

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(5-hydroxyisophthalato- κO^1)bis[4-(pyridine-3-carboxamido- κN^3)pyridinium]copper(II) tetrahydrate

Megan E. O'Donovan and Robert L. LaDuca*

Lyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA Correspondence e-mail: laduca@msu.edu

Received 7 November 2013: accepted 8 November 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.076; data-to-parameter ratio = 12.1.

In the title compound, $[Cu(C_{11}H_{10}N_3O)_2(C_8H_4O_5)_2]\cdot 4H_2O$, the Cu^{II} ion, located on a crystallographic inversion center, is coordinated in a square-planar environment by two *trans*-O atoms belonging to two monodentate 5-hydroxyisophthalate (hip) dianions and two *trans* nicotinamide pyridyl N-donor atoms from monodentate protonated pendant *N*-(pyridin-4yl)nicotinamide (4-pnaH) ligands. The protonated 4-pyridylamine groups engage in N-H⁺···O⁻ hydrogen-bond donation to unligated hip O atoms to construct supramolecular chain motifs parallel to [100]. Water molecules of crystallization, situated between the chains, engage in O-H···O hydrogen bonding to form supramolecular layers and the overall three-dimensional network structure.

Related literature

For the preparation of 4-pyridylnicotinamide, see: Gardner *et al.* (1954). For the preparation of other dicarboxylate coordination polymers containing 4-pyridylnicotinamide, see: Kumar (2009); Wilson *et al.* (2013)

Experimental

Crystal data $[Cu(C_{11}H_{10}N_3O)_2(C_8H_4O_5)_2]\cdot 4H_2O$ $M_r = 896.27$ metal-organic compounds

Mo $K\alpha$ radiation

 $0.50 \times 0.20 \times 0.18 \; \mathrm{mm}$

 $\mu = 0.67 \text{ mm}^-$

T = 173 K

Z = 2

Monoclinic, $P2_1/c$ a = 16.402 (2) Å b = 7.7699 (10) Å c = 16.403 (2) Å $\beta = 115.466$ (1)° V = 1887.3 (4) Å³

Data collection

Bruker APEXII CCD	15084 measured reflections
diffractometer	3483 independent reflections
Absorption correction: multi-scan	3122 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2012)	$R_{\rm int} = 0.025$
$T_{\min} = 0.686, \ T_{\max} = 0.745$	

Refinement

ŀ

v

3

2

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of
$VR(F^2) = 0.076$	independent and constrained
1 = 1.07	refinement
483 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
88 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond geometry	(Å.	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA····O4 ⁱ	0.87	1.85	2.7164 (18)	170
$O1W - H1WB \cdots O3^{ii}$	0.87	1.92	2.775 (2)	169
$O2W - H2WA \cdots O2$	0.87	1.97	2.814 (2)	163
$O2W - H2WB \cdot \cdot \cdot O2^{iii}$	0.87	1.94	2.8049 (18)	177
$O5-H5\cdots O1W$	0.84	1.81	2.6384 (18)	168
$N2-H2\cdots O2W^{iv}$	0.88	2.00	2.823 (2)	156
$N3-H3\cdots O3^{v}$	0.91 (3)	1.69 (3)	2.582 (2)	166 (2)
	(**)	. 1 1	(***)	1 . 1 ()

Symmetry codes: (i) -x, -y, -z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) -x, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT*; program(s) used to solve structure: *OLEX2* (Dolomanov *et al.*, 2009); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalMaker* (Palmer, 2007); software used to prepare material for publication: *OLEX2*.

We gratefully acknowledge Michigan State University for funding this work. We thank Dr A. Lifeson for helpful assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5361).

References

- Bruker (2006). *APEX2*. Bruker AXS, Inc., Madison, Wisconsin, USA. Bruker (2012). *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gardner, T. S., Wenis, E. & Lee, J. (1954). J. Org. Chem. 19, 753-757.
- Kumar, D. K. (2009). Inorg. Chim. Acta, 362, 1767-1771.
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wilson, J. A., Uebler, J. W. & LaDuca, R. L. (2013). CrystEngComm, 15, 5218– 5225.

supporting information

Acta Cryst. (2013). E69, m663 [doi:10.1107/S1600536813030675]

Bis(5-hydroxyisophthalato- κO^1)bis[4-(pyridine-3-carboxamido- κN^3)pyridinium]copper(II) tetrahydrate

Megan E. O'Donovan and Robert L. LaDuca

S1. Comment

In comparison to divalent metal coordination polymers containing rigid rod dipyridine ligands such as 4,4'-bipyridine, related phases containing the kinked and hydrogen-bonding capable dipodal ligand 4-pyridylnicotinamide (4-pna) are less widely reported (Kumar, 2009; Wilson *et al.*, 2013). The title compound was obtained in attempt at preparing a coordination polymer, as purple crystals through the hydrothermal reaction of copper nitrate, 5-hydroxyisophthalic acid (H2hip), and 4-pna in the presence of aqueous base.

The asymmetric unit of the title compound, which exists as a simple coordination complex [Cu(hip)₂(4-pnaH)₂]·4H₂O, contains a divalent copper atom on a crystallographic inversion center, a 4-pnaH ligand protonated at its unligated 4-pyridylamine terminus, a doubly deprotonated hip ligand, and two water molecules of crystallization. The copper atom is square planar coordinated (Fig. 1) by two *trans* O atoms belonging to two monodentate 5-hydroxyisophthalate (hip) dianions and two *trans* nicotinamide pyridyl N-donor atoms from 4-pnaH ligands.

Neighboring [Cu(hip)₂(4-pnaH)₂] coordination complexes are connected into supramolecular chains parallel to [1 0 0] by charge-separated N—H⁺···O⁻ hydrogen bonding between the protonated termini of the 4-pnaH ligands and unligated hip oxygen atoms (Fig. 2). These chains aggregate into undulating supramolecular layers (Fig. 3) by means of O—H···O hydrogen bonding mediated by the water molecules of crystallization. The main interchain aggregation mechanism involves O—H···O hydrogen bonding from water molecules (O2W) to unbound hip oxygen atoms (O2) belonging to the ligated monodentate carboxylate groups (Fig. 4). These water molecules also accept N—H···O hydrogen bonding from the central amide functional group of the 4-pnaH ligands. The aggregation of the supramolecular layers into the full three-dimensional crystal structure of the title compound is accomplished by O—H···O hydrogen bonding patterns. The hydroxyl group of the hip ligands in one layer donates hydrogen bonds to the water molecules of crystallization (O1W), which in turn serve as hydrogen bonding donors to unligated hip oxygen atoms in a neighboring layer (Fig. 5).

S2. Experimental

Copper(II) nitrate hydrate and 5-hydroxyisophthalic acid were obtained commercially. 4-Pyridylnicotinamide (4-pna) was prepared *via* a published procedure (Gardner *et al.*, 1954). A mixture of copper nitrate hydrate (65 mg, 0.28 mmol), 5-hydroxyisophthalic acid (51 mg, 0.28 mmol), 4-pna (55 mg, 0.28 mmol) and 10.0 g water (550 mmol), along with 0.5 mL of 1.0 M NaOH solution was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 373 K for 48 h. Purple blocks of the title compound were obtained.

S3. Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with $U_{iso} = 1.2U_{eq}(C)$. The H atom within the amide group of the 4-pna ligand was found in a difference Fourier map,

restrained with N—H = 0.9 Å and refined with $U_{iso} = 1.2 U_{eq}(N)$.

Figure 1

A complete molecule of the title compound, showing 50% probability ellipsoids, and atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, red O, light blue N, black C. Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Figure 2

A single supramolecular chain in the title compound. N—H⁺...O⁻ hydrogen bonding is shown as dashed lines.

Figure 3

Aggregation of supramolecular chains in the title compound, mediated by water molecules of crystallization (orange spheres). O—H…O hydrogen bonding is shown as dashed lines.

Figure 4

Layer of supramolecular chains in the title compound. O—H…O hydrogen bonding is shown as dashed lines.

Figure 5

Stacking of supramolecular layers within the title compound.

Bis(5-hydroxyisophthalato- κO^1)bis[4-(pyridine-3-carboxamido- κN^3)pyridinium]copper(II) tetrahydrate

Crystal data	
$[Cu(C_{11}H_{10}N_{3}O)_{2}(C_{8}H_{4}O_{5})_{2}]\cdot 4H_{2}O$ $M_{r} = 896.27$	a = 16.402 (2) Å b = 7.7699 (10) Å a = 16.402 (2) Å
Monoclinic, $P2_1/c$	c = 16.403 (2) A

 $\beta = 115.466 (1)^{\circ}$ $V = 1887.3 (4) Å^{3}$ Z = 2 F(000) = 926 $D_x = 1.577 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 Å$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2012) $T_{\min} = 0.686, T_{\max} = 0.745$

Refinement

Refinement on F^2

 $wR(F^2) = 0.076$

3483 reflections

288 parameters

0 restraints

S = 1.07

Least-squares matrix: full

Primary atom site location: iterative

 $R[F^2 > 2\sigma(F^2)] = 0.027$

Cell parameters from 9855 reflections $\theta = 2.5-25.4^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 173 KBlock, purple $0.50 \times 0.20 \times 0.18 \text{ mm}$

15084 measured reflections 3483 independent reflections 3122 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -19 \rightarrow 19$ $k = -9 \rightarrow 9$ $l = -19 \rightarrow 19$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0359P)^2 + 1.2489P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.42 \text{ e } \text{Å}^{-3}$

Special details

Experimental. SADABS-2012/1 (Bruker,2012) was used for absorption correction. wR2(int) was 0.0479 before and 0.0373 after correction. The Ratio of minimum to maximum transmission is 0.9208. The $\lambda/2$ correction factor is 0.0015. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.5000	0.5000	0.5000	0.01401 (10)	
01	0.39722 (8)	0.39435 (15)	0.40222 (8)	0.0194 (3)	
O1W	0.14145 (9)	-0.00460 (18)	-0.10490 (9)	0.0275 (3)	
H1WA	0.0933	-0.0485	-0.1035	0.041*	
H1WB	0.1260	0.0626	-0.1516	0.041*	
O2	0.46616 (8)	0.48157 (16)	0.31902 (9)	0.0228 (3)	
O2W	0.40905 (9)	0.7846 (2)	0.21591 (10)	0.0321 (3)	
H2WA	0.4346	0.6894	0.2425	0.048*	

H2WB	0.4483	0.8481	0.2072	0.048*
03	0.07175 (9)	0.2777 (2)	0.25064 (10)	0.0376 (4)
O4	0.01886 (9)	0.13283 (19)	0.12102 (9)	0.0304 (3)
05	0.27672 (8)	0.14834 (18)	0.02882 (8)	0.0255 (3)
Н5	0.2295	0.1022	-0.0096	0.038*
O6	0.15526 (9)	0.9500 (2)	0.45393 (9)	0.0310 (3)
N1	0.42685 (9)	0.71203 (18)	0.47758 (9)	0.0162 (3)
N2	0.23450 (10)	0.7950 (2)	0.58285 (10)	0.0209 (3)
H2	0.2868	0.7446	0.6140	0.025*
N3	0.05618 (10)	0.7640 (2)	0.69925 (11)	0.0243 (3)
Н3	0.0179 (18)	0.754 (3)	0.7256 (17)	0.049 (7)*
C1	0.43854 (12)	0.8397 (2)	0.42900 (11)	0.0195 (4)
H1	0.4862	0.8312	0.4109	0.023*
C2	0.38399 (13)	0.9829 (2)	0.40438 (13)	0.0241 (4)
H2A	0.3935	1.0713	0.3694	0.029*
C3	0.31522 (13)	0.9966 (2)	0.43120 (13)	0.0227 (4)
H3A	0.2769	1.0947	0.4152	0.027*
C4	0.30281 (11)	0.8649 (2)	0.48184 (11)	0.0184 (4)
C5	0.35943 (11)	0.7231 (2)	0.50298 (11)	0.0174 (3)
H5A	0.3503	0.6312	0.5363	0.021*
C6	0.22328 (12)	0.8746 (2)	0.50426 (12)	0.0212 (4)
C7	0.02556 (12)	0.8174 (3)	0.61421 (13)	0.0272 (4)
H7	-0.0363	0.8480	0.5824	0.033*
C8	0.08076 (12)	0.8293 (3)	0.57121 (13)	0.0255 (4)
H8	0.0576	0.8666	0.5102	0.031*
С9	0.17144 (12)	0.7858 (2)	0.61853 (12)	0.0196 (4)
C10	0.20149 (12)	0.7265 (3)	0.70722 (12)	0.0246 (4)
H10	0.2627	0.6932	0.7407	0.029*
C11	0.14239 (13)	0.7166 (3)	0.74539 (13)	0.0272 (4)
H11	0.1627	0.6755	0.8055	0.033*
C12	0.32288 (11)	0.3368 (2)	0.24693 (11)	0.0165 (3)
C13	0.24036 (11)	0.3152 (2)	0.25072 (11)	0.0167 (3)
H13	0.2332	0.3524	0.3024	0.020*
C14	0.16865 (11)	0.2397 (2)	0.17922 (11)	0.0174 (4)
C15	0.17939 (11)	0.1822 (2)	0.10391 (11)	0.0183 (4)
H15	0.1306	0.1283	0.0554	0.022*
C16	0.26192 (12)	0.2041 (2)	0.10003 (11)	0.0183 (4)
C17	0.33334 (11)	0.2836 (2)	0.17084 (12)	0.0187 (4)
H17	0.3891	0.3015	0.1674	0.022*
C18	0.07858 (12)	0.2138 (2)	0.18280 (12)	0.0218 (4)
C19	0.40097 (11)	0.4108 (2)	0.32675 (11)	0.0167 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01290 (16)	0.01534 (16)	0.01324 (16)	0.00149 (11)	0.00510 (12)	-0.00120 (10)
01	0.0185 (6)	0.0214 (6)	0.0162 (6)	-0.0007 (5)	0.0053 (5)	-0.0027 (5)
O1W	0.0196 (7)	0.0403 (9)	0.0210 (7)	-0.0074 (6)	0.0074 (6)	-0.0019 (6)

Acta Cryst. (2013). E69, m663

O2	0.0155 (6)	0.0255 (7)	0.0267 (7)	-0.0033 (5)	0.0084 (5)	-0.0035 (5)
O2W	0.0195 (7)	0.0429 (9)	0.0321 (8)	-0.0053 (6)	0.0096 (6)	0.0088 (7)
O3	0.0245 (7)	0.0638 (10)	0.0321 (8)	-0.0103 (7)	0.0193 (7)	-0.0163 (7)
O4	0.0189 (7)	0.0450 (9)	0.0263 (7)	-0.0103 (6)	0.0088 (6)	-0.0057 (6)
05	0.0225 (7)	0.0359 (8)	0.0209 (7)	-0.0062 (6)	0.0119 (6)	-0.0104 (6)
O6	0.0217 (7)	0.0413 (8)	0.0309 (8)	0.0147 (6)	0.0121 (6)	0.0113 (6)
N1	0.0156 (7)	0.0166 (7)	0.0149 (7)	-0.0006 (6)	0.0051 (6)	-0.0022 (5)
N2	0.0148 (7)	0.0278 (8)	0.0207 (8)	0.0068 (6)	0.0081 (6)	0.0018 (6)
N3	0.0181 (8)	0.0325 (9)	0.0260 (8)	-0.0007 (7)	0.0130 (7)	-0.0050 (7)
C1	0.0183 (9)	0.0224 (9)	0.0188 (9)	-0.0021 (7)	0.0090 (7)	-0.0018 (7)
C2	0.0288 (10)	0.0189 (9)	0.0270 (10)	-0.0012 (8)	0.0142 (8)	0.0041 (7)
C3	0.0239 (10)	0.0178 (9)	0.0246 (10)	0.0050 (7)	0.0086 (8)	0.0019 (7)
C4	0.0170 (8)	0.0206 (9)	0.0167 (8)	0.0014 (7)	0.0062 (7)	-0.0017 (7)
C5	0.0172 (8)	0.0190 (8)	0.0164 (8)	0.0001 (7)	0.0076 (7)	0.0002 (7)
C6	0.0180 (9)	0.0222 (9)	0.0231 (9)	0.0029 (7)	0.0086 (8)	-0.0013 (7)
C7	0.0149 (9)	0.0362 (11)	0.0288 (10)	0.0041 (8)	0.0079 (8)	-0.0011 (8)
C8	0.0188 (9)	0.0342 (11)	0.0224 (9)	0.0045 (8)	0.0078 (8)	0.0017 (8)
C9	0.0171 (9)	0.0205 (9)	0.0218 (9)	0.0008 (7)	0.0091 (7)	-0.0057 (7)
C10	0.0153 (9)	0.0350 (11)	0.0218 (9)	0.0032 (8)	0.0064 (8)	0.0005 (8)
C11	0.0211 (9)	0.0399 (12)	0.0207 (9)	0.0012 (8)	0.0089 (8)	-0.0003 (8)
C12	0.0171 (8)	0.0146 (8)	0.0169 (8)	0.0008 (7)	0.0064 (7)	0.0014 (7)
C13	0.0178 (8)	0.0181 (8)	0.0143 (8)	0.0020 (7)	0.0069 (7)	0.0009 (7)
C14	0.0161 (8)	0.0180 (8)	0.0183 (8)	0.0003 (7)	0.0077 (7)	0.0034 (7)
C15	0.0165 (8)	0.0205 (9)	0.0151 (8)	-0.0018 (7)	0.0040 (7)	-0.0008 (7)
C16	0.0214 (9)	0.0192 (9)	0.0158 (8)	0.0008 (7)	0.0093 (7)	-0.0004 (7)
C17	0.0154 (8)	0.0203 (9)	0.0216 (9)	0.0004 (7)	0.0091 (7)	0.0009 (7)
C18	0.0178 (9)	0.0282 (10)	0.0199 (9)	-0.0003 (8)	0.0085 (8)	0.0031 (7)
C19	0.0146 (8)	0.0130 (8)	0.0207 (9)	0.0036 (7)	0.0058 (7)	-0.0017 (7)

Geometric parameters (Å, °)

Cu1—O1	1.9399 (12)	C2—C3	1.380 (3)	
Cu1—O1 ⁱ	1.9399 (12)	С3—НЗА	0.9500	
Cu1—N1 ⁱ	1.9772 (14)	C3—C4	1.387 (3)	
Cu1—N1	1.9773 (14)	C4—C5	1.386 (2)	
O1—C19	1.272 (2)	C4—C6	1.502 (2)	
O1W—H1WA	0.8701	C5—H5A	0.9500	
O1W—H1WB	0.8701	С7—Н7	0.9500	
O2—C19	1.256 (2)	C7—C8	1.369 (3)	
O2W—H2WA	0.8698	C8—H8	0.9500	
O2W—H2WB	0.8700	C8—C9	1.392 (2)	
O3—C18	1.267 (2)	C9—C10	1.398 (3)	
O4—C18	1.236 (2)	C10—H10	0.9500	
O5—H5	0.8400	C10—C11	1.364 (3)	
O5—C16	1.362 (2)	C11—H11	0.9500	
O6—C6	1.216 (2)	C12—C13	1.392 (2)	
N1-C1	1.337 (2)	C12—C17	1.394 (2)	
N1—C5	1.342 (2)	C12—C19	1.498 (2)	

N2—H2	0 8800	C13—H13	0 9500
N2-C6	1 369 (2)	C13 - C14	1.385(2)
N2-C9	1 392 (2)	C14-C15	1.303(2) 1.394(2)
N3_H3	0.91(3)	C_{14} C 18	1.597(2) 1.517(2)
N3—C7	1,330(3)	C15—H15	0.9500
N3 C11	1.330(3) 1.337(2)	C15_C16	1,303(2)
	1.557 (2)	$C_{15} = C_{10}$	1.393(2)
$C_1 = C_2$	1,275 (2)	$C_{10} = C_{17}$	0.0500
$C_1 = C_2$	1.575 (5)	С1/—Н1/	0.9300
C2—H2A	0.9500		
01-Cu1-01 ⁱ	180.0	N3—C7—C8	121.77 (17)
O1 ⁱ —Cu1—N1 ⁱ	87.52 (5)	C8—C7—H7	119.1
$O1$ — $Cu1$ — $N1^i$	92.48 (5)	С7—С8—Н8	120.6
$O1^{i}$ —Cu1—N1	92.48 (5)	C7—C8—C9	118.76 (18)
01—Cu1—N1	87.52 (5)	C9—C8—H8	120.6
$N1^{i}$ —Cu1—N1	18000(7)	$N^2 - C^9 - C^{10}$	117 46 (15)
C19-O1-Cu1	111 94 (11)	C_{8} C_{9} N_{2}	124 21 (16)
H1WA = O1W = H1WB	109 5	C_{8} C_{9} C_{10}	124.21(10) 118 32 (16)
$H_2W_{\Delta} = O_2W = H_2W_B$	109.5	C9-C10-H10	120.2
112 WA = 02 W = 112 WB	109.5	$C_{2} = C_{10} = 110$	120.2 110.61 (17)
$C_{10} = 0.05 = 0.05$	109.3 110.87 (11)	$C_{11} = C_{10} = C_{9}$	119.01 (17)
C1 = N1 = C01	119.07(11) 110.10(15)	$\frac{11}{10}$	120.2 120.91(19)
CI = NI = CS	119.10 (13)	$N_{2} = C_{11} = U_{11}$	120.81 (18)
CS—NI—Cui	120.71 (11)	N3—CII—HII	119.6
C6—N2—H2	116.7	CIO—CII—HII	119.6
C6—N2—C9	126.57 (15)	C13—C12—C17	120.07 (16)
C9—N2—H2	116.7	C13—C12—C19	119.32 (15)
C7—N3—H3	120.0 (16)	C17—C12—C19	120.56 (15)
C7—N3—C11	120.68 (17)	C12—C13—H13	120.0
C11—N3—H3	119.3 (16)	C14—C13—C12	120.09 (15)
N1—C1—H1	118.9	C14—C13—H13	120.0
N1—C1—C2	122.24 (16)	C13—C14—C15	120.09 (16)
C2—C1—H1	118.9	C13—C14—C18	120.67 (15)
C1—C2—H2A	120.5	C15—C14—C18	119.21 (16)
C1—C2—C3	119.10 (17)	C14—C15—H15	120.1
C3—C2—H2A	120.5	C16—C15—C14	119.81 (16)
С2—С3—НЗА	120.5	C16—C15—H15	120.1
C2—C3—C4	119.02 (16)	O5-C16-C15	122.39 (16)
С4—С3—НЗА	120.5	O5-C16-C17	117.44 (15)
C3—C4—C6	118.46 (16)	C17—C16—C15	120.16 (15)
C5—C4—C3	118.77 (16)	C12—C17—H17	120.1
C5—C4—C6	122.53 (16)	C16—C17—C12	119.74 (16)
N1—C5—C4	121.75 (16)	C16—C17—H17	120.1
N1—C5—H5A	119.1	03-018-014	115.95 (16)
C4—C5—H5A	119.1	04—C18—O3	125.54 (16)
06—C6—N2	124 73 (16)	04-C18-C14	118 50 (16)
06	119 88 (16)	01 - C19 - C12	115 53 (15)
N2-C6-C4	115.40 (15)	02 - C19 - 012	122.79 (15)
N3-C7-H7	119.1	02 - C19 - C12	121.66 (15)
		02 017 012	1=1.00(12)

-178.48 (11)	C7 C8 C0 N2	170.01 (10)
	C/C3N2	-17/9.01 (18)
173.90 (14)	C7—C8—C9—C10	2.0 (3)
-174.92 (13)	C8—C9—C10—C11	-1.5 (3)
-99.24 (13)	C9—N2—C6—O6	0.2 (3)
80.76 (13)	C9—N2—C6—C4	179.90 (16)
74.23 (13)	C9—C10—C11—N3	-0.4 (3)
-105.77 (13)	C11—N3—C7—C8	-1.3 (3)
-177.43 (15)	C12—C13—C14—C15	1.1 (3)
91.90 (11)	C12-C13-C14-C18	179.40 (15)
-88.10 (11)	C13—C12—C17—C16	-2.0 (3)
0.5 (3)	C13—C12—C19—O1	23.5 (2)
179.44 (18)	C13—C12—C19—O2	-157.68 (16)
-0.6 (3)	C13—C14—C15—C16	-1.3 (3)
-1.4 (2)	C13—C14—C18—O3	5.6 (3)
-0.3 (3)	C13—C14—C18—O4	-173.92 (17)
-0.7 (3)	C14—C15—C16—O5	179.04 (16)
-175.17 (16)	C14—C15—C16—C17	-0.2 (3)
1.6 (3)	C15—C14—C18—O3	-176.14 (17)
28.3 (3)	C15—C14—C18—O4	4.4 (3)
-151.50 (17)	C15—C16—C17—C12	1.9 (3)
0.3 (3)	C17—C12—C13—C14	0.5 (2)
-146.00 (19)	C17—C12—C19—O1	-154.05 (15)
34.2 (2)	C17—C12—C19—O2	24.8 (2)
12.5 (3)	C18—C14—C15—C16	-179.57 (16)
-168.55 (18)	C19—C12—C13—C14	-177.03 (15)
175.84 (15)	C19—C12—C17—C16	175.49 (15)
	$\begin{array}{c} 173.90 (14) \\ -174.92 (13) \\ -99.24 (13) \\ 80.76 (13) \\ 74.23 (13) \\ -105.77 (13) \\ -105.77 (13) \\ -177.43 (15) \\ 91.90 (11) \\ -88.10 (11) \\ 0.5 (3) \\ 179.44 (18) \\ -0.6 (3) \\ -1.4 (2) \\ -0.3 (3) \\ -0.7 (3) \\ -175.17 (16) \\ 1.6 (3) \\ 28.3 (3) \\ -151.50 (17) \\ 0.3 (3) \\ -146.00 (19) \\ 34.2 (2) \\ 12.5 (3) \\ -168.55 (18) \\ 175.84 (15) \end{array}$	173.90(14) $C7-C8-C9-C10$ $-174.92(13)$ $C8-C9-C10-C11$ $-99.24(13)$ $C9-N2-C6-06$ $80.76(13)$ $C9-N2-C6-C4$ $74.23(13)$ $C9-C10-C11-N3$ $-105.77(13)$ $C11-N3-C7-C8$ $-177.43(15)$ $C12-C13-C14-C15$ $91.90(11)$ $C12-C13-C14-C18$ $-88.10(11)$ $C13-C12-C19-01$ $179.44(18)$ $C13-C12-C19-02$ $-0.6(3)$ $C13-C14-C18-03$ $-0.3(3)$ $C13-C14-C18-03$ $-0.3(3)$ $C15-C14-C18-03$ $-0.7(3)$ $C15-C16-C17$ $-16(3)$ $C15-C14-C18-03$ $28.3(3)$ $C15-C14-C18-04$ $-151.50(17)$ $C15-C16-C17-C12$ $0.3(3)$ $C17-C12-C19-01$ $34.2(2)$ $C17-C12-C19-02$ $12.5(3)$ $C18-C14-C15-C16$ $-168.55(18)$ $C19-C12-C13-C14$ $-175.84(15)$ $C19-C12-C17-C16$

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H···A
O1 <i>W</i> —H1 <i>WA</i> ···O4 ⁱⁱ	0.87	1.85	2.7164 (18)	170
O1 <i>W</i> —H1 <i>WB</i> ····O3 ⁱⁱⁱ	0.87	1.92	2.775 (2)	169
O2 <i>W</i> —H2 <i>WA</i> ···O2	0.87	1.97	2.814 (2)	163
O2W— $H2WB$ ···O2 ^{iv}	0.87	1.94	2.8049 (18)	177
O5—H5…O1W	0.84	1.81	2.6384 (18)	168
N2—H2···O2 W^{\vee}	0.88	2.00	2.823 (2)	156
N3—H3····O3 ^{vi}	0.91 (3)	1.69 (3)	2.582 (2)	166 (2)

Symmetry codes: (ii) -x, -y, -z; (iii) x, -y+1/2, z-1/2; (iv) -x+1, y+1/2, -z+1/2; (v) x, -y+3/2, z+1/2; (vi) -x, -y+1, -z+1.