	109.5
C6A—N2—H2	107.7	N3—C9—H9A	109.5
C4B—N2—H2	101.8	N3—C9—H9B	109.5
N1—C1—H1A	109.5	H9A—C9—H9B	109.5
N1—C1—H1B	109.5	N3—C9—H9C	109.5
H1A—C1—H1B	109.5	Н9А—С9—Н9С	109.5
N1—C1—H1C	109.5	H9B—C9—H9C	109.5
H1A—C1—H1C	109.5	C10—N4—C12	109.9 (4)
H1B—C1—H1C	109.5	C10—N4—C11	113.6 (5)
N1—C2—H2A	109.5	C12—N4—C11	108.7 (5)
N1—C2—H2B	109.5	C10—N4—H4	108.2
H2A—C2—H2B	109.5	C12—N4—H4	108.2
N1—C2—H2C	109.5	C11—N4—H4	108.2
H2A—C2—H2C	109.5	N4—C10—C10 ⁱⁱⁱ	112.4 (6)
H2B—C2—H2C	109.5	N4—C10—H10A	109.1
C4B—C3—C4A	54.4 (7)	C10 ⁱⁱⁱ —C10—H10A	109.1
C4B—C3—N1	125.2 (8)	N4—C10—H10B	109.1
C4A—C3—N1	122.3 (7)	C10 ⁱⁱⁱ —C10—H10B	109.1
С4В—С3—НЗА	53.3	H10A—C10—H10B	107.9
С4А—С3—НЗА	106.8	N4—C11—H11A	109.5
N1—C3—H3A	106.8	N4—C11—H11B	109.5
C4B—C3—H3B	127.2	H11A—C11—H11B	109.5
С4А—С3—Н3В	106.8	N4—C11—H11C	109.5
N1—C3—H3B	106.8	H11A—C11—H11C	109.5
НЗА—СЗ—НЗВ	106.6	H11B—C11—H11C	109.5
C4B—C3—H3C	106	N4—C12—H12A	109.5

С4А—С3—Н3С	130.7	N4—C12—H12B	109.5
N1—C3—H3C	106	H12A—C12—H12B	109.5
НЗА—СЗ—НЗС	64.1	N4—C12—H12C	109.5
НЗВ—СЗ—НЗС	44.6	H12A—C12—H12C	109.5
C4B—C3—H3D	106	H12B—C12—H12C	109.5
C4A—C3—H3D	53.9	H1W—OW—H2W	115.9
N1—C3—H3D	106		

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x+1, y-1/2, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
N1—H1···Br1	0.91	2.59	3.362 (4)	143	
N2—H2···Br1	0.91	2.56	3.353 (5)	146	
N3—H3····Br7 ⁱⁱ	0.91	2.5	3.352 (4)	157	
N4—H4···Br3	0.91	2.52	3.318 (4)	147	
O <i>W</i> —H1 <i>W</i> ···Br4 ^v	0.83	3.03	3.759 (7)	148	
OW—H2W···Br3	0.83	2.67	3.449 (7)	157	

Symmetry codes: (ii) -x+1, -y+1, -z+1; (v) x-1/2, -y+3/2, -z+1.