Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Acetylphenyl)-4-methoxybenzenesulfonamide

Thawanrat Kobkeatthawin,^a Suchada Chantrapromma,^a*‡ C. S. Chidan Kumar^b and Hoong-Kun Fun^b§

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: suchada.c@psu.ac.th

Received 21 October 2013; accepted 31 October 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.135; data-to-parameter ratio = 21.0.

The title compound, $C_{15}H_{15}NO_4S$, was obtained by the condensation of 4-aminoacetophenone and 4-methoxybenzenesulfonyl chloride. The dihedral angle between the benzene rings is 86.56 (9)° and the molecule has an approximate V-shaped conformation. The C atom of the methoxy group is roughly coplanar with its attached ring [deviation = 0.177 (3) Å], as is the methyl C atom of the acetyl group with its ring [deviation = 0.065 (2) Å]. An intramolecular C-H···O interaction generates an *S*(6) ring. In the crystal, N-H···O and C-H···O hydrogen bonds link the molecules into [010] chains. Weak C-H··· π interactions are also observed.

Related literature

For related structures, see: Li *et al.* (2006); Xu *et al.* (2005). For background to and applications of sulfonamides, see: Alsughayer *et al.* (2011); Dragostin *et al.* (2013);

Experimental

Crystal data $C_{15}H_{15}NO_4S$ $M_r = 305.35$

Monoclinic, $P2_1/c$ a = 12.8220 (3) Å

§ Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009. b = 8.2709 (2) Å c = 14.6165 (4) Å $\beta = 112.841 (1)^{\circ}$ $V = 1428.52 (6) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII CCD	15571 measured reflections
diffractometer	4120 independent reflections
Absorption correction: multi-scan	2593 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.043$
$T_{\min} = 0.894, \ T_{\max} = 0.924$	

Refinement

R[

wÌ

S

41

19

$F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of
$R(F^2) = 0.135$	independent and constrained
= 1.04	refinement
20 reflections	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
6 parameters	$\Delta \rho_{\rm min} = -0.34 \ {\rm e} \ {\rm \AA}^{-3}$

Mo $K\alpha$ radiation

 $0.48 \times 0.44 \times 0.33$ mm

 $\mu = 0.24 \text{ mm}^{-1}$

T = 298 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C7-C12 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N1 \cdots O3^{i}$	0.85 (2)	2.05 (2)	2.896 (2)	172.3 (19)
$C8-H8A\cdots O2$	0.93	2.38	3.030 (2)	127
C9−H9A···O1 ⁱⁱ	0.93	2.53	3.459 (2)	174
$C14-H14A\cdots Cg1^{i}$	0.96	2.83	3.630 (3)	141
$C14 - H14C \cdots Cg2^{iii}$	0.96	2.83	3.529 (2)	130
$C15 - H15C \cdots Cg1^{iv}$	0.96	2.99	3.804 (3)	144

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 2; (iv) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PLATON* (Spek, 2009), *Mercury* (Macrae *et al.*, 2006) and *publCIF* (Westrip, 2010).

Financial support from the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0137/2554) is gratefully acknowledged. CSCK thanks the Universiti Sains Malaysia for a postdoctoral research fellowship. The authors extend their appreciation to Prince of Songkla University and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7153).

References

- Alsughayer, A., Elassar, A.-Z. A., Mustafa, S. & Sagheer, F. A. (2011). J. Biomater. Nanobiotechnol. 2, 144–149.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dragostin, O. M., Lupascu, F., Vasile, C., Mares, M., Nastasa, V., Moraru, R. F., Pieptu, D. & Profire, L. (2013). *Molecules*, **18**, 4140–4157.
- Li, X.-M., Zeng, C.-C., Xu, Y.-S., Yan, H., Zheng, D.-W. & Zhong, R. G. (2006). J. Chem. Crystallogr. **36**, 357–363.

[‡] Thomson Reuters ResearcherID: A-5085-2009.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* 39, 453–457.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Xu, Y.-S., Zeng, C.-C., Li, X.-M. & Zhong, R.-G. (2005). Acta Cryst. E61, 03802–03804.

supporting information

Acta Cryst. (2013). E69, o1750-o1751 [doi:10.1107/S1600536813029875]

N-(4-Acetylphenyl)-4-methoxybenzenesulfonamide

Thawanrat Kobkeatthawin, Suchada Chantrapromma, C. S. Chidan Kumar and Hoong-Kun Fun

S1. Comment

Sulfonamides containing an $-SO_2NH-$ group can be found in many pharmacologically active compounds: recent reports have described antibacterial (Alsughayer *et al.*, 2011) and antioxidant (Dragostin *et al.*, 2013) behaviour. As part of our ongoing research in this field, the title compound (I), a 4-methoxybenzene-sulfonamide derivative, was synthesized for being used as starting material for various syntheses. Herein the crystal structure of (I) is reported.

Figure 1 shows the molecular structure of (I), $C_{15}H_{15}NO_4S$, suggesting a V-shaped conformation (Fig. 2). The benzene rings make the dihedral angle of 86.56 (9)°. The methoxy group is almost co-planar with its attached benzene ring with the deviation of 0.0310 (2) Å for the eight non H atoms (C1–C6/O4/C15) and the torsion angle C15–O4–C4–C5 = -2.2 (3)°. The amide group and acetyl substituent also lie in almost the same plane with the bound benzene ring with the deviation of 0.0220 (2) Å for the ten non H atoms (C7–C14/N1/O3) and the torsion angles of C11–C10–C13–O3 = -177.28 (18)° and C11–C10–C13–C14 = 2.6 (3)°. The dihedral angle between these two planes [C1–C6/O4/C15 and C7–C14/N1/O3] is 88.38 (7)° (Fig. 2). An intramolecular C8—H8A···O2 weak interaction generates an S(6) ring (Fig. 1) Bond distances of (I) are comparable with those in related structures (Li *et al.*, 2006 and Xu *et al.*, 2005).

In the crystal (Fig. 3), the molecules are linked by N—H···O hydrogen bonds and C—H···O weak interactions (Table 1) into chains along [010]. Weak C—H··· π interactions are also observed (Table 1).

S2. Experimental

The title compound was synthesized by condensation of 4-aminoacetophenone (0.40 g, 3 mmol) and 4-methoxybenzenesulfonyl chloride in CH_2Cl_2 (30 ml) in the presence of pyridine. The reaction mixture was refluxed for 24 hr at 40 °C and monitored with TLC for the completion of the reaction. Water was then added and the concoction was extracted with CH_2Cl_2 . The solvent was evaporated under reduced pressure to yield the resulting solid of the title compound (yield 68%). Yellow blocks of (I) were recrystalized from acetone: CH_3OH solution (1:1 ν/ν) by slow evaporation of the solvent at room temperature after several days, Mp. 448–449 K.

S3. Refinement

Amide H atoms was located from the difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and 0.96 for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

Figure 1

The molecular structure of (I), showing 40% probability displacement ellipsoids. The intramolecular C—H…O hydrogen bond is shown as a dashed line.

Figure 2

The V-shape conformation of the molecule.

Figure 3

The crystal packing of the title compound viewed along the c axis. Hydrogen bonds were shown as dashed lines.

N-(4-Acetylphenyl)-4-methoxybenzenesulfonamide

Crystal data C₁₅H₁₅NO₄S $M_r = 305.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.8220 (3) Å b = 8.2709 (2) Å c = 14.6165 (4) Å $\beta = 112.841$ (1)° V = 1428.52 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.894, \ T_{\max} = 0.924$

F(000) = 640 $D_x = 1.420 \text{ Mg m}^{-3}$ Melting point = 448–449 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 4120 reflections $\theta = 1.7-29.9^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 298 KBlock, yellow $0.48 \times 0.44 \times 0.33 \text{ mm}$

15571 measured reflections 4120 independent reflections 2593 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 29.9^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -17 \rightarrow 17$ $k = -11 \rightarrow 11$ $l = -20 \rightarrow 19$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
4120 reflections	and constrained refinement
196 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0625P)^2 + 0.0913P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.21179 (4)	1.00630 (5)	1.08283 (4)	0.04186 (15)	
01	0.21200 (12)	1.17413 (16)	1.10664 (11)	0.0546 (4)	
O2	0.14687 (11)	0.89569 (17)	1.11408 (11)	0.0529 (4)	
O3	0.48523 (14)	0.21499 (16)	1.11408 (12)	0.0624 (4)	
O4	0.05688 (12)	0.98389 (16)	0.64850 (11)	0.0540 (4)	
N1	0.34483 (13)	0.95337 (19)	1.13298 (12)	0.0408 (4)	
C1	0.16988 (14)	0.9867 (2)	0.95362 (14)	0.0378 (4)	
C2	0.22355 (15)	1.0787 (2)	0.90451 (14)	0.0418 (4)	
H2A	0.2849	1.1439	0.9404	0.050*	
C3	0.18492 (15)	1.0722 (2)	0.80272 (15)	0.0432 (4)	
H3A	0.2209	1.1321	0.7697	0.052*	
C4	0.09193 (16)	0.9760 (2)	0.74878 (14)	0.0415 (4)	
C5	0.04067 (17)	0.8825 (2)	0.79829 (15)	0.0487 (5)	
H5A	-0.0201	0.8161	0.7627	0.058*	
C6	0.07979 (16)	0.8882 (2)	0.90017 (15)	0.0466 (5)	
H6A	0.0454	0.8254	0.9333	0.056*	
C7	0.38891 (14)	0.7983 (2)	1.12776 (12)	0.0353 (4)	
C8	0.32855 (16)	0.6554 (2)	1.12191 (14)	0.0422 (4)	
H8A	0.2549	0.6591	1.1191	0.051*	
C9	0.37892 (16)	0.5091 (2)	1.12029 (15)	0.0427 (4)	
H9A	0.3381	0.4144	1.1157	0.051*	
C10	0.48954 (16)	0.4993 (2)	1.12535 (13)	0.0381 (4)	
C11	0.54871 (16)	0.6432 (2)	1.13233 (14)	0.0422 (4)	
H11A	0.6230	0.6394	1.1368	0.051*	

C12	0.49943 (15)	0.7902 (2)	1.13275 (14)	0.0413 (4)
H12A	0.5400	0.8849	1.1364	0.050*
C13	0.54079 (17)	0.3380 (2)	1.12393 (14)	0.0427 (4)
C14	0.66124 (18)	0.3279 (3)	1.13447 (15)	0.0542 (5)
H14A	0.6814	0.2168	1.1316	0.081*
H14B	0.7094	0.3736	1.1970	0.081*
H14C	0.6704	0.3870	1.0815	0.081*
C15	-0.0427 (2)	0.8943 (3)	0.59083 (17)	0.0666 (6)
H15A	-0.0602	0.9117	0.5215	0.100*
H15B	-0.1050	0.9300	0.6067	0.100*
H15C	-0.0297	0.7812	0.6057	0.100*
H1N1	0.3889 (18)	1.031 (2)	1.1334 (15)	0.047 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	U^{13}	U ²³
S1	0.0414 (2)	0.0396 (3)	0.0475 (3)	0.00720 (19)	0.0204 (2)	-0.00056 (19)
O1	0.0597 (9)	0.0422 (8)	0.0628 (9)	0.0125 (6)	0.0248 (7)	-0.0084 (6)
O2	0.0485 (8)	0.0588 (9)	0.0603 (9)	0.0041 (6)	0.0309 (7)	0.0070 (7)
O3	0.0769 (10)	0.0329 (7)	0.0842 (11)	-0.0013 (7)	0.0386 (9)	0.0008 (7)
O4	0.0561 (9)	0.0552 (9)	0.0464 (9)	-0.0140 (7)	0.0152 (7)	-0.0038 (6)
N1	0.0411 (8)	0.0332 (8)	0.0468 (10)	0.0015 (7)	0.0156 (7)	-0.0022 (7)
C1	0.0337 (8)	0.0337 (9)	0.0464 (10)	0.0046 (7)	0.0158 (8)	0.0028 (7)
C2	0.0365 (9)	0.0369 (10)	0.0508 (12)	-0.0058 (7)	0.0156 (8)	-0.0021 (8)
C3	0.0404 (10)	0.0378 (10)	0.0528 (12)	-0.0039 (8)	0.0196 (9)	0.0016 (8)
C4	0.0412 (9)	0.0374 (10)	0.0438 (11)	0.0011 (8)	0.0143 (8)	-0.0015 (8)
C5	0.0444 (10)	0.0437 (11)	0.0526 (12)	-0.0126 (8)	0.0130 (9)	-0.0018 (9)
C6	0.0435 (10)	0.0425 (10)	0.0552 (12)	-0.0073 (8)	0.0209 (9)	0.0039 (9)
C7	0.0381 (8)	0.0344 (9)	0.0321 (9)	0.0022 (7)	0.0121 (7)	-0.0007 (7)
C8	0.0385 (9)	0.0405 (10)	0.0496 (11)	-0.0001 (8)	0.0193 (8)	0.0004 (8)
C9	0.0455 (10)	0.0337 (9)	0.0513 (11)	-0.0035 (8)	0.0213 (9)	0.0010 (8)
C10	0.0440 (9)	0.0346 (9)	0.0356 (9)	0.0016 (7)	0.0153 (8)	0.0026 (7)
C11	0.0373 (9)	0.0411 (10)	0.0494 (11)	0.0022 (8)	0.0179 (8)	0.0020 (8)
C12	0.0391 (9)	0.0346 (9)	0.0506 (11)	-0.0030 (7)	0.0180 (8)	0.0004 (8)
C13	0.0552 (11)	0.0377 (10)	0.0356 (10)	0.0069 (8)	0.0180 (9)	0.0038 (7)
C14	0.0590 (12)	0.0497 (12)	0.0530 (13)	0.0166 (10)	0.0208 (10)	-0.0003 (9)
C15	0.0587 (14)	0.0790 (16)	0.0519 (14)	-0.0175 (12)	0.0103 (11)	-0.0074 (12)

Geometric parameters (Å, °)

<u>S1—O2</u>	1.4261 (14)	C7—C12	1.392 (2)	
S101	1.4308 (13)	C7—C8	1.397 (2)	
S1—N1	1.6335 (16)	C8—C9	1.376 (2)	
S1—C1	1.7590 (19)	C8—H8A	0.9300	
O3—C13	1.218 (2)	C9—C10	1.394 (3)	
O4—C4	1.358 (2)	С9—Н9А	0.9300	
O4—C15	1.433 (3)	C10—C11	1.394 (2)	
N1—C7	1.416 (2)	C10-C13	1.491 (2)	

N1—H1N1	0.85 (2)	C11—C12	1.371 (2)
C1—C6	1.381 (3)	C11—H11A	0.9300
C1—C2	1.397 (3)	C12—H12A	0.9300
C2—C3	1.375 (3)	C13—C14	1,494 (3)
$C_2 H_2 A$	0.9300	C14—H14A	0.9600
$C_2 = C_1$	1,205(2)	$C_{14} = H_{14}$	0.9600
$C_3 = U_2 A$	1.393 (3)		0.9000
C3—H3A	0.9300		0.9600
C4—C5	1.387 (3)	CI5—HISA	0.9600
C5—C6	1.375 (3)	C15—H15B	0.9600
С5—Н5А	0.9300	C15—H15C	0.9600
С6—Н6А	0.9300		
O2—S1—O1	119.39 (9)	C9—C8—C7	119.50 (17)
O2—S1—N1	108.79 (8)	С9—С8—Н8А	120.3
O1—S1—N1	104.35 (9)	C7—C8—H8A	120.3
02—S1—C1	108.17 (9)	C8—C9—C10	121.67 (17)
01 - S1 - C1	108 75 (8)	C8—C9—H9A	119.2
NI SI CI	106.72 (8)	C_{10} C_{9} H_{9A}	110.2
$C_{1} = C_{1}$	100.72(6)	C_{10} C_{10} C_{10} C_{10}	119.2
C4 - C13	117.12(10)	$C_{11} = C_{10} = C_{12}$	117.90 (10)
C/—NI—SI	126.00 (13)		122.34 (17)
C/—NI—HINI	113.8 (14)	C9—C10—C13	119.76 (16)
S1—N1—H1N1	112.0 (14)	C12—C11—C10	121.26 (17)
C6—C1—C2	120.09 (18)	C12—C11—H11A	119.4
C6—C1—S1	120.10 (15)	C10-C11-H11A	119.4
C2—C1—S1	119.69 (14)	C11—C12—C7	120.25 (16)
C3—C2—C1	119.49 (17)	C11—C12—H12A	119.9
C3—C2—H2A	120.3	C7—C12—H12A	119.9
C1—C2—H2A	120.3	O3—C13—C10	120.55 (18)
$C_{2}-C_{3}-C_{4}$	120 26 (18)	O3-C13-C14	119 98 (17)
$C_2 - C_3 - H_3 A$	119.9	C10-C13-C14	119.90(17) 119.47(17)
C_{4} C_{3} H_{3} A	110.0	C_{13} C_{14} H_{14A}	109.5
$C_4 = C_5 = MSK$	119.9 124.41.(17)	C_{13} C_{14} H_{14} H	109.5
04 - 04 - 03	124.41(17)		109.5
04-04-03	115.76 (17)	H14A - C14 - H14B	109.5
C5-C4-C3	119.82 (18)	C13—C14—H14C	109.5
C6—C5—C4	119.90 (18)	H14A—C14—H14C	109.5
C6—C5—H5A	120.0	H14B—C14—H14C	109.5
C4—C5—H5A	120.0	O4—C15—H15A	109.5
C5—C6—C1	120.40 (18)	O4—C15—H15B	109.5
С5—С6—Н6А	119.8	H15A—C15—H15B	109.5
С1—С6—Н6А	119.8	O4—C15—H15C	109.5
C12—C7—C8	119.41 (16)	H15A—C15—H15C	109.5
C12—C7—N1	117.40 (16)	H15B—C15—H15C	109.5
C8—C7—N1	123 14 (17)		
02 - 51 - N1 - C7	53 22 (18)	$C^{2}-C^{1}-C^{2}-C^{5}$	-14(3)
01 S1 N1 C7	-178 21 (15)	$C_2 - C_1 - C_0 - C_3$	1.7(3)
$C_1 = S_1 = N_1 = C_7$	1/0.31(13)	S1 = C1 = C0 = C3	1/4.03(13)
$C_1 \rightarrow S_1 \rightarrow N_1 \rightarrow C_1$	-03.27(17)	SI - INI - C/ - CI2	151.37 (15)
02 - S1 - C1 - C6	5.98 (17)	S1-N1-C/-C8	-31.2 (3)

$\begin{array}{c} 01 \\ - S1 \\ - C1 \\ - C6 \\ 02 \\ - S1 \\ - C1 \\ - C2 \\ 01 \\ - S1 \\ - C1 \\ - C2 \\ 01 \\ - S1 \\ - C1 \\ - C2 \\ - C3 \\ S1 \\ - C1 \\ - C2 \\ - C3 \\ C1 \\ - C2 \\ - C3 \\ - C4 \\ - C5 \end{array}$	-125.08 (15) 122.88 (15) -177.94 (13) 51.00 (16) -61.03 (15) 1.0 (3) -175.13 (14) 0.8 (3) 2.7 (3)	C12—C7—C8—C9 N1—C7—C8—C9 C7—C8—C9—C10 C8—C9—C10—C11 C8—C9—C10—C13 C9—C10—C11—C12 C13—C10—C11—C12 C10—C11—C12—C7 C8—C7—C12—C11	-0.6 (3) -177.92 (17) 0.6 (3) 0.1 (3) 179.65 (17) -1.0 (3) 179.50 (17) 1.0 (3) -0.3 (3)
C1 - C2 - C3 - C4	08(3)	C10-C11-C12-C7	10(3)
C15-04-C4-C5	2.7 (3)	C8—C7—C12—C11	-0.3(3)
C15—O4—C4—C3	-176.22 (18)	N1-C7-C12-C11	177.24 (17)
C2—C3—C4—O4	176.85 (16)	C11—C10—C13—O3	-177.28 (18)
C2—C3—C4—C5	-2.2 (3)	C9—C10—C13—O3	3.2 (3)
O4—C4—C5—C6	-177.21 (18)	C11—C10—C13—C14	2.6 (3)
C3—C4—C5—C6	1.7 (3)	C9—C10—C13—C14	-176.96 (18)
C4—C5—C6—C1	0.1 (3)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1-C6 and C7-C12 rings, respectively.

D—H···A	D—H	H···A	D··· A	D—H···A
N1—H1 <i>N</i> 1···O3 ⁱ	0.85 (2)	2.05 (2)	2.896 (2)	172.3 (19)
C8—H8 <i>A</i> ···O2	0.93	2.38	3.030 (2)	127
С9—Н9А…О1 ^{іі}	0.93	2.53	3.459 (2)	174
C14—H14 A ···Cg1 ⁱ	0.96	2.83	3.630(3)	141
C14—H14 C ··· $Cg2^{iii}$	0.96	2.83	3.529 (2)	130
C15—H15 C ··· $Cg1^{iv}$	0.96	2.99	3.804 (3)	144

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*+1, -*z*+2; (iv) -*x*, *y*-1/2, -*z*+3/2.