Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[μ_3 -aqua-aqua- μ_5 -(4-nitrobenzoato)caesium]

Graham Smith

Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 3 November 2013: accepted 7 November 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.006 Å; R factor = 0.032; wR factor = 0.074; data-to-parameter ratio = 15.1.

In the structure of the title complex, $[C_{5}(C_{7}H_{4}NO_{2})(H_{2}O)_{2}]_{n}$, the caesium salt of 4-nitrobenzoic acid, the irregular CsO₉ coordination sphere comprises three bridging nitro O-atom donors, a bidentate carboxylate O,O'-chelate interaction, a triple-bridging water molecule and a monodentate water molecule. A three-dimensional framework polymer is generated, within which there are water-carboxylate $O-H \cdots O$ and water-water O-H···O hydrogen-bonding interactions.

Related literature

For structures of alkali metal salts of 4-nitrobenzoic acid, see: Turowska-Tyrk et al. (1988) (Na); Srivastava & Speakman (1961) (K). For the structures of Na, K and Cs complexes with 4-nitroanthranilic acid, see: Smith & Wermuth (2011); Smith (2013). For the structures of the 4-nitrobenzoic acid polymorphs, see: Groth (1980); Tonogaki et al. (1993); Bolte (2009).

Experimental

Crystal data $[Cs(C_7H_4NO_2)(H_2O)_2]$ $M_r = 335.05$ Monoclinic, $P2_1/n$ a = 6.0700 (3) Å b = 7.1073 (4) Å

c = 24.2183 (13) Å $\beta = 94.035 \ (5)^{\circ}$ $V = 1042.22 (10) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

$0.28 \times 0.18 \times 0.05 \; \rm mm$

 $\mu = 3.56 \text{ mm}^{-1}$ T = 200 K

Data collection

Oxford Diffraction Gemini-S CCD-	6334 measured reflections
detector diffractometer	2057 independent reflections
Absorption correction: multi-scan	1836 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2012)	$R_{\rm int} = 0.036$
$T_{\rm min} = 0.604, \ T_{\rm max} = 0.980$	

Refinement

_ . .

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 136 parameters $wR(F^2) = 0.074$ H-atom parameters constrained S = 1.15 $\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$ 2057 reflections

Table 1

Selected bond lengths (Å).

Cs1 - O1W	3.126 (3)	Cs1-O11 ⁱⁱ	3.215 (3)
Cs1 - O2W	3.253 (3)	$Cs1 - O12^{ii}$	3.338 (4)
Cs1-O41	3.244 (4)	$Cs1 - O2W^{iii}$	3.047 (4)
$Cs1 - O2W^i$	3.220 (3)	Cs1-O41 ⁱⁱⁱ	3.310 (4)
$Cs1 - O42^{i}$	3.248 (4)		

Symmetry codes: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x + 1, -y, -z + 1.

l able 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H11W\cdots O12^{iv}$	0.82	1.88	2.694 (5)	174
$O1W-H12W\cdots O11^{v}$	0.93	1.81	2.728 (4)	173
$O2W - H21W \cdot \cdot \cdot O1W^{vi}$	0.79	1.99	2.749 (5)	162
$O2W-H22W\cdots O11^{iv}$	0.84	1.91	2.753 (5)	174
Symmetry codes: (iv) -x+1, -y+1, -z+1.	$x + \frac{1}{2}, -y -$	$+\frac{1}{2}, z + \frac{1}{2};$ (v	$(x) \qquad x - \frac{1}{2}, -y + \frac{1}{2}$	$\frac{1}{2}, z + \frac{1}{2};$ (vi)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5666).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Crvst. 26, 343-350.
- Bolte, M. (2009). Private communication (refcode NBZOAC011). CCDC, Cambridge, England.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groth, P. (1980). Acta Chem. Scand. Ser. A, 34, 229-230.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G. (2013). Acta Cryst. C69. In the press. doi:10.1107/ S0108270113028977.

Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047–m1048.
 Spek, A. L. (2009). Acta Cryst. D65, 148–155.
 Srivastava, H. N. & Speakman, J. C. (1961). J. Chem. Soc. pp. 1151–1163.

Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031–1039.

Turowska-Tyrk, I., Krygowski, T. M., Gdaniec, M., Häfelinger, G. & Ritter, G. (1988). J. Mol. Struct. 172, 401–412.

supporting information

Acta Cryst. (2013). E69, m664-m665 [doi:10.1107/S1600536813030638]

Poly[μ_3 -aqua-aqua- μ_5 -(4-nitrobenzoato)-caesium]

Graham Smith

S1. Comment

4-Nitrobenzoic acid (PNBA) has proved to be a useful ligand for the preparation of metal complexes, which are mainly monomeric but rarely involve the nitro group in coordination. With the known alkali metal salts of PNBA, the sodium salt (a trihydrate) (Turowska-Tyrk *et al.*, 1988) and the potassium salt (a 1:1 salt-acid adduct) (Srivastava & Speakman, 1961), coordination polymeric structures are formed, but the structures of the rubidium and caesium salts have not been reported. The reaction of 4-nitrobenzoic acid with caesium hydroxide in aqueous ethanol afforded good crystals of the title Cs complex, $[Cs(C_7H_4NO_2)(H_2O)_2]_n$ and the structure is reported herein.

In this structure (Fig. 1), the irregular CsO₉ coordinate polyhedron comprises a bidentate carboxylate *O*,*O'*-chelate interaction, three O-donors from an *O*,*O'*-bridging nitro group, three O donors from a triple-bridging water molecule (O2W) and a monodentate water molecule (O1W) [Cs—O, 3.047 (4)–3.338 (4) Å] (Table 1). The bridging extensions in the two-dimensional sheet substructures which extend along the (0 0 1) plane include a centrosymmetric water–carboxyl quadruple cage (Fig. 2) (Cs…Csⁱⁱⁱ = 4.2610 (6) Å] [for symmetry code (iii), see Table 2]. The *p*-related carboxyl and nitro substituent groups of the PNBA ligand link the sheets across *c*, and generate an overall a three-dimensional coordination polymer (Fig. 3). This type of structure extension through the *p*-related benzoate carboxyl and nitro functional groups is similar to that found in other alkali metal complexes with the 4-nitroanthranilate salts of sodium (a dihydrate) and potassium (a monohydrate) (Smith, 2013), and caesium (a monohydrate) (Smith & Wermuth, 2011).

The crystal structure of the title complex polymer is stabilized by intra-sheet water O—H···O_{carboxyl} and O—H···O_{water} hydrogen-bonding interactions (Table 2). No inter-ring π - π interactions are present [minimun ring centroid separation 4.643 (2) Å]. The PABA ligand in the complex is essentially planar [torsion angles C2—C1—C11—O12 = 177.9 (4)° (carboxyl) and C3—C4—N41—O41 = 177.5 (4)° (nitro)]. This conformation is similar to that found in both monoclinic polymorphs of the parent acid [Tonogaki *et al.*, 1993; Groth, 1980; Bolte, 2009].

S2. Experimental

The title compound was synthesized by heating together for 10 minutes, 0.5 mmol of 4-nitrobenzoic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave colourless elongated crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.

S3. Refinement

Carbon-bound hydrogen atoms were placed in calculated positions [C—H = 0.95 Å] and allowed to ride in the refinement, with $U_{iso}(H) = 1.2U_{eq}(C)$. Hydrogen atoms of the coordinated water molecule were located in a difference Fourier map but were subsequently allowed to ride, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1

The molecular configuration and atom-numbering scheme for the coordination polyhedron of title complex, with non-H atoms drawn as 40% probability displacement ellipsoids. For symmetry codes: see Table 1.

Figure 2

A partial expansion of the CsO₉ coordination sphere in the polymeric structure. For symmetry codes: (vii) x + 1, y, z; (viii) -x, -y, -z + 1. For other symmetry codes, see Fig. 1 and Table 1.

Figure 3

The packing of the structure in the unit cell viewed along a. Hydrogen-bonding associations are shown as dashed lines.

Poly[μ_3 -aqua-aqua- μ_5 -(4-nitrobenzoato)-caesium]

Crystal data

 $[Cs(C_7H_4NO_2)(H_2O)_2]$ $M_r = 335.05$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.0700 (3) Å b = 7.1073 (4) Å c = 24.2183 (13) Å $\beta = 94.035$ (5)° V = 1042.22 (10) Å³ Z = 4

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer Radiation source: Enhance (Mo) X-ray source Graphite monochromator Detector resolution: 16.077 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{\min} = 0.604, T_{\max} = 0.980$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.074$ S = 1.152057 reflections 136 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 640 $D_x = 2.135 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2366 reflections $\theta = 3.5-28.1^{\circ}$ $\mu = 3.56 \text{ mm}^{-1}$ T = 200 KPlate, colourless $0.28 \times 0.18 \times 0.05 \text{ mm}$

6334 measured reflections 2057 independent reflections 1836 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -7 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = -22 \rightarrow 29$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0285P)^2 + 0.878P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.56$ e Å⁻³ $\Delta\rho_{min} = -0.67$ e Å⁻³

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cs1	0.25378 (4)	0.19824 (4)	0.47189 (1)	0.0259 (1)
O1W	0.2785 (5)	0.5049 (5)	0.56462 (14)	0.0354 (11)
O2W	0.7695 (5)	0.2283 (5)	0.51753 (15)	0.0347 (11)
011	0.3802 (5)	0.0475 (5)	0.10793 (14)	0.0333 (11)
O12	0.0968 (5)	-0.0945 (5)	0.14338 (15)	0.0400 (11)
O41	0.6184 (7)	-0.0192 (5)	0.40379 (16)	0.0467 (14)
O42	0.9117 (7)	0.0828 (7)	0.36824 (17)	0.0576 (16)
N41	0.7213 (7)	0.0261 (6)	0.36407 (17)	0.0311 (12)
C1	0.4023 (7)	-0.0137 (5)	0.20429 (19)	0.0189 (11)
C2	0.6135 (7)	0.0617 (6)	0.2120 (2)	0.0236 (14)
C3	0.7195 (7)	0.0745 (6)	0.26440 (19)	0.0235 (14)
C4	0.6093 (7)	0.0113 (6)	0.30818 (19)	0.0229 (14)
C5	0.4009 (7)	-0.0646 (6)	0.30250 (19)	0.0250 (14)
C6	0.2985 (7)	-0.0777 (6)	0.25023 (19)	0.0223 (14)
C11	0.2830 (7)	-0.0201 (6)	0.1477 (2)	0.0252 (14)
H2	0.68620	0.10490	0.18090	0.0280*
Н3	0.86400	0.12560	0.26980	0.0280*
Н5	0.32940	-0.10700	0.33390	0.0300*
H6	0.15490	-0.13100	0.24530	0.0270*
H11W	0.37890	0.53710	0.58680	0.0530*
H12W	0.14960	0.48830	0.58230	0.0530*
H21W	0.72670	0.30190	0.49470	0.0520*
H22W	0.79800	0.29200	0.54650	0.0520*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs1	0.0259 (2)	0.0272 (2)	0.0240 (2)	0.0000(1)	-0.0015 (1)	0.0013 (1)
O1W	0.0348 (18)	0.052 (2)	0.0189 (19)	-0.0046 (17)	-0.0014 (14)	0.0006 (16)
O2W	0.044 (2)	0.0296 (17)	0.030 (2)	-0.0030 (15)	-0.0003 (16)	-0.0028 (15)
011	0.0334 (18)	0.049 (2)	0.0173 (19)	-0.0022 (16)	0.0010 (14)	0.0089 (16)
O12	0.0335 (19)	0.055 (2)	0.030 (2)	-0.0104 (18)	-0.0092 (15)	0.0061 (18)
O41	0.065 (3)	0.056 (2)	0.018 (2)	0.002 (2)	-0.0040 (18)	0.0036 (18)
O42	0.049 (2)	0.085 (3)	0.036 (3)	-0.015 (2)	-0.0171 (19)	-0.007 (2)
N41	0.042 (2)	0.033 (2)	0.017 (2)	0.0051 (19)	-0.0076 (19)	-0.0057 (18)
C1	0.020 (2)	0.0163 (19)	0.020 (2)	0.0015 (17)	-0.0021 (18)	-0.0017 (18)

supporting information

C2	0.027 (2)	0.021 (2)	0.023 (3)	-0.0022 (18)	0.0028 (19)	0.0012 (19)
C3	0.023 (2)	0.024 (2)	0.023 (3)	-0.0029 (19)	-0.0008 (19)	-0.0037 (19)
C4	0.028 (2)	0.020 (2)	0.020 (3)	0.0046 (19)	-0.0041 (19)	-0.0051 (18)
C5	0.034 (2)	0.024 (2)	0.018 (3)	0.001 (2)	0.008 (2)	0.0026 (19)
C6	0.023 (2)	0.021 (2)	0.023 (3)	-0.0010 (18)	0.0028 (18)	0.0009 (19)
C11	0.028 (2)	0.025 (2)	0.022 (3)	0.005 (2)	-0.003 (2)	0.002 (2)

Geometric parameters (Å, °)

$\overline{Cs1-O1W}$	3 126 (3)	O2W—H21W	0 7900
Cs1—O2W	3 253 (3)	O2W - H22W	0.8400
Cs1	3.244 (4)	N41—C4	1.475 (6)
Cs1—O2W ⁱ	3.220 (3)	C1—C2	1.390 (6)
Cs1—O42 ⁱ	3.248 (4)	C1—C6	1.393 (6)
Cs1—O11 ⁱⁱ	3.215 (3)	C1—C11	1.505 (7)
Cs1—O12 ⁱⁱ	3.338 (4)	C2—C3	1.385 (7)
Cs1—O2W ⁱⁱⁱ	3.047 (4)	C3—C4	1.369 (6)
Cs1—O41 ⁱⁱⁱ	3.310 (4)	C4—C5	1.373 (6)
011—C11	1.260 (6)	C5—C6	1.374 (6)
O12—C11	1.246 (5)	С2—Н2	0.9500
O41—N41	1.226 (6)	С3—Н3	0.9500
O42—N41	1.221 (6)	С5—Н5	0.9500
O1W—H11W	0.8200	С6—Н6	0.9500
O1W—H12W	0.9300		
O1W—Cs1—O2W	73.36 (8)	Cs1 ^v —O12—C11	87.7 (3)
O1W—Cs1—O41	134.24 (9)	Cs1—O41—N41	132.6 (3)
O1W—Cs1—O2W ⁱ	72.89 (8)	Cs1—O41—Cs1 ⁱⁱⁱ	81.10 (9)
O1W—Cs1—O42 ⁱ	136.65 (10)	Cs1 ⁱⁱⁱ —O41—N41	135.6 (3)
O1W—Cs1—O11 ⁱⁱ	83.74 (9)	Cs1 ^{iv} —O42—N41	134.2 (3)
O1W—Cs1—O12 ⁱⁱ	106.92 (9)	H11W—O1W—H12W	110.00
O1W—Cs1—O2W ⁱⁱⁱ	129.32 (9)	Cs1—O1W—H11W	132.00
O1W—Cs1—O41 ⁱⁱⁱ	67.55 (9)	Cs1—O1W—H12W	104.00
O2W—Cs1—O41	61.92 (9)	Cs1 ^{iv} —O2W—H21W	94.00
O2W—Cs1—O2W ⁱ	139.38 (9)	Cs1—O2W—H21W	63.00
O2W-Cs1-O42 ⁱ	145.77 (10)	Cs1—O2W—H22W	117.00
O2W—Cs1—O11 ⁱⁱ	110.50 (8)	H21W—O2W—H22W	105.00
O2W—Cs1—O12 ⁱⁱ	86.77 (8)	Cs1 ⁱⁱⁱ —O2W—H22W	118.00
O2W—Cs1—O2W ⁱⁱⁱⁱ	94.93 (9)	Cs1 ⁱⁱⁱ —O2W—H21W	135.00
O2W—Cs1—O41 ⁱⁱⁱ	63.75 (10)	Cs1 ^{iv} —O2W—H22W	101.00
O2W ⁱ —Cs1—O41	151.44 (9)	O41—N41—O42	123.6 (4)
O41—Cs1—O42 ⁱ	84.76 (11)	O42—N41—C4	118.2 (4)
O11 ⁱⁱ —Cs1—O41	102.41 (9)	O41—N41—C4	118.3 (4)
O12 ⁱⁱ —Cs1—O41	63.24 (9)	C2C1C11	120.9 (4)
O2W ⁱⁱⁱ —Cs1—O41	66.80 (9)	C2—C1—C6	118.9 (4)
O41—Cs1—O41 ⁱⁱⁱ	98.90 (10)	C6—C1—C11	120.1 (4)
O2W ⁱ —Cs1—O42 ⁱ	74.49 (10)	C1—C2—C3	120.9 (4)
$O2W^{i}$ —Cs1—O11 ⁱⁱ	87.52 (8)	C2—C3—C4	117.9 (4)

O2W ⁱ —Cs1—O12 ⁱⁱ	124.49 (8)	C3—C4—C5	123.3 (4)
O2W ⁱ —Cs1—O2W ⁱⁱⁱ	89.33 (9)	N41—C4—C3	118.0 (4)
O2W ⁱ —Cs1—O41 ⁱⁱⁱ	82.79 (10)	N41—C4—C5	118.8 (4)
$O11^{ii}$ —Cs1—O42 ⁱ	67.02 (11)	C4—C5—C6	118.2 (4)
O12 ⁱⁱ —Cs1—O42 ⁱ	70.23 (10)	C1—C6—C5	120.9 (4)
$O2W^{iii}$ —Cs1—O42 ⁱ	77.45 (11)	O11—C11—O12	124.7 (4)
O41 ⁱⁱⁱ —Cs1—O42 ⁱ	134.58 (11)	O11—C11—C1	117.6 (4)
O11 ⁱⁱ —Cs1—O12 ⁱⁱ	39.52 (8)	O12—C11—C1	117.7 (4)
O2W ⁱⁱⁱⁱ —Cs1—O11 ⁱⁱ	143.86 (9)	C1—C2—H2	120.00
O11 ⁱⁱ —Cs1—O41 ⁱⁱⁱ	151.25 (9)	С3—С2—Н2	120.00
O2W ⁱⁱⁱ —Cs1—O12 ⁱⁱ	121.77 (9)	С2—С3—Н3	121.00
O12 ⁱⁱ —Cs1—O41 ⁱⁱⁱ	150.49 (9)	С4—С3—Н3	121.00
$O2W^{iii}$ —Cs1—O41 ⁱⁱⁱ	63.27 (9)	С4—С5—Н5	121.00
Cs1—O2W—Cs1 ^{iv}	139.38 (12)	С6—С5—Н5	121.00
Cs1—O2W—Cs1 ⁱⁱⁱ	85.07 (8)	С1—С6—Н6	119.00
Cs1 ^{iv} —O2W—Cs1 ⁱⁱⁱ	90.67 (9)	С5—С6—Н6	120.00
Cs1 ^v —O11—C11	93.0 (3)		
O1W-Cs1-O2W-Cs1 ^{iv}	-145.1 (2)	O1W—Cs1—O12 ⁱⁱ —C11 ⁱⁱ	-76.3 (3)
O1W—Cs1—O2W—Cs1 ⁱⁱⁱ	129.64 (10)	O2W—Cs1—O12 ⁱⁱ —C11 ⁱⁱ	-147.8 (3)
O41—Cs1—O2W—Cs1 ^{iv}	24.89 (16)	O41—Cs1—O12 ⁱⁱ —C11 ⁱⁱ	152.2 (3)
O41—Cs1—O2W—Cs1 ⁱⁱⁱ	-60.38 (9)	O1W—Cs1—O2W ⁱⁱⁱ —Cs1 ⁱⁱⁱ	-72.49 (11)
O2W ⁱ —Cs1—O2W—Cs1 ^{iv}	-179.98 (15)	O2W—Cs1—O2W ⁱⁱⁱ —Cs1 ⁱⁱⁱ	-0.03 (11)
O2W ⁱ —Cs1—O2W—Cs1 ⁱⁱⁱ	94.74 (13)	O41—Cs1—O2W ⁱⁱⁱ —Cs1 ⁱⁱⁱ	56.56 (9)
$O42^{i}$ — $Cs1$ — $O2W$ — $Cs1^{iv}$	10.4 (3)	O1W—Cs1—O41 ⁱⁱⁱ —Cs1 ⁱⁱⁱ	-134.37 (10)
O42 ⁱ —Cs1—O2W—Cs1 ⁱⁱⁱ	-74.9 (2)	O1W-Cs1-O41 ⁱⁱⁱ -N41 ⁱⁱⁱ	80.5 (4)
$O11^{ii}$ —Cs1—O2W—Cs1 ^{iv}	-68.59 (19)	O2W—Cs1—O41 ⁱⁱⁱ —Cs1 ⁱⁱⁱ	-52.52 (9)
O11 ⁱⁱ —Cs1—O2W—Cs1 ⁱⁱⁱ	-153.85 (8)	O2W—Cs1—O41 ⁱⁱⁱ —N41 ⁱⁱⁱ	162.4 (4)
$O12^{ii}$ — $Cs1$ — $O2W$ — $Cs1^{iv}$	-36.36 (18)	O41—Cs1—O41 ⁱⁱⁱ —Cs1 ⁱⁱⁱ	0.00 (10)
O12 ⁱⁱ —Cs1—O2W—Cs1 ⁱⁱⁱ	-121.63 (9)	O41—Cs1—O41 ⁱⁱⁱ —N41 ⁱⁱⁱ	-145.1 (4)
O2W ⁱⁱⁱ —Cs1—O2W—Cs1 ^{iv}	85.26 (18)	Cs1 ^v —O11—C11—C1	135.5 (3)
O2W ⁱⁱⁱⁱ —Cs1—O2W—Cs1 ⁱⁱⁱ	0.00 (9)	Cs1 ^v —O11—C11—O12	-43.3 (5)
O41 ⁱⁱⁱ —Cs1—O2W—Cs1 ^{iv}	142.2 (2)	Cs1 ^v —O12—C11—O11	41.3 (4)
O41 ⁱⁱⁱ —Cs1—O2W—Cs1 ⁱⁱⁱ	56.92 (9)	Cs1 ^v —O12—C11—C1	-137.5 (3)
O1W—Cs1—O41—N41	-79.8 (4)	Cs1—O41—N41—O42	99.6 (6)
O1W—Cs1—O41—Cs1 ⁱⁱⁱ	67.23 (13)	Cs1—O41—N41—C4	-80.5 (5)
O2W—Cs1—O41—N41	-93.3 (4)	Cs1 ⁱⁱⁱ —O41—N41—O42	-30.2 (7)
O2W—Cs1—O41—Cs1 ⁱⁱⁱ	53.78 (9)	Cs1 ⁱⁱⁱ —O41—N41—C4	149.7 (3)
O2W ⁱ —Cs1—O41—N41	121.7 (4)	Cs1 ^{iv} —O42—N41—O41	-7.8 (8)
$O2W^{i}$ —Cs1—O41—Cs1 ⁱⁱⁱ	-91.25 (19)	Cs1 ^{iv} —O42—N41—C4	172.3 (3)
O42 ⁱ —Cs1—O41—N41	78.6 (4)	O41—N41—C4—C5	-4.5 (6)
O42 ⁱ —Cs1—O41—Cs1 ⁱⁱⁱ	-134.36 (10)	O41—N41—C4—C3	175.5 (4)
O11 ⁱⁱ —Cs1—O41—N41	13.5 (4)	O42—N41—C4—C5	175.5 (4)
O11 ⁱⁱ —Cs1—O41—Cs1 ⁱⁱⁱ	160.58 (7)	O42—N41—C4—C3	-4.5 (6)
O12 ⁱⁱ —Cs1—O41—N41	8.1 (4)	C11—C1—C2—C3	177.4 (4)
O12 ⁱⁱ —Cs1—O41—Cs1 ⁱⁱⁱ	155.17 (11)	C2—C1—C6—C5	0.9 (6)
O2W ⁱⁱⁱ —Cs1—O41—N41	157.2 (4)	C6—C1—C2—C3	-0.4 (6)
O2W ⁱⁱⁱ —Cs1—O41—Cs1 ⁱⁱⁱ	-55.78 (8)	C6-C1-C11-O12	-4.4 (6)

O41 ⁱⁱⁱ —Cs1—O41—N41	-147.1 (4)	C11—C1—C6—C5	-176.9 (4)
$O41^{iii}$ — $Cs1$ — $O41$ — $Cs1^{iii}$	0.00 (11)	C2-C1-C11-O11	-1.0 (6)
O1W—Cs1—O2W ⁱ —Cs1 ⁱ	145.0 (2)	C2-C1-C11-O12	177.9 (4)
O2W—Cs1—O2W ⁱ —Cs1 ⁱ	179.97 (17)	C6-C1-C11-O11	176.8 (4)
O41—Cs1—O2W ⁱ —Cs1 ⁱ	-51.0 (3)	C1—C2—C3—C4	-0.3 (6)
$O1W$ — $Cs1$ — $O42^{i}$ — $N41^{i}$	-63.5 (5)	C2—C3—C4—C5	0.4 (7)
$O2W$ — $Cs1$ — $O42^i$ — $N41^i$	151.9 (4)	C2-C3-C4-N41	-179.6 (4)
$O41$ — $Cs1$ — $O42^{i}$ — $N41^{i}$	139.1 (5)	C3—C4—C5—C6	0.1 (7)
O1W—Cs1—O11 ⁱⁱ —C11 ⁱⁱ	145.7 (3)	N41—C4—C5—C6	-180.0 (4)
O2W—Cs1—O11 ⁱⁱ —C11 ⁱⁱ	76.1 (3)	C4—C5—C6—C1	-0.7 (6)
O41—Cs1—O11 ⁱⁱ —C11 ⁱⁱ	11.7 (3)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*+1/2, *y*-1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
O1 <i>W</i> —H11 <i>W</i> ····O12 ^{vi}	0.82	1.88	2.694 (5)	174
O1 <i>W</i> —H12 <i>W</i> ···O11 ^{vii}	0.93	1.81	2.728 (4)	173
O2W—H21 W ···O1 W ^{viii}	0.79	1.99	2.749 (5)	162
O2 <i>W</i> —H22 <i>W</i> ···O11 ^{vi}	0.84	1.91	2.753 (5)	174

Symmetry codes: (vi) x+1/2, -y+1/2, z+1/2; (vii) x-1/2, -y+1/2, z+1/2; (viii) -x+1, -y+1, -z+1.