Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediammonium tetrachloridozincate

Muhammad Akhtar, ${ }^{\text {a }}$ Mohammed Fettouhi, ${ }^{\text {b }}$ Maqsood Ahmed, ${ }^{\text {c }}$ Islam Ullah Khan ${ }^{\text {d }}$ and Saeed Ahmad ${ }^{\text {e* }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, ${ }^{\mathbf{b}}$ Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia, ${ }^{\text {c }}$ Department of Chemistry, Islamia University, Bahawalpur, Pakistan, ${ }^{\mathbf{d}}$ Department of Chemistry, Government College College University, Lahore 54000, Pakistan, and ${ }^{\text {e }}$ Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan
Correspondence e-mail: saeed_a786@hotmail.com

Received 11 September 2013; accepted 30 October 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; R factor $=0.031 ; \omega R$ factor $=0.075$; data-to-parameter ratio $=16.0$.

The asymmetric unit of the title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCl}_{4}\right]$, consists of one tetrachloridozincate anion and two half$N, N, N^{\prime} N^{\prime}$-tetramethylethylenediammonium cations. Each of the two diammonium cations is located about an inversion center and one of them is disordered over two sets of sites in a 0.780 (17):0.220 (17) ratio. The $\mathrm{Zn}^{\text {II }}$ atom has a slightly distorted tetrahedral coordination environment. The cations and anions are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into chains extending along [011].

Related literature

For background to organic-inorganic hybrid materials, see: Al-Ktaifani \& Rukiah (2011). For the isotypic tetrachloridocobaltate(II) salt, see: Baughman et al. (2011). For other related structures and discussion of geometrical features, see: Yin \& Wu (2010); Zhao \& Qu (2010).

Experimental

Crystal data
$\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCl}_{4}\right]$
$\gamma=69.42(3)^{\circ}$
$M_{r}=325.42$
$V=676.9(8) \AA^{3}$
Triclinic, $P \overline{1}$
$a=6.893$ (4) \AA
$b=8.257$ (6) \AA
$c=13.33$ (1) \AA
$\alpha=72.78$ (3) ${ }^{\circ}$
$\beta=87.44(3)^{\circ}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=2.57 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.95 \times 0.44 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
9440 measured reflections 2466 independent reflections 1806 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

Absorption correction: analytical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.194, T_{\text {max }}=0.821$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.075$
$S=1.05$
2466 reflections
154 parameters
6 restraints

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.54 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl} 1$	0.91	2.30	$3.157(3)$	158
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{Cl} 3^{\mathrm{i}}$	$0.85(4)$	$2.44(4)$	$3.227(4)$	$155(3)$

Symmetry code: (i) $x, y, z-1$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge Government College University Lahore, Pakistan, for providing the X-ray facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2591).

References

Al-Ktaifani, M. M. \& Rukiah, M. K. (2011). Chem. Pap. 65, 469-476.
Baughman, R. G., Shane, R. S. \& McCormick, J. M. (2011). Acta Cryst. E67, m1.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yin, M. \& Wu, S.-T. (2010). Acta Cryst. E66, m515.
Zhao, M. M. \& Qu, Z. R. (2010). Acta Cryst. C66, m188-m190.

supporting information

Acta Cryst. (2013). E69, m642 [doi:10.1107/S1600536813029802]

$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediammonium tetrachloridozincate

Muhammad Akhtar, Mohammed Fettouhi, Maqsood Ahmed, Islam Ullah Khan and Saeed Ahmad

S1. Comment

The organic-inorganic hybrid salts consisting of organic cation and polyhalometal counter anions have received considerable attention because of their potential applications in analytical, material and supramolecular chemistry (AlKtaifani et al., 2011). In this work, we report the crystal structure of one such compound. The title compound was obtained unexpectedly during an attempt to synthesize a mixed-ligand zinc(II) complex of $N, N, N^{\prime} N^{\prime}$-tetramethylethylenediamine and 2-mercaptosuccinic acid. The crystal structure of the title hybrid material is shown in Fig. 1. The structure is ionic and the asymmetric unit consists of one tetrachloridozincate anion and two halves of tetramethylethylenediammonium cations, located on inversion centers. The Zn atom, coordinated by four chloride anions, shows a distorted tetrahedral environment (Fig. 1). The bond angles around zinc vary from 105.93 (7) ${ }^{\circ}$ to $115.80(7)^{\circ}$. The compound is isostructural with its cobalt analogue (Baughman et al., 2011). In the crystal,the cations and anions are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into chains propagating along the [0 $\overline{1} 1]$ direction (Fig. 2).

S2. Experimental

The title complex was prepared by adding $0.12 \mathrm{~g}(1.0 \mathrm{mmol})$ of $N, N, N^{\prime} N^{\prime}$-tetramethylethylenediamine in 10 ml methanol to an aqueous solution $(5 \mathrm{ml})$ of $0.14 \mathrm{~g}(1.0 \mathrm{mmol})$ zinc chloride. The slightly turbid solution was stirred for 15 minutes. Then a solution of $0.16 \mathrm{~g}(1.0 \mathrm{mmol})$ 2-mercaptosuccinic acid in 15 ml was added. The mixture was stirred for 30 minutes along with heating. The white mixture obtained was filtered and the filtrate was kept at room temperature for crystallization. As a result, white crystalline product was obtained, that was washed with methanol.

S3. Refinement

The H1N atom of one of the symmetry independent cations was located on a difference Fourier map and freely refined. All other H atoms were placed in calculated positions with a $\mathrm{C}-\mathrm{H}$ distance of $0.96 \AA\left(U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right)$ for methyl groups, $0.97 \AA\left(U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right)$ for methylene groups and $\mathrm{N} — \mathrm{H}$ distance of $0.91 \AA\left(U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{H})\right)$ for the other NH group. One of the diammonium cations the atoms $\mathrm{C} 1, \mathrm{C} 2$ and C 3 are disordered over two positions, with the occupancy of the major position of 0.780 (17). During the refinement process restraints were imposed on $\mathrm{C}-\mathrm{N}$ bond distances in the disordered cation.

Figure 1
Molecular structure of the title compound showing the atomic numbering scheme [symmetry codes: (i) $1-x, 2-y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $x, y, 1+z]$. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only $\mathrm{N}-\mathrm{H}$ group H atoms are shown.

Figure 2
Packing diagram of the title compound showing the hydrogen-bonding interactions.

$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediammonium tetrachloridozincate

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)\left[\mathrm{ZnCl}_{4}\right]$
$M_{r}=325.42$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.893$ (4) \AA
$b=8.257$ (6) \AA
$c=13.33$ (1) \AA
$\alpha=72.78(3)^{\circ}$
$\beta=87.44(3)^{\circ}$
$\gamma=69.42(3)^{\circ}$
$V=676.9(8) \AA^{3}$
$Z=2$
$F(000)=332$
$D_{\mathrm{x}}=1.596 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 162 reflections
$\theta=3.2-25.6^{\circ}$
$\mu=2.57 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colorless
$0.95 \times 0.44 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: analytical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.194, T_{\text {max }}=0.821$

> 9440 measured reflections
> 2466 independent reflections
> 1806 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.041$
> $\theta_{\max }=25.6^{\circ}, \theta_{\min }=3.2^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-9 \rightarrow 9$
> $l=-15 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.075$
$S=1.05$
2466 reflections
154 parameters
6 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. ($<1)$
Zn1	$0.08487(5)$	$0.89099(5)$	$0.74635(3)$	$0.03316(14)$	
C11	$0.28956(12)$	$0.66541(11)$	$0.67979(6)$	$0.0410(2)$	
C12	$-0.07173(14)$	$0.75755(15)$	$0.87904(8)$	$0.0654(3)$	
C13	$0.30346(14)$	$0.98281(13)$	$0.81654(7)$	$0.0518(3)$	
C14	$-0.12777(13)$	$1.13302(12)$	$0.62136(8)$	$0.0541(3)$	
N2	$0.6233(4)$	$0.7466(3)$	$0.5224(2)$	$0.0339(6)$	
H2N	0.5080	0.7274	0.5510	0.041^{*}	
C1	$0.178(2)$	$0.727(2)$	$0.1182(13)$	$0.080(4)$	$0.780(17)$
H1A	0.2288	0.6592	0.1898	0.120^{*}	$0.780(17)$
H1B	0.0775	0.6846	0.0974	0.120^{*}	$0.780(17)$
H1C	0.1146	0.8531	0.1123	0.120^{*}	$0.780(17)$
N1	$0.3533(4)$	$0.7001(4)$	$0.0490(2)$	$0.0433(8)$	0.50
H1N	$0.301(6)$	$0.773(5)$	$-0.011(3)$	$0.067(13)^{*}$	
C2	$0.4241(11)$	$0.5105(4)$	$0.0424(4)$	$0.0374(19)$	$0.780(17)$
H2A	0.3053	0.4832	0.0264	0.045^{*}	$0.780(17)$

H2B	0.4901	0.4258	0.1096	0.045*	0.780 (17)
C3	0.5165 (17)	0.756 (2)	0.0811 (17)	0.064 (3)	0.780 (17)
H3A	0.4547	0.8759	0.0881	0.096*	0.780 (17)
H3B	0.6167	0.7563	0.0287	0.096*	0.780 (17)
H3C	0.5841	0.6728	0.1473	0.096*	0.780 (17)
C1'	0.210 (7)	0.655 (7)	0.129 (4)	0.081 (15)	0.220 (17)
H1'1	0.0977	0.7635	0.1299	0.121*	0.220 (17)
H1'2	0.2835	0.5981	0.1972	0.121*	0.220 (17)
H1'3	0.1554	0.5729	0.1124	0.121*	0.220 (17)
N1'	0.3533 (4)	0.7001 (4)	0.0490 (2)	0.0433 (8)	0.50
C2'	0.534 (3)	0.545 (2)	0.0335 (14)	0.041 (7)	0.220 (17)
H2'1	0.5918	0.4579	0.1013	0.049*	0.220 (17)
H2'2	0.6407	0.5894	-0.0001	0.049*	0.220 (17)
C3'	0.454 (8)	0.799 (10)	0.092 (7)	0.087 (18)	0.220 (17)
H3'1	0.3489	0.9006	0.1069	0.130*	0.220 (17)
H3'2	0.5422	0.8416	0.0418	0.130*	0.220 (17)
H3'3	0.5349	0.7194	0.1560	0.130*	0.220 (17)
C4	0.7855 (5)	0.6795 (5)	0.6093 (3)	0.0564 (11)	
H4A	0.8210	0.5510	0.6401	0.085*	
H4B	0.7337	0.7393	0.6619	0.085*	
H4C	0.9066	0.7046	0.5823	0.085*	
C5	0.6891 (5)	0.6428 (5)	0.4463 (3)	0.0529 (10)	
H5A	0.8031	0.6690	0.4101	0.079*	
H5B	0.5752	0.6764	0.3963	0.079*	
H5C	0.7318	0.5155	0.4829	0.079*	
C6	0.5632 (5)	0.9456 (4)	0.4667 (3)	0.0393 (8)	
H6A	0.6874	0.9753	0.4499	0.047*	
H6B	0.4840	0.9756	0.4012	0.047*	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0325(2)$	$0.0332(2)$	$0.0319(2)$	$-0.00986(16)$	$0.00269(15)$	$-0.00935(18)$
C 11	$0.0448(5)$	$0.0389(5)$	$0.0395(5)$	$-0.0121(4)$	$0.0087(4)$	$-0.0165(4)$
C 12	$0.0617(6)$	$0.0736(7)$	$0.0589(7)$	$-0.0331(5)$	$0.0258(5)$	$-0.0092(6)$
C 13	$0.0660(6)$	$0.0532(6)$	$0.0450(6)$	$-0.0335(5)$	$-0.0084(4)$	$-0.0108(5)$
C 4	$0.0452(5)$	$0.0446(6)$	$0.0555(6)$	$-0.0068(4)$	$-0.0114(4)$	$0.0002(5)$
N 2	$0.0295(13)$	$0.0262(15)$	$0.0493(18)$	$-0.0108(11)$	$0.0103(12)$	$-0.0161(14)$
C 1	$0.075(5)$	$0.091(8)$	$0.068(6)$	$-0.017(6)$	$0.025(4)$	$-0.033(6)$
N 1	$0.0572(19)$	$0.0316(18)$	$0.0320(18)$	$-0.0055(14)$	$-0.0015(15)$	$-0.0083(16)$
C 2	$0.041(3)$	$0.030(3)$	$0.045(3)$	$-0.017(2)$	$0.004(3)$	$-0.012(2)$
C 3	$0.096(8)$	$0.055(5)$	$0.054(6)$	$-0.042(6)$	$-0.003(6)$	$-0.016(4)$
$\mathrm{C} 1^{\prime}$	$0.06(2)$	$0.13(5)$	$0.08(3)$	$-0.05(2)$	$0.025(19)$	$-0.06(3)$
$\mathrm{N} 1^{\prime}$	$0.0572(19)$	$0.0316(18)$	$0.0320(18)$	$-0.0055(14)$	$-0.0015(15)$	$-0.0083(16)$
C^{\prime}	$0.059(13)$	$0.029(10)$	$0.039(12)$	$-0.015(9)$	$-0.018(10)$	$-0.014(9)$
C^{\prime}	$0.08(2)$	$0.12(5)$	$0.08(3)$	$-0.07(3)$	$0.01(3)$	$-0.02(3)$
C^{\prime}	$0.054(2)$	$0.049(2)$	$0.054(3)$	$-0.0059(18)$	$-0.0111(19)$	$-0.011(2)$
C^{\prime}	$0.050(2)$	$0.045(2)$	$0.067(3)$	$-0.0097(18)$	$0.0089(19)$	$-0.033(2)$

C6	$0.0411(18)$	$0.0296(19)$	$0.046(2)$	$-0.0115(14)$	$0.0103(15)$	$-0.0118(17)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{Cl} 2$	2.2404 (15)	C3-H3C	0.9600
Zn1-Cl3	2.2516 (13)	C1'-H1'1	0.9600
Zn1-Cl4	2.2596 (17)	C1'-H1'2	0.9600
Zn1-Cl1	2.2949 (16)	$\mathrm{C} 1^{\prime}-\mathrm{H} 1^{\prime} 3$	0.9600
N2-C5	1.472 (4)	C2'- $\mathrm{C}^{\prime}{ }^{\text {'i }}$	1.50 (5)
N2-C4	1.483 (4)	$\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime} 1$	0.9700
N2-C6	1.500 (4)	$\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime} 2$	0.9700
N2-H2N	0.9100	C3'-H3'1	0.9600
C1-N1	1.481 (2)	C3'-H3'2	0.9600
C1-H1A	0.9600	C3'-H3'3	0.9600
C1-H1B	0.9600	C4-H4A	0.9600
C1-H1C	0.9600	C4-H4B	0.9600
N1-C3	1.480 (2)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
N1-C2	1.496 (2)	C5-H5A	0.9600
N1-H1N	0.85 (4)	C5-H5B	0.9600
$\mathrm{C} 2-\mathrm{C} 2{ }^{\text {i }}$	1.511 (13)	C5-H5C	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	C6-C6 ${ }^{\text {ii }}$	1.486 (6)
C2-H2B	0.9700	C6-H6A	0.9700
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600	C6-H6B	0.9700
C3-H3B	0.9600		
$\mathrm{Cl2}-\mathrm{Zn} 1-\mathrm{Cl} 3$	107.45 (6)	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.7
$\mathrm{Cl2}-\mathrm{Zn} 1-\mathrm{Cl} 4$	115.80 (6)	N1-C2-H2B	109.7
$\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl} 4$	108.07 (6)	$\mathrm{C} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.7
$\mathrm{Cl} 2-\mathrm{Zn} 1-\mathrm{Cl} 1$	105.93 (7)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.2
$\mathrm{Cl} 3-\mathrm{Zn} 1-\mathrm{Cl1}$	106.21 (6)	$\mathrm{H} 1{ }^{\prime} 1-\mathrm{C} 1$ - $\mathrm{H} 1{ }^{\prime} 2$	109.5
$\mathrm{Cl} 4-\mathrm{Zn} 1-\mathrm{Cl} 1$	112.86 (7)	$\mathrm{H} 1{ }^{\prime} 1-\mathrm{C1}-\mathrm{H} 1^{\prime} 3$	109.5
C5-N2-C4	110.7 (3)	H1'2- Cl^{\prime} - $\mathrm{H} 1{ }^{\prime} 3$	109.5
C5-N2-C6	110.0 (3)	$\mathrm{C} 2^{\prime}{ }^{\text {- }}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime} 1$	109.6
C4-N2-C6	113.4 (3)	$\mathrm{C} 2^{\prime}{ }^{\text {i }}-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime} 2$	109.6
C5-N2-H2N	107.5	$\mathrm{H} 2^{\prime} 1-\mathrm{C} 2^{\prime}-\mathrm{H} 2^{\prime} 2$	108.1
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	107.5	H3'1-C3'-H3'2	109.5
C6-N2-H2N	107.5	H3'1-C3'-H3'3	109.5
C3-N1-C1	111.3 (11)	H3'2-C3'- ${ }^{\prime} 3^{\prime} 3$	109.5
C3-N1-C2	115.7 (6)	C6 ${ }^{\text {iii-C6-N2 }}$	110.7 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	108.9 (7)	C6 ${ }^{\text {ii- }}$ - $6-\mathrm{H} 6 \mathrm{~A}$	109.5
C3-N1-H1N	107 (3)	N2-C6-H6A	109.5
C1-N1-H1N	105 (3)	C6 ${ }^{\text {ii- }}$ C6- H 6 B	109.5
C2-N1-H1N	108 (3)	N2-C6-H6B	109.5
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 2{ }^{\text {i }}$	110.0 (5)	H6A-C6-H6B	108.1
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.7		

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 N \cdots \mathrm{Cl1}$	0.91	2.30	$3.157(3)$	158
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{Cl}^{\mathrm{iii}}$	$0.85(4)$	$2.44(4)$	$3.227(4)$	$155(3)$

Symmetry code: (iii) $x, y, z-1$.

[^0]: Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y+2,-z+1$.

